blk-mq.c 55.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161 162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
163
{
164 165 166
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

167 168 169
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
170
	rq->mq_ctx = ctx;
171
	rq->cmd_flags |= rw_flags;
172 173 174 175 176 177
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
178
	rq->start_time = jiffies;
179 180
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
181
	set_start_time_ns(rq);
182 183 184 185 186 187 188 189 190 191
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

192 193
	rq->cmd = rq->__cmd;

194 195 196 197 198 199
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
200 201
	rq->timeout = 0;

202 203 204 205
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

206 207 208
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

209
static struct request *
210
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 212 213 214
{
	struct request *rq;
	unsigned int tag;

215
	tag = blk_mq_get_tag(data);
216
	if (tag != BLK_MQ_TAG_FAIL) {
217
		rq = data->hctx->tags->rqs[tag];
218

219
		if (blk_mq_tag_busy(data->hctx)) {
220
			rq->cmd_flags = REQ_MQ_INFLIGHT;
221
			atomic_inc(&data->hctx->nr_active);
222 223 224
		}

		rq->tag = tag;
225
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 227 228 229 230 231
		return rq;
	}

	return NULL;
}

232 233
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
234
{
235 236
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
237
	struct request *rq;
238
	struct blk_mq_alloc_data alloc_data;
239
	int ret;
240

241
	ret = blk_queue_enter(q, gfp);
242 243
	if (ret)
		return ERR_PTR(ret);
244

245 246
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 248
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
249

250
	rq = __blk_mq_alloc_request(&alloc_data, rw);
251 252 253 254 255 256
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 258 259 260
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
261 262
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
263
	if (!rq) {
264
		blk_queue_exit(q);
265
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
266
	}
267 268
	return rq;
}
269
EXPORT_SYMBOL(blk_mq_alloc_request);
270 271 272 273 274 275 276

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

277 278
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
279
	rq->cmd_flags = 0;
280

281
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
282
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
283
	blk_queue_exit(q);
284 285
}

286
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 288 289 290 291
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
292 293 294 295 296 297 298 299 300 301 302

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
303
}
J
Jens Axboe 已提交
304
EXPORT_SYMBOL_GPL(blk_mq_free_request);
305

306
inline void __blk_mq_end_request(struct request *rq, int error)
307
{
M
Ming Lei 已提交
308 309
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
310
	if (rq->end_io) {
311
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
312 313 314
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
315
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
316
	}
317
}
318
EXPORT_SYMBOL(__blk_mq_end_request);
319

320
void blk_mq_end_request(struct request *rq, int error)
321 322 323
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
324
	__blk_mq_end_request(rq, error);
325
}
326
EXPORT_SYMBOL(blk_mq_end_request);
327

328
static void __blk_mq_complete_request_remote(void *data)
329
{
330
	struct request *rq = data;
331

332
	rq->q->softirq_done_fn(rq);
333 334
}

335
static void blk_mq_ipi_complete_request(struct request *rq)
336 337
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
338
	bool shared = false;
339 340
	int cpu;

C
Christoph Hellwig 已提交
341
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
342 343 344
		rq->q->softirq_done_fn(rq);
		return;
	}
345 346

	cpu = get_cpu();
C
Christoph Hellwig 已提交
347 348 349 350
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
351
		rq->csd.func = __blk_mq_complete_request_remote;
352 353
		rq->csd.info = rq;
		rq->csd.flags = 0;
354
		smp_call_function_single_async(ctx->cpu, &rq->csd);
355
	} else {
356
		rq->q->softirq_done_fn(rq);
357
	}
358 359
	put_cpu();
}
360

361 362 363 364 365
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
366
		blk_mq_end_request(rq, rq->errors);
367 368 369 370
	else
		blk_mq_ipi_complete_request(rq);
}

371 372 373 374 375 376 377 378
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
379
void blk_mq_complete_request(struct request *rq, int error)
380
{
381 382 383
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
384
		return;
385 386
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
387
		__blk_mq_complete_request(rq);
388
	}
389 390
}
EXPORT_SYMBOL(blk_mq_complete_request);
391

392 393 394 395 396 397
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

398
void blk_mq_start_request(struct request *rq)
399 400 401 402 403
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
404
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
405 406
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
407

408
	blk_add_timer(rq);
409

410 411 412 413 414 415
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

416 417 418 419 420 421
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
422 423 424 425
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426 427 428 429 430 431 432 433 434

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
435
}
436
EXPORT_SYMBOL(blk_mq_start_request);
437

438
static void __blk_mq_requeue_request(struct request *rq)
439 440 441 442
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
443

444 445 446 447
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
448 449
}

450 451 452 453 454
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
455
	blk_mq_add_to_requeue_list(rq, true);
456 457 458
}
EXPORT_SYMBOL(blk_mq_requeue_request);

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

486 487 488 489 490
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

515 516 517 518 519 520
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

521 522 523 524 525 526
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

547 548
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
549
	return tags->rqs[tag];
550 551 552
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

553
struct blk_mq_timeout_data {
554 555
	unsigned long next;
	unsigned int next_set;
556 557
};

558
void blk_mq_rq_timed_out(struct request *req, bool reserved)
559
{
560 561
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
562 563 564 565 566 567 568 569 570 571

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
572 573
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
574

575
	if (ops->timeout)
576
		ret = ops->timeout(req, reserved);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
592
}
593

594 595 596 597
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
598

599 600 601 602 603
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
604 605
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
606
		return;
607
	}
608 609
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
610

611 612
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
613
			blk_mq_rq_timed_out(rq, reserved);
614 615 616 617
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
618 619
}

620
static void blk_mq_rq_timer(unsigned long priv)
621
{
622 623 624 625 626 627
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
628

629
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630

631 632 633
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
634
	} else {
635 636
		struct blk_mq_hw_ctx *hctx;

637 638 639 640 641
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
642
	}
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

684 685 686 687 688 689 690 691 692
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

693
	for (i = 0; i < hctx->ctx_map.size; i++) {
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

718 719 720 721 722 723 724 725 726 727 728
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
729 730
	LIST_HEAD(driver_list);
	struct list_head *dptr;
731
	int queued;
732

733
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
734

735
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
736 737 738 739 740 741 742
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
743
	flush_busy_ctxs(hctx, &rq_list);
744 745 746 747 748 749 750 751 752 753 754 755

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

756 757 758 759 760 761
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

762 763 764
	/*
	 * Now process all the entries, sending them to the driver.
	 */
765
	queued = 0;
766
	while (!list_empty(&rq_list)) {
767
		struct blk_mq_queue_data bd;
768 769 770 771 772
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

773 774 775 776 777
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
778 779 780 781 782 783
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
784
			__blk_mq_requeue_request(rq);
785 786 787 788
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
789
			rq->errors = -EIO;
790
			blk_mq_end_request(rq, rq->errors);
791 792 793 794 795
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
796 797 798 799 800 801 802

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
818 819 820 821 822 823 824 825 826 827
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
828 829 830
	}
}

831 832 833 834 835 836 837 838
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
839 840
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
841 842

	if (--hctx->next_cpu_batch <= 0) {
843
		int cpu = hctx->next_cpu, next_cpu;
844 845 846 847 848 849 850

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
851 852

		return cpu;
853 854
	}

855
	return hctx->next_cpu;
856 857
}

858 859
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
860 861
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
862 863
		return;

864
	if (!async) {
865 866
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
867
			__blk_mq_run_hw_queue(hctx);
868
			put_cpu();
869 870
			return;
		}
871

872
		put_cpu();
873
	}
874

875 876
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
877 878
}

879
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
880 881 882 883 884 885 886
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
887
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
888 889
			continue;

890
		blk_mq_run_hw_queue(hctx, async);
891 892
	}
}
893
EXPORT_SYMBOL(blk_mq_run_hw_queues);
894 895 896

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
897 898
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
899 900 901 902
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

903 904 905 906 907 908 909 910 911 912
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

913 914 915
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
916

917
	blk_mq_run_hw_queue(hctx, false);
918 919 920
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

921 922 923 924 925 926 927 928 929 930
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

931
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
932 933 934 935 936 937 938 939 940
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
941
		blk_mq_run_hw_queue(hctx, async);
942 943 944 945
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

946
static void blk_mq_run_work_fn(struct work_struct *work)
947 948 949
{
	struct blk_mq_hw_ctx *hctx;

950
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
951

952 953 954
	__blk_mq_run_hw_queue(hctx);
}

955 956 957 958 959 960 961 962 963 964 965 966
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
967 968
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
969

970 971
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
972 973 974
}
EXPORT_SYMBOL(blk_mq_delay_queue);

975 976 977 978
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
979
{
980 981
	trace_block_rq_insert(hctx->queue, rq);

982 983 984 985
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
986
}
987

988 989 990 991 992 993
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
994 995 996
	blk_mq_hctx_mark_pending(hctx, ctx);
}

997 998
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
999
{
1000
	struct request_queue *q = rq->q;
1001
	struct blk_mq_hw_ctx *hctx;
1002 1003 1004 1005 1006
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1007 1008 1009

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1010 1011 1012
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1013 1014 1015

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1016 1017

	blk_mq_put_ctx(current_ctx);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1049
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1050
	}
1051
	blk_mq_hctx_mark_pending(hctx, ctx);
1052 1053 1054
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1055
	blk_mq_put_ctx(current_ctx);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1118

1119
	if (blk_do_io_stat(rq))
1120
		blk_account_io_start(rq, 1);
1121 1122
}

1123 1124 1125 1126 1127 1128
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1129 1130 1131
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1132
{
1133
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1134 1135 1136 1137 1138 1139 1140
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1141 1142
		struct request_queue *q = hctx->queue;

1143 1144 1145 1146 1147
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1148

1149 1150 1151
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1152
	}
1153
}
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1168
	struct blk_mq_alloc_data alloc_data;
1169

1170
	blk_queue_enter_live(q);
1171 1172 1173
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1174
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1175
		rw |= REQ_SYNC;
1176

1177
	trace_block_getrq(q, bio, rw);
1178 1179 1180
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1181
	if (unlikely(!rq)) {
1182
		__blk_mq_run_hw_queue(hctx);
1183 1184
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1185 1186

		ctx = blk_mq_get_ctx(q);
1187
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 1189 1190 1191 1192
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1193 1194 1195
	}

	hctx->queued++;
1196 1197 1198 1199 1200
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static int blk_mq_direct_issue_request(struct request *rq)
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK)
		return 0;
	else {
		__blk_mq_requeue_request(rq);

		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
			return 0;
		}
		return -1;
	}
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1244 1245
	unsigned int request_count = 0;
	struct blk_plug *plug;
1246
	struct request *same_queue_rq = NULL;
1247 1248 1249 1250

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1251
		bio_io_error(bio);
1252 1253 1254
		return;
	}

1255 1256
	blk_queue_split(q, &bio, q->bio_split);

1257 1258 1259 1260 1261 1262
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
			return;
	} else
		request_count = blk_plug_queued_count(q);
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1274
	plug = current->plug;
1275 1276 1277 1278 1279
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1280 1281 1282
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1283 1284 1285 1286

		blk_mq_bio_to_request(rq, bio);

		/*
1287 1288 1289
		 * we do limited pluging. If bio can be merged, do merge.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1290
		 */
1291
		if (plug) {
1292 1293 1294 1295 1296 1297
			/*
			 * The plug list might get flushed before this. If that
			 * happens, same_queue_rq is invalid and plug list is empty
			 **/
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1298
				list_del_init(&old_rq->queuelist);
1299
			}
1300 1301 1302 1303 1304
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1305
			return;
1306 1307 1308 1309
		if (!blk_mq_direct_issue_request(old_rq))
			return;
		blk_mq_insert_request(old_rq, false, true, true);
		return;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1333 1334
	struct blk_plug *plug;
	unsigned int request_count = 0;
1335 1336 1337 1338 1339 1340
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1341
		bio_io_error(bio);
1342 1343 1344
		return;
	}

1345 1346
	blk_queue_split(q, &bio, q->bio_split);

1347
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1348
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1349 1350 1351
		return;

	rq = blk_mq_map_request(q, bio, &data);
1352 1353
	if (unlikely(!rq))
		return;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1366 1367 1368
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1369
		if (!request_count)
1370 1371 1372 1373
			trace_block_plug(q);
		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1374
		}
1375 1376 1377
		list_add_tail(&rq->queuelist, &plug->mq_list);
		blk_mq_put_ctx(data.ctx);
		return;
1378 1379
	}

1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1389 1390
	}

1391
	blk_mq_put_ctx(data.ctx);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1403 1404
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1405
{
1406
	struct page *page;
1407

1408
	if (tags->rqs && set->ops->exit_request) {
1409
		int i;
1410

1411 1412
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1413
				continue;
1414 1415
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1416
			tags->rqs[i] = NULL;
1417
		}
1418 1419
	}

1420 1421
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1422
		list_del_init(&page->lru);
1423 1424 1425 1426 1427
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1428 1429 1430
		__free_pages(page, page->private);
	}

1431
	kfree(tags->rqs);
1432

1433
	blk_mq_free_tags(tags);
1434 1435 1436 1437
}

static size_t order_to_size(unsigned int order)
{
1438
	return (size_t)PAGE_SIZE << order;
1439 1440
}

1441 1442
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1443
{
1444
	struct blk_mq_tags *tags;
1445 1446 1447
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1448
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1449 1450
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1451 1452
	if (!tags)
		return NULL;
1453

1454 1455
	INIT_LIST_HEAD(&tags->page_list);

1456 1457 1458
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1459 1460 1461 1462
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1463 1464 1465 1466 1467

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1468
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1469
				cache_line_size());
1470
	left = rq_size * set->queue_depth;
1471

1472
	for (i = 0; i < set->queue_depth; ) {
1473 1474 1475 1476 1477 1478 1479 1480 1481
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1482
			page = alloc_pages_node(set->numa_node,
1483
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1484
				this_order);
1485 1486 1487 1488 1489 1490 1491 1492 1493
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1494
			goto fail;
1495 1496

		page->private = this_order;
1497
		list_add_tail(&page->lru, &tags->page_list);
1498 1499

		p = page_address(page);
1500 1501 1502 1503 1504
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1505
		entries_per_page = order_to_size(this_order) / rq_size;
1506
		to_do = min(entries_per_page, set->queue_depth - i);
1507 1508
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1509 1510 1511 1512
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1513 1514
						set->numa_node)) {
					tags->rqs[i] = NULL;
1515
					goto fail;
1516
				}
1517 1518
			}

1519 1520 1521 1522
			p += rq_size;
			i++;
		}
	}
1523
	return tags;
1524

1525 1526 1527
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1605 1606 1607 1608 1609

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1610 1611 1612 1613

	return NOTIFY_OK;
}

1614
/* hctx->ctxs will be freed in queue's release handler */
1615 1616 1617 1618
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1619 1620
	unsigned flush_start_tag = set->queue_depth;

1621 1622
	blk_mq_tag_idle(hctx);

1623 1624 1625 1626 1627
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1628 1629 1630 1631
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1632
	blk_free_flush_queue(hctx->fq);
1633 1634 1635
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1645
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1655
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1656 1657 1658
		free_cpumask_var(hctx->cpumask);
}

1659 1660 1661
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1662
{
1663
	int node;
1664
	unsigned flush_start_tag = set->queue_depth;
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1676
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1677 1678 1679 1680 1681 1682

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1683 1684

	/*
1685 1686
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1687
	 */
1688 1689 1690 1691
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1692

1693 1694
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1695

1696
	hctx->nr_ctx = 0;
1697

1698 1699 1700
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1701

1702 1703 1704
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1705

1706 1707 1708 1709 1710
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1711

1712
	return 0;
1713

1714 1715 1716 1717 1718
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1719 1720 1721 1722 1723 1724
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1725

1726 1727
	return -1;
}
1728

1729 1730 1731 1732 1733
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1734

1735 1736 1737 1738 1739
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1740 1741 1742 1743 1744 1745 1746 1747 1748
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1749
	blk_mq_exit_hw_queues(q, set, i);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1773 1774
		hctx = q->mq_ops->map_queue(q, i);

1775 1776 1777 1778 1779 1780 1781 1782 1783
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1784 1785
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1786 1787 1788 1789
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1790
	struct blk_mq_tag_set *set = q->tag_set;
1791

1792 1793 1794 1795 1796
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1797
	queue_for_each_hw_ctx(q, hctx, i) {
1798
		cpumask_clear(hctx->cpumask);
1799 1800 1801 1802 1803 1804 1805 1806
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1807
		if (!cpumask_test_cpu(i, online_mask))
1808 1809
			continue;

1810
		hctx = q->mq_ops->map_queue(q, i);
1811
		cpumask_set_cpu(i, hctx->cpumask);
1812 1813 1814
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1815

1816 1817
	mutex_unlock(&q->sysfs_lock);

1818
	queue_for_each_hw_ctx(q, hctx, i) {
1819 1820
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1821
		/*
1822 1823
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1824 1825 1826 1827 1828 1829
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1830
			hctx->tags = NULL;
1831 1832 1833
			continue;
		}

M
Ming Lei 已提交
1834 1835 1836 1837 1838 1839
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1840 1841 1842 1843 1844
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1845
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1846

1847 1848 1849
		/*
		 * Initialize batch roundrobin counts
		 */
1850 1851 1852
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1853 1854

	queue_for_each_ctx(q, ctx, i) {
1855
		if (!cpumask_test_cpu(i, online_mask))
1856 1857 1858 1859 1860
			continue;

		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->tags->cpumask);
	}
1861 1862
}

1863
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1864 1865 1866 1867
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1879 1880 1881

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1882
		queue_set_hctx_shared(q, shared);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1893 1894 1895 1896 1897 1898
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1899 1900 1901 1902 1903 1904 1905 1906 1907
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1908 1909 1910 1911 1912 1913 1914 1915 1916

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1917
	list_add_tail(&q->tag_set_list, &set->tag_list);
1918

1919 1920 1921
	mutex_unlock(&set->tag_list_lock);
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1934 1935 1936 1937
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1938
		kfree(hctx);
1939
	}
1940

1941 1942 1943
	kfree(q->mq_map);
	q->mq_map = NULL;

1944 1945 1946 1947 1948 1949
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1950
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1968 1969
{
	struct blk_mq_hw_ctx **hctxs;
1970
	struct blk_mq_ctx __percpu *ctx;
1971
	unsigned int *map;
1972 1973 1974 1975 1976 1977
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1978 1979
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1980 1981 1982 1983

	if (!hctxs)
		goto err_percpu;

1984 1985 1986 1987
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1988
	for (i = 0; i < set->nr_hw_queues; i++) {
1989 1990
		int node = blk_mq_hw_queue_to_node(map, i);

1991 1992
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1993 1994 1995
		if (!hctxs[i])
			goto err_hctxs;

1996 1997
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1998 1999
			goto err_hctxs;

2000
		atomic_set(&hctxs[i]->nr_active, 0);
2001
		hctxs[i]->numa_node = node;
2002 2003 2004 2005
		hctxs[i]->queue_num = i;
	}

	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2006
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2007 2008

	q->nr_queues = nr_cpu_ids;
2009
	q->nr_hw_queues = set->nr_hw_queues;
2010
	q->mq_map = map;
2011 2012 2013 2014

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2015
	q->mq_ops = set->ops;
2016
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2017

2018 2019 2020
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2021 2022
	q->sg_reserved_size = INT_MAX;

2023 2024 2025 2026
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2027 2028 2029 2030 2031
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2032 2033 2034 2035 2036
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2037 2038
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2039

2040
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2041

2042
	if (blk_mq_init_hw_queues(q, set))
2043
		goto err_hctxs;
2044

2045
	get_online_cpus();
2046 2047
	mutex_lock(&all_q_mutex);

2048
	list_add_tail(&q->all_q_node, &all_q_list);
2049
	blk_mq_add_queue_tag_set(set, q);
2050
	blk_mq_map_swqueue(q, cpu_online_mask);
2051

2052
	mutex_unlock(&all_q_mutex);
2053
	put_online_cpus();
2054

2055
	return q;
2056

2057
err_hctxs:
2058
	kfree(map);
2059
	for (i = 0; i < set->nr_hw_queues; i++) {
2060 2061
		if (!hctxs[i])
			break;
2062
		free_cpumask_var(hctxs[i]->cpumask);
2063
		kfree(hctxs[i]);
2064
	}
2065
err_map:
2066 2067 2068 2069 2070
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2071
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2072 2073 2074

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2075
	struct blk_mq_tag_set	*set = q->tag_set;
2076

2077 2078 2079 2080
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2081 2082
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2083 2084
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2085 2086 2087
}

/* Basically redo blk_mq_init_queue with queue frozen */
2088 2089
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2090
{
2091
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2092

2093 2094
	blk_mq_sysfs_unregister(q);

2095
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2096 2097 2098 2099 2100 2101 2102

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2103
	blk_mq_map_swqueue(q, online_mask);
2104

2105
	blk_mq_sysfs_register(q);
2106 2107
}

2108 2109
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2110 2111
{
	struct request_queue *q;
2112 2113 2114 2115 2116 2117 2118
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2119 2120

	/*
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2136
	 */
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2147
		return NOTIFY_OK;
2148
	}
2149 2150

	mutex_lock(&all_q_mutex);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2161
	list_for_each_entry(q, &all_q_list, all_q_node) {
2162 2163
		blk_mq_freeze_queue_wait(q);

2164 2165 2166 2167 2168 2169 2170
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2171
	list_for_each_entry(q, &all_q_list, all_q_node)
2172
		blk_mq_queue_reinit(q, &online_new);
2173 2174 2175 2176

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2177 2178 2179 2180
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2235 2236 2237 2238 2239 2240
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2241 2242 2243 2244 2245 2246
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2247 2248
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2249 2250
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2251 2252
	if (!set->nr_hw_queues)
		return -EINVAL;
2253
	if (!set->queue_depth)
2254 2255 2256 2257
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2258
	if (!set->ops->queue_rq || !set->ops->map_queue)
2259 2260
		return -EINVAL;

2261 2262 2263 2264 2265
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2266

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2277 2278
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2279 2280
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2281
		return -ENOMEM;
2282

2283 2284
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2285

2286 2287 2288
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2289
	return 0;
2290
enomem:
2291 2292
	kfree(set->tags);
	set->tags = NULL;
2293 2294 2295 2296 2297 2298 2299 2300
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2301
	for (i = 0; i < set->nr_hw_queues; i++) {
2302
		if (set->tags[i])
2303 2304 2305
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2306
	kfree(set->tags);
2307
	set->tags = NULL;
2308 2309 2310
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2343 2344 2345 2346
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2347
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2348 2349 2350 2351

	return 0;
}
subsys_initcall(blk_mq_init);