tx.c 32.9 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2010 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
B
Ben Hutchings 已提交
15
#include <linux/ipv6.h>
16
#include <linux/slab.h>
B
Ben Hutchings 已提交
17
#include <net/ipv6.h>
18 19 20 21
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
22
#include "nic.h"
23 24 25 26 27 28 29 30
#include "workarounds.h"

/*
 * TX descriptor ring full threshold
 *
 * The tx_queue descriptor ring fill-level must fall below this value
 * before we restart the netif queue
 */
31
#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32

33 34
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer)
35 36 37
{
	if (buffer->unmap_len) {
		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38 39
		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
					 buffer->unmap_len);
40
		if (buffer->unmap_single)
41 42
			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
					 PCI_DMA_TODEVICE);
43
		else
44 45
			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
				       PCI_DMA_TODEVICE);
46
		buffer->unmap_len = 0;
47
		buffer->unmap_single = false;
48 49 50 51 52
	}

	if (buffer->skb) {
		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
		buffer->skb = NULL;
53 54 55
		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
			   "TX queue %d transmission id %x complete\n",
			   tx_queue->queue, tx_queue->read_count);
56 57 58
	}
}

B
Ben Hutchings 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/**
 * struct efx_tso_header - a DMA mapped buffer for packet headers
 * @next: Linked list of free ones.
 *	The list is protected by the TX queue lock.
 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
 * @dma_addr: The DMA address of the header below.
 *
 * This controls the memory used for a TSO header.  Use TSOH_DATA()
 * to find the packet header data.  Use TSOH_SIZE() to calculate the
 * total size required for a given packet header length.  TSO headers
 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
 */
struct efx_tso_header {
	union {
		struct efx_tso_header *next;
		size_t unmap_len;
	};
	dma_addr_t dma_addr;
};

static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80
			       struct sk_buff *skb);
B
Ben Hutchings 已提交
81 82 83 84
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
			       struct efx_tso_header *tsoh);

85 86
static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
			  struct efx_tx_buffer *buffer)
B
Ben Hutchings 已提交
87 88 89 90 91 92 93 94 95 96 97 98
{
	if (buffer->tsoh) {
		if (likely(!buffer->tsoh->unmap_len)) {
			buffer->tsoh->next = tx_queue->tso_headers_free;
			tx_queue->tso_headers_free = buffer->tsoh;
		} else {
			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
		}
		buffer->tsoh = NULL;
	}
}

99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static inline unsigned
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
{
	/* Depending on the NIC revision, we can use descriptor
	 * lengths up to 8K or 8K-1.  However, since PCI Express
	 * devices must split read requests at 4K boundaries, there is
	 * little benefit from using descriptors that cross those
	 * boundaries and we keep things simple by not doing so.
	 */
	unsigned len = (~dma_addr & 0xfff) + 1;

	/* Work around hardware bug for unaligned buffers. */
	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));

	return len;
}

118 119 120 121 122 123 124 125 126 127
/*
 * Add a socket buffer to a TX queue
 *
 * This maps all fragments of a socket buffer for DMA and adds them to
 * the TX queue.  The queue's insert pointer will be incremented by
 * the number of fragments in the socket buffer.
 *
 * If any DMA mapping fails, any mapped fragments will be unmapped,
 * the queue's insert pointer will be restored to its original value.
 *
128 129 130
 * This function is split out from efx_hard_start_xmit to allow the
 * loopback test to direct packets via specific TX queues.
 *
131 132 133
 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
 * You must hold netif_tx_lock() to call this function.
 */
134
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 136 137 138 139
{
	struct efx_nic *efx = tx_queue->efx;
	struct pci_dev *pci_dev = efx->pci_dev;
	struct efx_tx_buffer *buffer;
	skb_frag_t *fragment;
140
	unsigned int len, unmap_len = 0, fill_level, insert_ptr;
141 142
	dma_addr_t dma_addr, unmap_addr = 0;
	unsigned int dma_len;
143
	bool unmap_single;
144
	int q_space, i = 0;
145
	netdev_tx_t rc = NETDEV_TX_OK;
146 147 148

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

149
	if (skb_shinfo(skb)->gso_size)
B
Ben Hutchings 已提交
150 151
		return efx_enqueue_skb_tso(tx_queue, skb);

152 153 154
	/* Get size of the initial fragment */
	len = skb_headlen(skb);

155 156 157 158 159 160 161 162
	/* Pad if necessary */
	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
		EFX_BUG_ON_PARANOID(skb->data_len);
		len = 32 + 1;
		if (skb_pad(skb, len - skb->len))
			return NETDEV_TX_OK;
	}

163
	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
164
	q_space = efx->txq_entries - 1 - fill_level;
165 166 167 168 169

	/* Map for DMA.  Use pci_map_single rather than pci_map_page
	 * since this is more efficient on machines with sparse
	 * memory.
	 */
170
	unmap_single = true;
171 172 173 174
	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);

	/* Process all fragments */
	while (1) {
175
		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
			goto pci_err;

		/* Store fields for marking in the per-fragment final
		 * descriptor */
		unmap_len = len;
		unmap_addr = dma_addr;

		/* Add to TX queue, splitting across DMA boundaries */
		do {
			if (unlikely(q_space-- <= 0)) {
				/* It might be that completions have
				 * happened since the xmit path last
				 * checked.  Update the xmit path's
				 * copy of read_count.
				 */
191
				netif_tx_stop_queue(tx_queue->core_txq);
192
				/* This memory barrier protects the
193
				 * change of queue state from the access
194 195 196
				 * of read_count. */
				smp_mb();
				tx_queue->old_read_count =
197
					ACCESS_ONCE(tx_queue->read_count);
198 199
				fill_level = (tx_queue->insert_count
					      - tx_queue->old_read_count);
200
				q_space = efx->txq_entries - 1 - fill_level;
201 202 203 204
				if (unlikely(q_space-- <= 0)) {
					rc = NETDEV_TX_BUSY;
					goto unwind;
				}
205
				smp_mb();
206 207 208
				if (likely(!efx->loopback_selftest))
					netif_tx_start_queue(
						tx_queue->core_txq);
209 210
			}

211
			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212
			buffer = &tx_queue->buffer[insert_ptr];
B
Ben Hutchings 已提交
213 214
			efx_tsoh_free(tx_queue, buffer);
			EFX_BUG_ON_PARANOID(buffer->tsoh);
215 216
			EFX_BUG_ON_PARANOID(buffer->skb);
			EFX_BUG_ON_PARANOID(buffer->len);
217
			EFX_BUG_ON_PARANOID(!buffer->continuation);
218 219
			EFX_BUG_ON_PARANOID(buffer->unmap_len);

220 221
			dma_len = efx_max_tx_len(efx, dma_addr);
			if (likely(dma_len >= len))
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
				dma_len = len;

			/* Fill out per descriptor fields */
			buffer->len = dma_len;
			buffer->dma_addr = dma_addr;
			len -= dma_len;
			dma_addr += dma_len;
			++tx_queue->insert_count;
		} while (len);

		/* Transfer ownership of the unmapping to the final buffer */
		buffer->unmap_single = unmap_single;
		buffer->unmap_len = unmap_len;
		unmap_len = 0;

		/* Get address and size of next fragment */
		if (i >= skb_shinfo(skb)->nr_frags)
			break;
		fragment = &skb_shinfo(skb)->frags[i];
		len = fragment->size;
		i++;
		/* Map for DMA */
244
		unmap_single = false;
245
		dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
246
					    DMA_TO_DEVICE);
247 248 249 250
	}

	/* Transfer ownership of the skb to the final buffer */
	buffer->skb = skb;
251
	buffer->continuation = false;
252 253

	/* Pass off to hardware */
254
	efx_nic_push_buffers(tx_queue);
255 256 257 258

	return NETDEV_TX_OK;

 pci_err:
259 260 261 262
	netif_err(efx, tx_err, efx->net_dev,
		  " TX queue %d could not map skb with %d bytes %d "
		  "fragments for DMA\n", tx_queue->queue, skb->len,
		  skb_shinfo(skb)->nr_frags + 1);
263 264

	/* Mark the packet as transmitted, and free the SKB ourselves */
265
	dev_kfree_skb_any(skb);
266 267 268 269 270

 unwind:
	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
271
		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
272 273 274 275 276 277
		buffer = &tx_queue->buffer[insert_ptr];
		efx_dequeue_buffer(tx_queue, buffer);
		buffer->len = 0;
	}

	/* Free the fragment we were mid-way through pushing */
278 279 280 281 282 283 284 285
	if (unmap_len) {
		if (unmap_single)
			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
					 PCI_DMA_TODEVICE);
		else
			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
				       PCI_DMA_TODEVICE);
	}
286 287 288 289 290 291 292 293 294

	return rc;
}

/* Remove packets from the TX queue
 *
 * This removes packets from the TX queue, up to and including the
 * specified index.
 */
295 296
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
				unsigned int index)
297 298 299 300
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int stop_index, read_ptr;

301 302
	stop_index = (index + 1) & tx_queue->ptr_mask;
	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
303 304 305 306

	while (read_ptr != stop_index) {
		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
		if (unlikely(buffer->len == 0)) {
307 308 309
			netif_err(efx, tx_err, efx->net_dev,
				  "TX queue %d spurious TX completion id %x\n",
				  tx_queue->queue, read_ptr);
310 311 312 313 314
			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
			return;
		}

		efx_dequeue_buffer(tx_queue, buffer);
315
		buffer->continuation = true;
316 317 318
		buffer->len = 0;

		++tx_queue->read_count;
319
		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
320 321 322 323 324 325 326 327 328 329 330 331
	}
}

/* Initiate a packet transmission.  We use one channel per CPU
 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 * completion events will be directed back to the CPU that transmitted
 * the packet, which should be cache-efficient.
 *
 * Context: non-blocking.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 */
332 333
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
				      struct net_device *net_dev)
334
{
335
	struct efx_nic *efx = netdev_priv(net_dev);
336
	struct efx_tx_queue *tx_queue;
337
	unsigned index, type;
338

339
	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
340

341 342 343 344 345 346 347
	index = skb_get_queue_mapping(skb);
	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
	if (index >= efx->n_tx_channels) {
		index -= efx->n_tx_channels;
		type |= EFX_TXQ_TYPE_HIGHPRI;
	}
	tx_queue = efx_get_tx_queue(efx, index, type);
348

349
	return efx_enqueue_skb(tx_queue, skb);
350 351
}

352 353
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
354 355
	struct efx_nic *efx = tx_queue->efx;

356
	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	tx_queue->core_txq =
		netdev_get_tx_queue(efx->net_dev,
				    tx_queue->queue / EFX_TXQ_TYPES +
				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
				     efx->n_tx_channels : 0));
}

int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned tc;
	int rc;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
		return -EINVAL;

	if (num_tc == net_dev->num_tc)
		return 0;

	for (tc = 0; tc < num_tc; tc++) {
		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
	}

	if (num_tc > net_dev->num_tc) {
		/* Initialise high-priority queues as necessary */
		efx_for_each_channel(channel, efx) {
			efx_for_each_possible_channel_tx_queue(tx_queue,
							       channel) {
				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
					continue;
				if (!tx_queue->buffer) {
					rc = efx_probe_tx_queue(tx_queue);
					if (rc)
						return rc;
				}
				if (!tx_queue->initialised)
					efx_init_tx_queue(tx_queue);
				efx_init_tx_queue_core_txq(tx_queue);
			}
		}
	} else {
		/* Reduce number of classes before number of queues */
		net_dev->num_tc = num_tc;
	}

	rc = netif_set_real_num_tx_queues(net_dev,
					  max_t(int, num_tc, 1) *
					  efx->n_tx_channels);
	if (rc)
		return rc;

	/* Do not destroy high-priority queues when they become
	 * unused.  We would have to flush them first, and it is
	 * fairly difficult to flush a subset of TX queues.  Leave
	 * it to efx_fini_channels().
	 */

	net_dev->num_tc = num_tc;
	return 0;
419 420
}

421 422 423 424 425
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
	unsigned fill_level;
	struct efx_nic *efx = tx_queue->efx;

426
	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
427 428 429 430

	efx_dequeue_buffers(tx_queue, index);

	/* See if we need to restart the netif queue.  This barrier
431 432
	 * separates the update of read_count from the test of the
	 * queue state. */
433
	smp_mb();
434
	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
435
	    likely(efx->port_enabled) &&
436
	    likely(netif_device_present(efx->net_dev))) {
437
		fill_level = tx_queue->insert_count - tx_queue->read_count;
438
		if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
439
			EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
440
			netif_tx_wake_queue(tx_queue->core_txq);
441 442
		}
	}
443 444 445 446 447 448 449 450 451 452

	/* Check whether the hardware queue is now empty */
	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
		if (tx_queue->read_count == tx_queue->old_write_count) {
			smp_mb();
			tx_queue->empty_read_count =
				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
		}
	}
453 454 455 456 457
}

int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
458
	unsigned int entries;
459 460
	int i, rc;

461 462 463 464 465 466 467 468
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	tx_queue->ptr_mask = entries - 1;

	netif_dbg(efx, probe, efx->net_dev,
		  "creating TX queue %d size %#x mask %#x\n",
		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
469 470

	/* Allocate software ring */
471 472
	tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
				   GFP_KERNEL);
473 474
	if (!tx_queue->buffer)
		return -ENOMEM;
475
	for (i = 0; i <= tx_queue->ptr_mask; ++i)
476
		tx_queue->buffer[i].continuation = true;
477 478

	/* Allocate hardware ring */
479
	rc = efx_nic_probe_tx(tx_queue);
480
	if (rc)
481
		goto fail;
482 483 484

	return 0;

485
 fail:
486 487 488 489 490
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
	return rc;
}

491
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
492
{
493 494
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "initialising TX queue %d\n", tx_queue->queue);
495 496 497

	tx_queue->insert_count = 0;
	tx_queue->write_count = 0;
498
	tx_queue->old_write_count = 0;
499 500
	tx_queue->read_count = 0;
	tx_queue->old_read_count = 0;
501
	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
502 503

	/* Set up TX descriptor ring */
504
	efx_nic_init_tx(tx_queue);
505 506

	tx_queue->initialised = true;
507 508 509 510 511 512 513 514 515 516 517
}

void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	if (!tx_queue->buffer)
		return;

	/* Free any buffers left in the ring */
	while (tx_queue->read_count != tx_queue->write_count) {
518
		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
519
		efx_dequeue_buffer(tx_queue, buffer);
520
		buffer->continuation = true;
521 522 523 524 525 526 527 528
		buffer->len = 0;

		++tx_queue->read_count;
	}
}

void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
529 530 531
	if (!tx_queue->initialised)
		return;

532 533
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "shutting down TX queue %d\n", tx_queue->queue);
534

535 536
	tx_queue->initialised = false;

537
	/* Flush TX queue, remove descriptor ring */
538
	efx_nic_fini_tx(tx_queue);
539 540 541

	efx_release_tx_buffers(tx_queue);

B
Ben Hutchings 已提交
542 543
	/* Free up TSO header cache */
	efx_fini_tso(tx_queue);
544 545 546 547
}

void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
548 549 550
	if (!tx_queue->buffer)
		return;

551 552
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "destroying TX queue %d\n", tx_queue->queue);
553
	efx_nic_remove_tx(tx_queue);
554 555 556 557 558 559

	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
}


B
Ben Hutchings 已提交
560 561 562 563 564 565 566 567 568 569 570
/* Efx TCP segmentation acceleration.
 *
 * Why?  Because by doing it here in the driver we can go significantly
 * faster than the GSO.
 *
 * Requires TX checksum offload support.
 */

/* Number of bytes inserted at the start of a TSO header buffer,
 * similar to NET_IP_ALIGN.
 */
571
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
B
Ben Hutchings 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
#define TSOH_OFFSET	0
#else
#define TSOH_OFFSET	NET_IP_ALIGN
#endif

#define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)

/* Total size of struct efx_tso_header, buffer and padding */
#define TSOH_SIZE(hdr_len)					\
	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)

/* Size of blocks on free list.  Larger blocks must be allocated from
 * the heap.
 */
#define TSOH_STD_SIZE		128

#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
#define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
#define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
B
Ben Hutchings 已提交
592
#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
B
Ben Hutchings 已提交
593 594 595

/**
 * struct tso_state - TSO state for an SKB
596
 * @out_len: Remaining length in current segment
B
Ben Hutchings 已提交
597
 * @seqnum: Current sequence number
598
 * @ipv4_id: Current IPv4 ID, host endian
B
Ben Hutchings 已提交
599
 * @packet_space: Remaining space in current packet
600 601 602 603 604
 * @dma_addr: DMA address of current position
 * @in_len: Remaining length in current SKB fragment
 * @unmap_len: Length of SKB fragment
 * @unmap_addr: DMA address of SKB fragment
 * @unmap_single: DMA single vs page mapping flag
B
Ben Hutchings 已提交
605
 * @protocol: Network protocol (after any VLAN header)
606 607
 * @header_len: Number of bytes of header
 * @full_packet_size: Number of bytes to put in each outgoing segment
B
Ben Hutchings 已提交
608 609 610 611 612
 *
 * The state used during segmentation.  It is put into this data structure
 * just to make it easy to pass into inline functions.
 */
struct tso_state {
613 614
	/* Output position */
	unsigned out_len;
B
Ben Hutchings 已提交
615
	unsigned seqnum;
616
	unsigned ipv4_id;
B
Ben Hutchings 已提交
617 618
	unsigned packet_space;

619 620 621 622 623 624 625
	/* Input position */
	dma_addr_t dma_addr;
	unsigned in_len;
	unsigned unmap_len;
	dma_addr_t unmap_addr;
	bool unmap_single;

B
Ben Hutchings 已提交
626
	__be16 protocol;
627 628
	unsigned header_len;
	int full_packet_size;
B
Ben Hutchings 已提交
629 630 631 632 633
};


/*
 * Verify that our various assumptions about sk_buffs and the conditions
B
Ben Hutchings 已提交
634
 * under which TSO will be attempted hold true.  Return the protocol number.
B
Ben Hutchings 已提交
635
 */
B
Ben Hutchings 已提交
636
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
B
Ben Hutchings 已提交
637
{
638 639
	__be16 protocol = skb->protocol;

B
Ben Hutchings 已提交
640
	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
641 642 643 644 645 646 647 648 649 650
			    protocol);
	if (protocol == htons(ETH_P_8021Q)) {
		/* Find the encapsulated protocol; reset network header
		 * and transport header based on that. */
		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
		protocol = veh->h_vlan_encapsulated_proto;
		skb_set_network_header(skb, sizeof(*veh));
		if (protocol == htons(ETH_P_IP))
			skb_set_transport_header(skb, sizeof(*veh) +
						 4 * ip_hdr(skb)->ihl);
B
Ben Hutchings 已提交
651 652 653
		else if (protocol == htons(ETH_P_IPV6))
			skb_set_transport_header(skb, sizeof(*veh) +
						 sizeof(struct ipv6hdr));
654 655
	}

B
Ben Hutchings 已提交
656 657 658 659 660 661
	if (protocol == htons(ETH_P_IP)) {
		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
	} else {
		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
	}
B
Ben Hutchings 已提交
662 663 664
	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
			     + (tcp_hdr(skb)->doff << 2u)) >
			    skb_headlen(skb));
B
Ben Hutchings 已提交
665 666

	return protocol;
B
Ben Hutchings 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
}


/*
 * Allocate a page worth of efx_tso_header structures, and string them
 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
 */
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
{

	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
	struct efx_tso_header *tsoh;
	dma_addr_t dma_addr;
	u8 *base_kva, *kva;

	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
	if (base_kva == NULL) {
684 685
		netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
			  "Unable to allocate page for TSO headers\n");
B
Ben Hutchings 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		return -ENOMEM;
	}

	/* pci_alloc_consistent() allocates pages. */
	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));

	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
		tsoh = (struct efx_tso_header *)kva;
		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
		tsoh->next = tx_queue->tso_headers_free;
		tx_queue->tso_headers_free = tsoh;
	}

	return 0;
}


/* Free up a TSO header, and all others in the same page. */
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
				struct efx_tso_header *tsoh,
				struct pci_dev *pci_dev)
{
	struct efx_tso_header **p;
	unsigned long base_kva;
	dma_addr_t base_dma;

	base_kva = (unsigned long)tsoh & PAGE_MASK;
	base_dma = tsoh->dma_addr & PAGE_MASK;

	p = &tx_queue->tso_headers_free;
716
	while (*p != NULL) {
B
Ben Hutchings 已提交
717 718 719 720
		if (((unsigned long)*p & PAGE_MASK) == base_kva)
			*p = (*p)->next;
		else
			p = &(*p)->next;
721
	}
B
Ben Hutchings 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
}

static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
{
	struct efx_tso_header *tsoh;

	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
	if (unlikely(!tsoh))
		return NULL;

	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
					TSOH_BUFFER(tsoh), header_len,
					PCI_DMA_TODEVICE);
738 739
	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
					   tsoh->dma_addr))) {
B
Ben Hutchings 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		kfree(tsoh);
		return NULL;
	}

	tsoh->unmap_len = header_len;
	return tsoh;
}

static void
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
{
	pci_unmap_single(tx_queue->efx->pci_dev,
			 tsoh->dma_addr, tsoh->unmap_len,
			 PCI_DMA_TODEVICE);
	kfree(tsoh);
}

/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
762
 * @final_buffer:	The final buffer inserted into the queue
B
Ben Hutchings 已提交
763 764 765 766 767 768
 *
 * Push descriptors onto the TX queue.  Return 0 on success or 1 if
 * @tx_queue full.
 */
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
			       dma_addr_t dma_addr, unsigned len,
769
			       struct efx_tx_buffer **final_buffer)
B
Ben Hutchings 已提交
770 771 772
{
	struct efx_tx_buffer *buffer;
	struct efx_nic *efx = tx_queue->efx;
773
	unsigned dma_len, fill_level, insert_ptr;
B
Ben Hutchings 已提交
774 775 776 777 778 779
	int q_space;

	EFX_BUG_ON_PARANOID(len <= 0);

	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
	/* -1 as there is no way to represent all descriptors used */
780
	q_space = efx->txq_entries - 1 - fill_level;
B
Ben Hutchings 已提交
781 782 783 784 785 786 787

	while (1) {
		if (unlikely(q_space-- <= 0)) {
			/* It might be that completions have happened
			 * since the xmit path last checked.  Update
			 * the xmit path's copy of read_count.
			 */
788
			netif_tx_stop_queue(tx_queue->core_txq);
B
Ben Hutchings 已提交
789
			/* This memory barrier protects the change of
790
			 * queue state from the access of read_count. */
B
Ben Hutchings 已提交
791 792
			smp_mb();
			tx_queue->old_read_count =
793
				ACCESS_ONCE(tx_queue->read_count);
B
Ben Hutchings 已提交
794 795
			fill_level = (tx_queue->insert_count
				      - tx_queue->old_read_count);
796
			q_space = efx->txq_entries - 1 - fill_level;
797 798
			if (unlikely(q_space-- <= 0)) {
				*final_buffer = NULL;
B
Ben Hutchings 已提交
799
				return 1;
800
			}
B
Ben Hutchings 已提交
801
			smp_mb();
802
			netif_tx_start_queue(tx_queue->core_txq);
B
Ben Hutchings 已提交
803 804
		}

805
		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
B
Ben Hutchings 已提交
806 807 808 809
		buffer = &tx_queue->buffer[insert_ptr];
		++tx_queue->insert_count;

		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
810 811
				    tx_queue->read_count >=
				    efx->txq_entries);
B
Ben Hutchings 已提交
812 813 814 815 816

		efx_tsoh_free(tx_queue, buffer);
		EFX_BUG_ON_PARANOID(buffer->len);
		EFX_BUG_ON_PARANOID(buffer->unmap_len);
		EFX_BUG_ON_PARANOID(buffer->skb);
817
		EFX_BUG_ON_PARANOID(!buffer->continuation);
B
Ben Hutchings 已提交
818 819 820 821
		EFX_BUG_ON_PARANOID(buffer->tsoh);

		buffer->dma_addr = dma_addr;

822
		dma_len = efx_max_tx_len(efx, dma_addr);
B
Ben Hutchings 已提交
823 824 825 826 827 828 829 830 831 832 833 834

		/* If there is enough space to send then do so */
		if (dma_len >= len)
			break;

		buffer->len = dma_len; /* Don't set the other members */
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_BUG_ON_PARANOID(!len);
	buffer->len = len;
835
	*final_buffer = buffer;
B
Ben Hutchings 已提交
836 837 838 839 840 841 842 843 844 845 846
	return 0;
}


/*
 * Put a TSO header into the TX queue.
 *
 * This is special-cased because we know that it is small enough to fit in
 * a single fragment, and we know it doesn't cross a page boundary.  It
 * also allows us to not worry about end-of-packet etc.
 */
847 848
static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
			       struct efx_tso_header *tsoh, unsigned len)
B
Ben Hutchings 已提交
849 850 851
{
	struct efx_tx_buffer *buffer;

852
	buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
B
Ben Hutchings 已提交
853 854 855 856
	efx_tsoh_free(tx_queue, buffer);
	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);
	EFX_BUG_ON_PARANOID(buffer->skb);
857
	EFX_BUG_ON_PARANOID(!buffer->continuation);
B
Ben Hutchings 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870
	EFX_BUG_ON_PARANOID(buffer->tsoh);
	buffer->len = len;
	buffer->dma_addr = tsoh->dma_addr;
	buffer->tsoh = tsoh;

	++tx_queue->insert_count;
}


/* Remove descriptors put into a tx_queue. */
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;
871
	dma_addr_t unmap_addr;
B
Ben Hutchings 已提交
872 873 874 875 876

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
		buffer = &tx_queue->buffer[tx_queue->insert_count &
877
					   tx_queue->ptr_mask];
B
Ben Hutchings 已提交
878 879 880
		efx_tsoh_free(tx_queue, buffer);
		EFX_BUG_ON_PARANOID(buffer->skb);
		if (buffer->unmap_len) {
881 882
			unmap_addr = (buffer->dma_addr + buffer->len -
				      buffer->unmap_len);
883 884
			if (buffer->unmap_single)
				pci_unmap_single(tx_queue->efx->pci_dev,
885
						 unmap_addr, buffer->unmap_len,
886 887 888
						 PCI_DMA_TODEVICE);
			else
				pci_unmap_page(tx_queue->efx->pci_dev,
889
					       unmap_addr, buffer->unmap_len,
890
					       PCI_DMA_TODEVICE);
B
Ben Hutchings 已提交
891 892
			buffer->unmap_len = 0;
		}
893 894
		buffer->len = 0;
		buffer->continuation = true;
B
Ben Hutchings 已提交
895 896 897 898 899
	}
}


/* Parse the SKB header and initialise state. */
900
static void tso_start(struct tso_state *st, const struct sk_buff *skb)
B
Ben Hutchings 已提交
901 902 903 904
{
	/* All ethernet/IP/TCP headers combined size is TCP header size
	 * plus offset of TCP header relative to start of packet.
	 */
905 906 907
	st->header_len = ((tcp_hdr(skb)->doff << 2u)
			  + PTR_DIFF(tcp_hdr(skb), skb->data));
	st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
B
Ben Hutchings 已提交
908

B
Ben Hutchings 已提交
909 910 911 912
	if (st->protocol == htons(ETH_P_IP))
		st->ipv4_id = ntohs(ip_hdr(skb)->id);
	else
		st->ipv4_id = 0;
B
Ben Hutchings 已提交
913 914 915 916 917 918
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);

919 920 921 922
	st->packet_space = st->full_packet_size;
	st->out_len = skb->len - st->header_len;
	st->unmap_len = 0;
	st->unmap_single = false;
B
Ben Hutchings 已提交
923 924
}

925 926
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
			    skb_frag_t *frag)
B
Ben Hutchings 已提交
927
{
928
	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
929 930
					  frag->size, DMA_TO_DEVICE);
	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
931 932 933 934
		st->unmap_single = false;
		st->unmap_len = frag->size;
		st->in_len = frag->size;
		st->dma_addr = st->unmap_addr;
935 936 937 938 939
		return 0;
	}
	return -ENOMEM;
}

940 941
static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
				 const struct sk_buff *skb)
942
{
943
	int hl = st->header_len;
944
	int len = skb_headlen(skb) - hl;
B
Ben Hutchings 已提交
945

946 947 948 949 950 951 952
	st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
					len, PCI_DMA_TODEVICE);
	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
		st->unmap_single = true;
		st->unmap_len = len;
		st->in_len = len;
		st->dma_addr = st->unmap_addr;
B
Ben Hutchings 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		return 0;
	}
	return -ENOMEM;
}


/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
 * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
 * space in @tx_queue.
 */
969 970 971
static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
					 const struct sk_buff *skb,
					 struct tso_state *st)
B
Ben Hutchings 已提交
972
{
973
	struct efx_tx_buffer *buffer;
B
Ben Hutchings 已提交
974 975
	int n, end_of_packet, rc;

976
	if (st->in_len == 0)
B
Ben Hutchings 已提交
977 978 979 980
		return 0;
	if (st->packet_space == 0)
		return 0;

981
	EFX_BUG_ON_PARANOID(st->in_len <= 0);
B
Ben Hutchings 已提交
982 983
	EFX_BUG_ON_PARANOID(st->packet_space <= 0);

984
	n = min(st->in_len, st->packet_space);
B
Ben Hutchings 已提交
985 986

	st->packet_space -= n;
987 988
	st->out_len -= n;
	st->in_len -= n;
B
Ben Hutchings 已提交
989

990
	rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
991
	if (likely(rc == 0)) {
992
		if (st->out_len == 0)
993 994
			/* Transfer ownership of the skb */
			buffer->skb = skb;
B
Ben Hutchings 已提交
995

996
		end_of_packet = st->out_len == 0 || st->packet_space == 0;
997
		buffer->continuation = !end_of_packet;
B
Ben Hutchings 已提交
998

999
		if (st->in_len == 0) {
1000
			/* Transfer ownership of the pci mapping */
1001 1002 1003
			buffer->unmap_len = st->unmap_len;
			buffer->unmap_single = st->unmap_single;
			st->unmap_len = 0;
1004 1005 1006
		}
	}

1007
	st->dma_addr += n;
B
Ben Hutchings 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	return rc;
}


/**
 * tso_start_new_packet - generate a new header and prepare for the new packet
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Generate a new header and prepare for the new packet.  Return 0 on
 * success, or -1 if failed to alloc header.
 */
1021 1022 1023
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
				const struct sk_buff *skb,
				struct tso_state *st)
B
Ben Hutchings 已提交
1024 1025 1026 1027 1028 1029 1030
{
	struct efx_tso_header *tsoh;
	struct tcphdr *tsoh_th;
	unsigned ip_length;
	u8 *header;

	/* Allocate a DMA-mapped header buffer. */
1031
	if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1032
		if (tx_queue->tso_headers_free == NULL) {
B
Ben Hutchings 已提交
1033 1034
			if (efx_tsoh_block_alloc(tx_queue))
				return -1;
1035
		}
B
Ben Hutchings 已提交
1036 1037 1038 1039 1040 1041
		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
		tsoh = tx_queue->tso_headers_free;
		tx_queue->tso_headers_free = tsoh->next;
		tsoh->unmap_len = 0;
	} else {
		tx_queue->tso_long_headers++;
1042
		tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
B
Ben Hutchings 已提交
1043 1044 1045 1046 1047 1048 1049 1050
		if (unlikely(!tsoh))
			return -1;
	}

	header = TSOH_BUFFER(tsoh);
	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));

	/* Copy and update the headers. */
1051
	memcpy(header, skb->data, st->header_len);
B
Ben Hutchings 已提交
1052 1053 1054

	tsoh_th->seq = htonl(st->seqnum);
	st->seqnum += skb_shinfo(skb)->gso_size;
1055
	if (st->out_len > skb_shinfo(skb)->gso_size) {
B
Ben Hutchings 已提交
1056
		/* This packet will not finish the TSO burst. */
1057
		ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
B
Ben Hutchings 已提交
1058 1059 1060 1061
		tsoh_th->fin = 0;
		tsoh_th->psh = 0;
	} else {
		/* This packet will be the last in the TSO burst. */
1062
		ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
B
Ben Hutchings 已提交
1063 1064 1065 1066
		tsoh_th->fin = tcp_hdr(skb)->fin;
		tsoh_th->psh = tcp_hdr(skb)->psh;
	}

B
Ben Hutchings 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	if (st->protocol == htons(ETH_P_IP)) {
		struct iphdr *tsoh_iph =
			(struct iphdr *)(header + SKB_IPV4_OFF(skb));

		tsoh_iph->tot_len = htons(ip_length);

		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
		tsoh_iph->id = htons(st->ipv4_id);
		st->ipv4_id++;
	} else {
		struct ipv6hdr *tsoh_iph =
			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));

		tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
	}
B
Ben Hutchings 已提交
1082 1083 1084 1085 1086

	st->packet_space = skb_shinfo(skb)->gso_size;
	++tx_queue->tso_packets;

	/* Form a descriptor for this header. */
1087
	efx_tso_put_header(tx_queue, tsoh, st->header_len);
B
Ben Hutchings 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	return 0;
}


/**
 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
 */
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1105
			       struct sk_buff *skb)
B
Ben Hutchings 已提交
1106
{
1107
	struct efx_nic *efx = tx_queue->efx;
B
Ben Hutchings 已提交
1108 1109 1110
	int frag_i, rc, rc2 = NETDEV_TX_OK;
	struct tso_state state;

B
Ben Hutchings 已提交
1111 1112
	/* Find the packet protocol and sanity-check it */
	state.protocol = efx_tso_check_protocol(skb);
B
Ben Hutchings 已提交
1113 1114 1115 1116 1117 1118 1119 1120

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

	tso_start(&state, skb);

	/* Assume that skb header area contains exactly the headers, and
	 * all payload is in the frag list.
	 */
1121
	if (skb_headlen(skb) == state.header_len) {
B
Ben Hutchings 已提交
1122 1123 1124
		/* Grab the first payload fragment. */
		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
1125 1126
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1127 1128 1129
		if (rc)
			goto mem_err;
	} else {
1130
		rc = tso_get_head_fragment(&state, efx, skb);
B
Ben Hutchings 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		if (rc)
			goto mem_err;
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
		goto mem_err;

	while (1) {
		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1141 1142 1143 1144
		if (unlikely(rc)) {
			rc2 = NETDEV_TX_BUSY;
			goto unwind;
		}
B
Ben Hutchings 已提交
1145 1146

		/* Move onto the next fragment? */
1147
		if (state.in_len == 0) {
B
Ben Hutchings 已提交
1148 1149 1150
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
1151 1152
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state) < 0)
			goto mem_err;
	}

	/* Pass off to hardware */
1164
	efx_nic_push_buffers(tx_queue);
B
Ben Hutchings 已提交
1165 1166 1167 1168 1169

	tx_queue->tso_bursts++;
	return NETDEV_TX_OK;

 mem_err:
1170 1171
	netif_err(efx, tx_err, efx->net_dev,
		  "Out of memory for TSO headers, or PCI mapping error\n");
1172
	dev_kfree_skb_any(skb);
B
Ben Hutchings 已提交
1173 1174

 unwind:
1175
	/* Free the DMA mapping we were in the process of writing out */
1176 1177 1178 1179
	if (state.unmap_len) {
		if (state.unmap_single)
			pci_unmap_single(efx->pci_dev, state.unmap_addr,
					 state.unmap_len, PCI_DMA_TODEVICE);
1180
		else
1181 1182
			pci_unmap_page(efx->pci_dev, state.unmap_addr,
				       state.unmap_len, PCI_DMA_TODEVICE);
1183
	}
1184

B
Ben Hutchings 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	efx_enqueue_unwind(tx_queue);
	return rc2;
}


/*
 * Free up all TSO datastructures associated with tx_queue. This
 * routine should be called only once the tx_queue is both empty and
 * will no longer be used.
 */
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
{
	unsigned i;

1199
	if (tx_queue->buffer) {
1200
		for (i = 0; i <= tx_queue->ptr_mask; ++i)
B
Ben Hutchings 已提交
1201
			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1202
	}
B
Ben Hutchings 已提交
1203 1204 1205 1206 1207

	while (tx_queue->tso_headers_free != NULL)
		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
				    tx_queue->efx->pci_dev);
}