i915_gem.c 106.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 44 45
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
69
	obj->fence_dirty = false;
70 71 72
	obj->fence_reg = I915_FENCE_REG_NONE;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

88 89
static int
i915_gem_wait_for_error(struct drm_device *dev)
90 91 92 93 94 95 96 97 98
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

99 100 101 102 103 104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
109
		return ret;
110
	}
111

112 113 114 115 116 117 118 119 120 121 122
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
123 124
}

125
int i915_mutex_lock_interruptible(struct drm_device *dev)
126 127 128
{
	int ret;

129
	ret = i915_gem_wait_for_error(dev);
130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

137
	WARN_ON(i915_verify_lists(dev));
138 139
	return 0;
}
140

141
static inline bool
142
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143
{
144
	return !obj->active;
145 146
}

J
Jesse Barnes 已提交
147 148
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
149
		    struct drm_file *file)
J
Jesse Barnes 已提交
150 151
{
	struct drm_i915_gem_init *args = data;
152

153 154 155
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

156 157 158
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
159

160 161 162 163
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
164
	mutex_lock(&dev->struct_mutex);
165 166
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
167 168
	mutex_unlock(&dev->struct_mutex);

169
	return 0;
170 171
}

172 173
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174
			    struct drm_file *file)
175
{
176
	struct drm_i915_private *dev_priv = dev->dev_private;
177
	struct drm_i915_gem_get_aperture *args = data;
178 179
	struct drm_i915_gem_object *obj;
	size_t pinned;
180

181
	pinned = 0;
182
	mutex_lock(&dev->struct_mutex);
183 184 185
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
186
	mutex_unlock(&dev->struct_mutex);
187

188
	args->aper_size = dev_priv->mm.gtt_total;
189
	args->aper_available_size = args->aper_size - pinned;
190

191 192 193
	return 0;
}

194 195 196 197 198
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
199
{
200
	struct drm_i915_gem_object *obj;
201 202
	int ret;
	u32 handle;
203

204
	size = roundup(size, PAGE_SIZE);
205 206
	if (size == 0)
		return -EINVAL;
207 208

	/* Allocate the new object */
209
	obj = i915_gem_alloc_object(dev, size);
210 211 212
	if (obj == NULL)
		return -ENOMEM;

213
	ret = drm_gem_handle_create(file, &obj->base, &handle);
214
	if (ret) {
215 216
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217
		kfree(obj);
218
		return ret;
219
	}
220

221
	/* drop reference from allocate - handle holds it now */
222
	drm_gem_object_unreference(&obj->base);
223 224
	trace_i915_gem_object_create(obj);

225
	*handle_p = handle;
226 227 228
	return 0;
}

229 230 231 232 233 234
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
235
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
256

257 258 259 260
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

261
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
262
{
263
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
264 265

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
266
		obj->tiling_mode != I915_TILING_NONE;
267 268
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

295
static inline int
296 297
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

321 322 323
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
324
static int
325 326 327 328 329 330 331
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

332
	if (unlikely(page_do_bit17_swizzling))
333 334 335 336 337 338 339 340 341 342 343 344 345 346
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

347 348 349 350
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
351
	if (unlikely(swizzled)) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

369 370 371 372 373 374 375 376 377 378 379 380
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
381 382 383
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

398
static int
399 400 401 402
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
403
{
404
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
405
	char __user *user_data;
406
	ssize_t remain;
407
	loff_t offset;
408
	int shmem_page_offset, page_length, ret = 0;
409
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410
	int hit_slowpath = 0;
411
	int prefaulted = 0;
412
	int needs_clflush = 0;
413
	int release_page;
414

415
	user_data = (char __user *) (uintptr_t) args->data_ptr;
416 417
	remain = args->size;

418
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419

420 421 422 423 424 425 426 427 428 429 430
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
431

432
	offset = args->offset;
433 434

	while (remain > 0) {
435 436
		struct page *page;

437 438 439 440 441
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
442
		shmem_page_offset = offset_in_page(offset);
443 444 445 446
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

447 448 449 450 451 452 453 454 455 456
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
457
		}
458

459 460 461
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

462 463 464 465 466
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
467 468

		hit_slowpath = 1;
469
		page_cache_get(page);
470 471
		mutex_unlock(&dev->struct_mutex);

472
		if (!prefaulted) {
473
			ret = fault_in_multipages_writeable(user_data, remain);
474 475 476 477 478 479 480
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
481

482 483 484
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
485

486
		mutex_lock(&dev->struct_mutex);
487
		page_cache_release(page);
488
next_page:
489
		mark_page_accessed(page);
490 491
		if (release_page)
			page_cache_release(page);
492

493 494 495 496 497
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

498
		remain -= page_length;
499
		user_data += page_length;
500 501 502
		offset += page_length;
	}

503
out:
504 505 506 507 508
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
509 510 511 512

	return ret;
}

513 514 515 516 517 518 519
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520
		     struct drm_file *file)
521 522
{
	struct drm_i915_gem_pread *args = data;
523
	struct drm_i915_gem_object *obj;
524
	int ret = 0;
525

526 527 528 529 530 531 532 533
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

534
	ret = i915_mutex_lock_interruptible(dev);
535
	if (ret)
536
		return ret;
537

538
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539
	if (&obj->base == NULL) {
540 541
		ret = -ENOENT;
		goto unlock;
542
	}
543

544
	/* Bounds check source.  */
545 546
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
547
		ret = -EINVAL;
548
		goto out;
C
Chris Wilson 已提交
549 550
	}

551 552 553 554 555 556 557 558
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
559 560
	trace_i915_gem_object_pread(obj, args->offset, args->size);

561
	ret = i915_gem_shmem_pread(dev, obj, args, file);
562

563
out:
564
	drm_gem_object_unreference(&obj->base);
565
unlock:
566
	mutex_unlock(&dev->struct_mutex);
567
	return ret;
568 569
}

570 571
/* This is the fast write path which cannot handle
 * page faults in the source data
572
 */
573 574 575 576 577 578

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
579
{
580 581
	void __iomem *vaddr_atomic;
	void *vaddr;
582
	unsigned long unwritten;
583

P
Peter Zijlstra 已提交
584
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 586 587
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
588
						      user_data, length);
P
Peter Zijlstra 已提交
589
	io_mapping_unmap_atomic(vaddr_atomic);
590
	return unwritten;
591 592
}

593 594 595 596
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
597
static int
598 599
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
600
			 struct drm_i915_gem_pwrite *args,
601
			 struct drm_file *file)
602
{
603
	drm_i915_private_t *dev_priv = dev->dev_private;
604
	ssize_t remain;
605
	loff_t offset, page_base;
606
	char __user *user_data;
D
Daniel Vetter 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
620 621 622 623

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

624
	offset = obj->gtt_offset + args->offset;
625 626 627 628

	while (remain > 0) {
		/* Operation in this page
		 *
629 630 631
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
632
		 */
633 634
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
635 636 637 638 639
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
640 641
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
642
		 */
643
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
644 645 646 647
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
648

649 650 651
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
652 653
	}

D
Daniel Vetter 已提交
654 655 656
out_unpin:
	i915_gem_object_unpin(obj);
out:
657
	return ret;
658 659
}

660 661 662 663
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
664
static int
665 666 667 668 669
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
670
{
671
	char *vaddr;
672
	int ret;
673

674
	if (unlikely(page_do_bit17_swizzling))
675
		return -EINVAL;
676

677 678 679 680 681 682 683 684 685 686 687
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
688 689 690 691

	return ret;
}

692 693
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
694
static int
695 696 697 698 699
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
700
{
701 702
	char *vaddr;
	int ret;
703

704
	vaddr = kmap(page);
705
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
706 707 708
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
709 710
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
711 712
						user_data,
						page_length);
713 714 715 716 717
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
718 719 720
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
721
	kunmap(page);
722

723
	return ret;
724 725 726
}

static int
727 728 729 730
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
731
{
732
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
733
	ssize_t remain;
734 735
	loff_t offset;
	char __user *user_data;
736
	int shmem_page_offset, page_length, ret = 0;
737
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738
	int hit_slowpath = 0;
739 740
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
741
	int release_page;
742

743
	user_data = (char __user *) (uintptr_t) args->data_ptr;
744 745
	remain = args->size;

746
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

765
	offset = args->offset;
766
	obj->dirty = 1;
767

768
	while (remain > 0) {
769
		struct page *page;
770
		int partial_cacheline_write;
771

772 773 774 775 776
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
777
		shmem_page_offset = offset_in_page(offset);
778 779 780 781 782

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

783 784 785 786 787 788 789
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

790 791 792 793 794 795 796 797 798 799
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
800 801
		}

802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809 810
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
811 812

		hit_slowpath = 1;
813
		page_cache_get(page);
814 815
		mutex_unlock(&dev->struct_mutex);

816 817 818 819
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
820

821
		mutex_lock(&dev->struct_mutex);
822
		page_cache_release(page);
823
next_page:
824 825
		set_page_dirty(page);
		mark_page_accessed(page);
826 827
		if (release_page)
			page_cache_release(page);
828

829 830 831 832 833
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

834
		remain -= page_length;
835
		user_data += page_length;
836
		offset += page_length;
837 838
	}

839
out:
840 841 842 843 844 845 846 847 848 849
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
850
	}
851

852 853 854
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

855
	return ret;
856 857 858 859 860 861 862 863 864
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865
		      struct drm_file *file)
866 867
{
	struct drm_i915_gem_pwrite *args = data;
868
	struct drm_i915_gem_object *obj;
869 870 871 872 873 874 875 876 877 878
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

879 880
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
881 882
	if (ret)
		return -EFAULT;
883

884
	ret = i915_mutex_lock_interruptible(dev);
885
	if (ret)
886
		return ret;
887

888
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889
	if (&obj->base == NULL) {
890 891
		ret = -ENOENT;
		goto unlock;
892
	}
893

894
	/* Bounds check destination. */
895 896
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
897
		ret = -EINVAL;
898
		goto out;
C
Chris Wilson 已提交
899 900
	}

901 902 903 904 905 906 907 908
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
909 910
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
911
	ret = -EFAULT;
912 913 914 915 916 917
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
918
	if (obj->phys_obj) {
919
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 921 922 923
		goto out;
	}

	if (obj->gtt_space &&
924
	    obj->cache_level == I915_CACHE_NONE &&
925
	    obj->tiling_mode == I915_TILING_NONE &&
926
	    obj->map_and_fenceable &&
927
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
928
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
929 930 931
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
932
	}
933

934
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
935
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
936

937
out:
938
	drm_gem_object_unreference(&obj->base);
939
unlock:
940
	mutex_unlock(&dev->struct_mutex);
941 942 943 944
	return ret;
}

/**
945 946
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
947 948 949
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
950
			  struct drm_file *file)
951 952
{
	struct drm_i915_gem_set_domain *args = data;
953
	struct drm_i915_gem_object *obj;
954 955
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
956 957
	int ret;

958
	/* Only handle setting domains to types used by the CPU. */
959
	if (write_domain & I915_GEM_GPU_DOMAINS)
960 961
		return -EINVAL;

962
	if (read_domains & I915_GEM_GPU_DOMAINS)
963 964 965 966 967 968 969 970
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

971
	ret = i915_mutex_lock_interruptible(dev);
972
	if (ret)
973
		return ret;
974

975
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976
	if (&obj->base == NULL) {
977 978
		ret = -ENOENT;
		goto unlock;
979
	}
980

981 982
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
983 984 985 986 987 988 989

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
990
	} else {
991
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
992 993
	}

994
	drm_gem_object_unreference(&obj->base);
995
unlock:
996 997 998 999 1000 1001 1002 1003 1004
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1005
			 struct drm_file *file)
1006 1007
{
	struct drm_i915_gem_sw_finish *args = data;
1008
	struct drm_i915_gem_object *obj;
1009 1010
	int ret = 0;

1011
	ret = i915_mutex_lock_interruptible(dev);
1012
	if (ret)
1013
		return ret;
1014

1015
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1016
	if (&obj->base == NULL) {
1017 1018
		ret = -ENOENT;
		goto unlock;
1019 1020 1021
	}

	/* Pinned buffers may be scanout, so flush the cache */
1022
	if (obj->pin_count)
1023 1024
		i915_gem_object_flush_cpu_write_domain(obj);

1025
	drm_gem_object_unreference(&obj->base);
1026
unlock:
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1040
		    struct drm_file *file)
1041 1042 1043 1044 1045
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1046
	obj = drm_gem_object_lookup(dev, file, args->handle);
1047
	if (obj == NULL)
1048
		return -ENOENT;
1049

1050 1051 1052 1053 1054 1055 1056 1057
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1058
	addr = vm_mmap(obj->filp, 0, args->size,
1059 1060
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1061
	drm_gem_object_unreference_unlocked(obj);
1062 1063 1064 1065 1066 1067 1068 1069
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1088 1089
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1090
	drm_i915_private_t *dev_priv = dev->dev_private;
1091 1092 1093
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1094
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1095 1096 1097 1098 1099

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1100 1101 1102
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1103

C
Chris Wilson 已提交
1104 1105
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1106
	/* Now bind it into the GTT if needed */
1107 1108 1109 1110
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1111
	}
1112
	if (!obj->gtt_space) {
1113
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1114 1115
		if (ret)
			goto unlock;
1116

1117 1118 1119 1120
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1121

1122 1123 1124
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1125
	ret = i915_gem_object_get_fence(obj);
1126 1127
	if (ret)
		goto unlock;
1128

1129 1130
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1131

1132 1133
	obj->fault_mappable = true;

1134
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1135 1136 1137 1138
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1139
unlock:
1140
	mutex_unlock(&dev->struct_mutex);
1141
out:
1142
	switch (ret) {
1143
	case -EIO:
1144 1145 1146 1147 1148
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1149
	case -EAGAIN:
1150 1151 1152 1153 1154 1155 1156
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1157
		set_need_resched();
1158 1159
	case 0:
	case -ERESTARTSYS:
1160
	case -EINTR:
1161
		return VM_FAULT_NOPAGE;
1162 1163 1164
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1165
		return VM_FAULT_SIGBUS;
1166 1167 1168
	}
}

1169 1170 1171 1172
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1173
 * Preserve the reservation of the mmapping with the DRM core code, but
1174 1175 1176 1177 1178 1179 1180 1181 1182
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1183
void
1184
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1185
{
1186 1187
	if (!obj->fault_mappable)
		return;
1188

1189 1190 1191 1192
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1193

1194
	obj->fault_mappable = false;
1195 1196
}

1197
static uint32_t
1198
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1199
{
1200
	uint32_t gtt_size;
1201 1202

	if (INTEL_INFO(dev)->gen >= 4 ||
1203 1204
	    tiling_mode == I915_TILING_NONE)
		return size;
1205 1206 1207

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1208
		gtt_size = 1024*1024;
1209
	else
1210
		gtt_size = 512*1024;
1211

1212 1213
	while (gtt_size < size)
		gtt_size <<= 1;
1214

1215
	return gtt_size;
1216 1217
}

1218 1219 1220 1221 1222
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1223
 * potential fence register mapping.
1224 1225
 */
static uint32_t
1226 1227 1228
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1229 1230 1231 1232 1233
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1234
	if (INTEL_INFO(dev)->gen >= 4 ||
1235
	    tiling_mode == I915_TILING_NONE)
1236 1237
		return 4096;

1238 1239 1240 1241
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1242
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1243 1244
}

1245 1246 1247
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1248 1249 1250
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1251 1252 1253 1254
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1255
uint32_t
1256 1257 1258
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1259 1260 1261 1262 1263
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1264
	    tiling_mode == I915_TILING_NONE)
1265 1266
		return 4096;

1267 1268 1269
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1270
	 */
1271
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 1273
}

1274
int
1275 1276 1277 1278
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1279
{
1280
	struct drm_i915_private *dev_priv = dev->dev_private;
1281
	struct drm_i915_gem_object *obj;
1282 1283
	int ret;

1284
	ret = i915_mutex_lock_interruptible(dev);
1285
	if (ret)
1286
		return ret;
1287

1288
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1289
	if (&obj->base == NULL) {
1290 1291 1292
		ret = -ENOENT;
		goto unlock;
	}
1293

1294
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1295
		ret = -E2BIG;
1296
		goto out;
1297 1298
	}

1299
	if (obj->madv != I915_MADV_WILLNEED) {
1300
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1301 1302
		ret = -EINVAL;
		goto out;
1303 1304
	}

1305
	if (!obj->base.map_list.map) {
1306
		ret = drm_gem_create_mmap_offset(&obj->base);
1307 1308
		if (ret)
			goto out;
1309 1310
	}

1311
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1312

1313
out:
1314
	drm_gem_object_unreference(&obj->base);
1315
unlock:
1316
	mutex_unlock(&dev->struct_mutex);
1317
	return ret;
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1344
int
1345
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1346 1347 1348 1349 1350 1351 1352
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

1353 1354 1355
	if (obj->pages || obj->sg_table)
		return 0;

1356 1357 1358
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1359 1360 1361 1362
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1363 1364
		return -ENOMEM;

1365
	inode = obj->base.filp->f_path.dentry->d_inode;
1366
	mapping = inode->i_mapping;
1367 1368
	gfpmask |= mapping_gfp_mask(mapping);

1369
	for (i = 0; i < page_count; i++) {
1370
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1371 1372 1373
		if (IS_ERR(page))
			goto err_pages;

1374
		obj->pages[i] = page;
1375 1376
	}

1377
	if (i915_gem_object_needs_bit17_swizzle(obj))
1378 1379 1380 1381 1382 1383
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1384
		page_cache_release(obj->pages[i]);
1385

1386 1387
	drm_free_large(obj->pages);
	obj->pages = NULL;
1388 1389 1390
	return PTR_ERR(page);
}

1391
static void
1392
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1393
{
1394
	int page_count = obj->base.size / PAGE_SIZE;
1395 1396
	int i;

1397 1398 1399
	if (!obj->pages)
		return;

1400
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1401

1402
	if (i915_gem_object_needs_bit17_swizzle(obj))
1403 1404
		i915_gem_object_save_bit_17_swizzle(obj);

1405 1406
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1407 1408

	for (i = 0; i < page_count; i++) {
1409 1410
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1411

1412 1413
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1414

1415
		page_cache_release(obj->pages[i]);
1416
	}
1417
	obj->dirty = 0;
1418

1419 1420
	drm_free_large(obj->pages);
	obj->pages = NULL;
1421 1422
}

1423
void
1424
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1425 1426
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1427
{
1428
	struct drm_device *dev = obj->base.dev;
1429
	struct drm_i915_private *dev_priv = dev->dev_private;
1430

1431
	BUG_ON(ring == NULL);
1432
	obj->ring = ring;
1433 1434

	/* Add a reference if we're newly entering the active list. */
1435 1436 1437
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1438
	}
1439

1440
	/* Move from whatever list we were on to the tail of execution. */
1441 1442
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1443

1444
	obj->last_rendering_seqno = seqno;
1445

1446
	if (obj->fenced_gpu_access) {
1447 1448
		obj->last_fenced_seqno = seqno;

1449 1450 1451 1452 1453 1454 1455 1456
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1457 1458 1459 1460 1461 1462 1463 1464
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1465
	obj->last_fenced_seqno = 0;
1466 1467
}

1468
static void
1469
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1470
{
1471
	struct drm_device *dev = obj->base.dev;
1472 1473
	drm_i915_private_t *dev_priv = dev->dev_private;

1474 1475
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1486
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1487 1488 1489 1490 1491 1492 1493 1494 1495

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1496
	obj->pending_gpu_write = false;
1497 1498 1499
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1500
}
1501

1502 1503
/* Immediately discard the backing storage */
static void
1504
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1505
{
C
Chris Wilson 已提交
1506
	struct inode *inode;
1507

1508 1509 1510
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1511
	 * backing pages, *now*.
1512
	 */
1513
	inode = obj->base.filp->f_path.dentry->d_inode;
1514
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1515

1516 1517 1518
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1519
	obj->madv = __I915_MADV_PURGED;
1520 1521 1522
}

static inline int
1523
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1524
{
1525
	return obj->madv == I915_MADV_DONTNEED;
1526 1527
}

1528
static void
C
Chris Wilson 已提交
1529 1530
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1531
{
1532
	struct drm_i915_gem_object *obj, *next;
1533

1534
	list_for_each_entry_safe(obj, next,
1535
				 &ring->gpu_write_list,
1536
				 gpu_write_list) {
1537 1538
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1539

1540 1541
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1542
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1543
						       i915_gem_next_request_seqno(ring));
1544 1545

			trace_i915_gem_object_change_domain(obj,
1546
							    obj->base.read_domains,
1547 1548 1549 1550
							    old_write_domain);
		}
	}
}
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1574
int
C
Chris Wilson 已提交
1575
i915_add_request(struct intel_ring_buffer *ring,
1576
		 struct drm_file *file,
C
Chris Wilson 已提交
1577
		 struct drm_i915_gem_request *request)
1578
{
C
Chris Wilson 已提交
1579
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1580
	uint32_t seqno;
1581
	u32 request_ring_position;
1582
	int was_empty;
1583 1584
	int ret;

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (ring->gpu_caches_dirty) {
		ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
		if (ret)
			return ret;

		ring->gpu_caches_dirty = false;
	}

1600
	BUG_ON(request == NULL);
1601
	seqno = i915_gem_next_request_seqno(ring);
1602

1603 1604 1605 1606 1607 1608 1609
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1610 1611 1612
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1613

C
Chris Wilson 已提交
1614
	trace_i915_gem_request_add(ring, seqno);
1615 1616

	request->seqno = seqno;
1617
	request->ring = ring;
1618
	request->tail = request_ring_position;
1619
	request->emitted_jiffies = jiffies;
1620 1621 1622
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1623 1624 1625
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1626
		spin_lock(&file_priv->mm.lock);
1627
		request->file_priv = file_priv;
1628
		list_add_tail(&request->client_list,
1629
			      &file_priv->mm.request_list);
1630
		spin_unlock(&file_priv->mm.lock);
1631
	}
1632

1633
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1634

B
Ben Gamari 已提交
1635
	if (!dev_priv->mm.suspended) {
1636 1637 1638 1639 1640
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1641
		if (was_empty)
1642 1643
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1644
	}
1645 1646 1647

	WARN_ON(!list_empty(&ring->gpu_write_list));

1648
	return 0;
1649 1650
}

1651 1652
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1653
{
1654
	struct drm_i915_file_private *file_priv = request->file_priv;
1655

1656 1657
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1658

1659
	spin_lock(&file_priv->mm.lock);
1660 1661 1662 1663
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1664
	spin_unlock(&file_priv->mm.lock);
1665 1666
}

1667 1668
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1669
{
1670 1671
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1672

1673 1674 1675
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1676

1677
		list_del(&request->list);
1678
		i915_gem_request_remove_from_client(request);
1679 1680
		kfree(request);
	}
1681

1682
	while (!list_empty(&ring->active_list)) {
1683
		struct drm_i915_gem_object *obj;
1684

1685 1686 1687
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1688

1689 1690 1691
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1692 1693 1694
	}
}

1695 1696 1697 1698 1699
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1700
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1701
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1702

1703
		i915_gem_write_fence(dev, i, NULL);
1704

1705 1706
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1707

1708 1709 1710
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1711
	}
1712 1713

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1714 1715
}

1716
void i915_gem_reset(struct drm_device *dev)
1717
{
1718
	struct drm_i915_private *dev_priv = dev->dev_private;
1719
	struct drm_i915_gem_object *obj;
1720
	struct intel_ring_buffer *ring;
1721
	int i;
1722

1723 1724
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1725 1726 1727 1728 1729 1730

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1731
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1732 1733
				      struct drm_i915_gem_object,
				      mm_list);
1734

1735 1736 1737
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1738 1739 1740 1741 1742
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1743
	list_for_each_entry(obj,
1744
			    &dev_priv->mm.inactive_list,
1745
			    mm_list)
1746
	{
1747
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1748
	}
1749 1750

	/* The fence registers are invalidated so clear them out */
1751
	i915_gem_reset_fences(dev);
1752 1753 1754 1755 1756
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1757
void
C
Chris Wilson 已提交
1758
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1759 1760
{
	uint32_t seqno;
1761
	int i;
1762

C
Chris Wilson 已提交
1763
	if (list_empty(&ring->request_list))
1764 1765
		return;

C
Chris Wilson 已提交
1766
	WARN_ON(i915_verify_lists(ring->dev));
1767

1768
	seqno = ring->get_seqno(ring);
1769

1770
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1771 1772 1773
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1774
	while (!list_empty(&ring->request_list)) {
1775 1776
		struct drm_i915_gem_request *request;

1777
		request = list_first_entry(&ring->request_list,
1778 1779 1780
					   struct drm_i915_gem_request,
					   list);

1781
		if (!i915_seqno_passed(seqno, request->seqno))
1782 1783
			break;

C
Chris Wilson 已提交
1784
		trace_i915_gem_request_retire(ring, request->seqno);
1785 1786 1787 1788 1789 1790
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1791 1792

		list_del(&request->list);
1793
		i915_gem_request_remove_from_client(request);
1794 1795
		kfree(request);
	}
1796

1797 1798 1799 1800
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1801
		struct drm_i915_gem_object *obj;
1802

1803
		obj = list_first_entry(&ring->active_list,
1804 1805
				      struct drm_i915_gem_object,
				      ring_list);
1806

1807
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1808
			break;
1809

1810
		if (obj->base.write_domain != 0)
1811 1812 1813
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1814
	}
1815

C
Chris Wilson 已提交
1816 1817
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1818
		ring->irq_put(ring);
C
Chris Wilson 已提交
1819
		ring->trace_irq_seqno = 0;
1820
	}
1821

C
Chris Wilson 已提交
1822
	WARN_ON(i915_verify_lists(ring->dev));
1823 1824
}

1825 1826 1827 1828
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1829
	struct intel_ring_buffer *ring;
1830
	int i;
1831

1832 1833
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1834 1835
}

1836
static void
1837 1838 1839 1840
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1841
	struct intel_ring_buffer *ring;
1842 1843
	bool idle;
	int i;
1844 1845 1846 1847 1848

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1849 1850 1851 1852 1853 1854
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1855
	i915_gem_retire_requests(dev);
1856

1857 1858 1859 1860
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1861
	for_each_ring(ring, dev_priv, i) {
1862
		if (ring->gpu_caches_dirty) {
1863 1864 1865
			struct drm_i915_gem_request *request;

			request = kzalloc(sizeof(*request), GFP_KERNEL);
1866
			if (request == NULL ||
C
Chris Wilson 已提交
1867
			    i915_add_request(ring, NULL, request))
1868 1869 1870 1871 1872 1873 1874
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1875
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1876

1877 1878 1879
	mutex_unlock(&dev->struct_mutex);
}

1880 1881 1882
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret = 0;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (seqno == ring->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(ring, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		BUG_ON(seqno != request->seqno);
	}

	return ret;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1949
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1950
			bool interruptible, struct timespec *timeout)
1951 1952
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1953 1954 1955 1956
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
1957
	int ret;
1958 1959 1960 1961 1962

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
1963 1964 1965 1966 1967 1968 1969 1970

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

1971 1972 1973
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

1974 1975 1976
	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

1977 1978 1979
#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
1980 1981 1982 1983 1984 1985 1986 1987
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);
1988

1989 1990 1991
		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
1992 1993 1994
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);
1995 1996 1997 1998 1999

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

2000 2001 2002 2003 2004 2005
	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
2006
	case -EIO:
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
2018 2019
}

C
Chris Wilson 已提交
2020 2021 2022 2023
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
2024
int
2025
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2026
{
C
Chris Wilson 已提交
2027
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028 2029 2030 2031
	int ret = 0;

	BUG_ON(seqno == 0);

2032
	ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2033 2034
	if (ret)
		return ret;
2035

2036 2037 2038
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
2039

2040
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2041 2042 2043 2044 2045 2046 2047 2048

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2049
int
2050
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2051 2052 2053
{
	int ret;

2054 2055
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2056
	 */
2057
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2058 2059 2060 2061

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2062
	if (obj->active) {
2063
		ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2064
		if (ret)
2065
			return ret;
2066
		i915_gem_retire_requests_ring(obj->ring);
2067 2068 2069 2070 2071
	}

	return 0;
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret)
			return ret;

		ret = i915_gem_check_olr(obj->ring,
					 obj->last_rendering_seqno);
		if (ret)
			return ret;
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2125
	struct timespec timeout_stack, *timeout = NULL;
2126 2127 2128
	u32 seqno = 0;
	int ret = 0;

2129 2130 2131 2132
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2144 2145
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	if (ret)
		goto out;

	if (obj->active) {
		seqno = obj->last_rendering_seqno;
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2168 2169 2170 2171 2172
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2173 2174 2175 2176 2177 2178 2179 2180
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2204
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2205 2206 2207 2208 2209 2210 2211 2212
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

2213 2214 2215
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2216

2217
	ret = to->sync_to(to, from, seqno);
2218 2219
	if (!ret)
		from->sync_seqno[idx] = seqno;
2220

2221
	return ret;
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2234 2235 2236
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2248 2249 2250
/**
 * Unbinds an object from the GTT aperture.
 */
2251
int
2252
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2253
{
2254
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2255 2256
	int ret = 0;

2257
	if (obj->gtt_space == NULL)
2258 2259
		return 0;

2260 2261
	if (obj->pin_count)
		return -EBUSY;
2262

2263
	ret = i915_gem_object_finish_gpu(obj);
2264
	if (ret)
2265 2266 2267 2268 2269 2270
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2271
	i915_gem_object_finish_gtt(obj);
2272

2273 2274
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2275
	 * are flushed when we go to remap it.
2276
	 */
2277 2278
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2279
	if (ret == -ERESTARTSYS)
2280
		return ret;
2281
	if (ret) {
2282 2283 2284
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2285
		i915_gem_clflush_object(obj);
2286
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2287
	}
2288

2289
	/* release the fence reg _after_ flushing */
2290
	ret = i915_gem_object_put_fence(obj);
2291
	if (ret)
2292
		return ret;
2293

C
Chris Wilson 已提交
2294 2295
	trace_i915_gem_object_unbind(obj);

2296 2297
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2298 2299 2300 2301
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2302
	i915_gem_gtt_finish_object(obj);
2303

2304
	i915_gem_object_put_pages_gtt(obj);
2305

2306
	list_del_init(&obj->gtt_list);
2307
	list_del_init(&obj->mm_list);
2308
	/* Avoid an unnecessary call to unbind on rebind. */
2309
	obj->map_and_fenceable = true;
2310

2311 2312 2313
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2314

2315
	if (i915_gem_object_is_purgeable(obj))
2316 2317
		i915_gem_object_truncate(obj);

2318
	return ret;
2319 2320
}

2321
int
C
Chris Wilson 已提交
2322
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2323 2324 2325
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2326 2327
	int ret;

2328 2329 2330
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2331 2332
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2333 2334 2335 2336
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2337 2338 2339
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2340
	return 0;
2341 2342
}

2343
static int i915_ring_idle(struct intel_ring_buffer *ring)
2344
{
2345 2346
	int ret;

2347
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2348 2349
		return 0;

2350
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2351
		ret = i915_gem_flush_ring(ring,
2352
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2353 2354 2355 2356
		if (ret)
			return ret;
	}

2357
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2358 2359
}

2360
int i915_gpu_idle(struct drm_device *dev)
2361 2362
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2363
	struct intel_ring_buffer *ring;
2364
	int ret, i;
2365 2366

	/* Flush everything onto the inactive list. */
2367
	for_each_ring(ring, dev_priv, i) {
2368 2369 2370 2371
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
		if (ret)
			return ret;

2372
		ret = i915_ring_idle(ring);
2373 2374
		if (ret)
			return ret;
2375 2376 2377 2378

		/* Is the device fubar? */
		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
			return -EBUSY;
2379
	}
2380

2381
	return 0;
2382 2383
}

2384 2385
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2386 2387 2388 2389
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2390 2391
	if (obj) {
		u32 size = obj->gtt_space->size;
2392

2393 2394 2395 2396 2397
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2398

2399 2400 2401 2402 2403
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2404

2405 2406
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2407 2408
}

2409 2410
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2411 2412 2413 2414
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2415 2416
	if (obj) {
		u32 size = obj->gtt_space->size;
2417

2418 2419 2420 2421 2422 2423 2424 2425 2426
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2427

2428 2429
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2430 2431
}

2432 2433
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2434 2435
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2436
	u32 val;
2437

2438 2439 2440 2441
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2442

2443 2444 2445 2446 2447
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2474 2475
}

2476 2477
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2478 2479 2480 2481
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2482 2483 2484
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2485

2486 2487 2488 2489 2490
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2491

2492 2493
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2494

2495 2496 2497 2498 2499 2500 2501 2502
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2548
static int
C
Chris Wilson 已提交
2549
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2550 2551 2552 2553
{
	int ret;

	if (obj->fenced_gpu_access) {
2554
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2555
			ret = i915_gem_flush_ring(obj->ring,
2556 2557 2558 2559
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2560 2561 2562 2563

		obj->fenced_gpu_access = false;
	}

2564
	if (obj->last_fenced_seqno) {
2565
		ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2566 2567
		if (ret)
			return ret;
2568 2569 2570 2571

		obj->last_fenced_seqno = 0;
	}

2572 2573 2574 2575 2576 2577
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2578 2579 2580 2581 2582 2583
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2584
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2585 2586
	int ret;

C
Chris Wilson 已提交
2587
	ret = i915_gem_object_flush_fence(obj);
2588 2589 2590
	if (ret)
		return ret;

2591 2592
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2593

2594 2595 2596 2597
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2598 2599 2600 2601 2602

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2603
i915_find_fence_reg(struct drm_device *dev)
2604 2605
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2606
	struct drm_i915_fence_reg *reg, *avail;
2607
	int i;
2608 2609

	/* First try to find a free reg */
2610
	avail = NULL;
2611 2612 2613
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2614
			return reg;
2615

2616
		if (!reg->pin_count)
2617
			avail = reg;
2618 2619
	}

2620 2621
	if (avail == NULL)
		return NULL;
2622 2623

	/* None available, try to steal one or wait for a user to finish */
2624
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2625
		if (reg->pin_count)
2626 2627
			continue;

C
Chris Wilson 已提交
2628
		return reg;
2629 2630
	}

C
Chris Wilson 已提交
2631
	return NULL;
2632 2633
}

2634
/**
2635
 * i915_gem_object_get_fence - set up fencing for an object
2636 2637 2638 2639 2640 2641 2642 2643 2644
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2645 2646
 *
 * For an untiled surface, this removes any existing fence.
2647
 */
2648
int
2649
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2650
{
2651
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2652
	struct drm_i915_private *dev_priv = dev->dev_private;
2653
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2654
	struct drm_i915_fence_reg *reg;
2655
	int ret;
2656

2657 2658 2659
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2660
	if (obj->fence_dirty) {
2661 2662 2663 2664
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2665

2666
	/* Just update our place in the LRU if our fence is getting reused. */
2667 2668
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2669
		if (!obj->fence_dirty) {
2670 2671 2672 2673 2674 2675 2676 2677
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2678

2679 2680 2681 2682
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2683 2684 2685
			if (ret)
				return ret;

2686
			i915_gem_object_fence_lost(old);
2687
		}
2688
	} else
2689 2690
		return 0;

2691
	i915_gem_object_update_fence(obj, reg, enable);
2692
	obj->fence_dirty = false;
2693

2694
	return 0;
2695 2696
}

2697 2698 2699 2700
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2701
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2702
			    unsigned alignment,
2703
			    bool map_and_fenceable)
2704
{
2705
	struct drm_device *dev = obj->base.dev;
2706 2707
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2708
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2709
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2710
	bool mappable, fenceable;
2711
	int ret;
2712

2713
	if (obj->madv != I915_MADV_WILLNEED) {
2714 2715 2716 2717
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2728

2729
	if (alignment == 0)
2730 2731
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2732
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2733 2734 2735 2736
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2737
	size = map_and_fenceable ? fence_size : obj->base.size;
2738

2739 2740 2741
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2742
	if (obj->base.size >
2743
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2744 2745 2746 2747
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2748
 search_free:
2749
	if (map_and_fenceable)
2750 2751
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2752 2753
						    size, alignment,
						    0, dev_priv->mm.gtt_mappable_end,
2754 2755 2756
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2757
						size, alignment, 0);
2758 2759

	if (free_space != NULL) {
2760
		if (map_and_fenceable)
2761
			obj->gtt_space =
2762
				drm_mm_get_block_range_generic(free_space,
2763
							       size, alignment, 0,
2764
							       0, dev_priv->mm.gtt_mappable_end,
2765 2766
							       0);
		else
2767
			obj->gtt_space =
2768
				drm_mm_get_block(free_space, size, alignment);
2769
	}
2770
	if (obj->gtt_space == NULL) {
2771 2772 2773
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2774 2775
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2776
		if (ret)
2777
			return ret;
2778

2779 2780 2781
		goto search_free;
	}

2782
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2783
	if (ret) {
2784 2785
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2786 2787

		if (ret == -ENOMEM) {
2788 2789
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2790 2791
			if (ret) {
				/* now try to shrink everyone else */
2792 2793 2794
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2795 2796
				}

2797
				return -ENOMEM;
2798 2799 2800 2801 2802
			}

			goto search_free;
		}

2803 2804 2805
		return ret;
	}

2806
	ret = i915_gem_gtt_prepare_object(obj);
2807
	if (ret) {
2808
		i915_gem_object_put_pages_gtt(obj);
2809 2810
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2811

2812
		if (i915_gem_evict_everything(dev, false))
2813 2814 2815
			return ret;

		goto search_free;
2816 2817
	}

2818 2819
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2820

2821
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2822
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2823

2824 2825 2826 2827
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2828 2829
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2830

2831
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2832

2833
	fenceable =
2834
		obj->gtt_space->size == fence_size &&
2835
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2836

2837
	mappable =
2838
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2839

2840
	obj->map_and_fenceable = mappable && fenceable;
2841

C
Chris Wilson 已提交
2842
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2843 2844 2845 2846
	return 0;
}

void
2847
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2848 2849 2850 2851 2852
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2853
	if (obj->pages == NULL)
2854 2855
		return;

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2867
	trace_i915_gem_object_clflush(obj);
2868

2869
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2870 2871
}

2872
/** Flushes any GPU write domain for the object if it's dirty. */
2873
static int
2874
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2875
{
2876
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2877
		return 0;
2878 2879

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2880
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2881 2882 2883 2884
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2885
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2886
{
C
Chris Wilson 已提交
2887 2888
	uint32_t old_write_domain;

2889
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2890 2891
		return;

2892
	/* No actual flushing is required for the GTT write domain.  Writes
2893 2894
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2895 2896 2897 2898
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2899
	 */
2900 2901
	wmb();

2902 2903
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2904 2905

	trace_i915_gem_object_change_domain(obj,
2906
					    obj->base.read_domains,
C
Chris Wilson 已提交
2907
					    old_write_domain);
2908 2909 2910 2911
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2912
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2913
{
C
Chris Wilson 已提交
2914
	uint32_t old_write_domain;
2915

2916
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2917 2918 2919
		return;

	i915_gem_clflush_object(obj);
2920
	intel_gtt_chipset_flush();
2921 2922
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2923 2924

	trace_i915_gem_object_change_domain(obj,
2925
					    obj->base.read_domains,
C
Chris Wilson 已提交
2926
					    old_write_domain);
2927 2928
}

2929 2930 2931 2932 2933 2934
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2935
int
2936
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2937
{
2938
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2939
	uint32_t old_write_domain, old_read_domains;
2940
	int ret;
2941

2942
	/* Not valid to be called on unbound objects. */
2943
	if (obj->gtt_space == NULL)
2944 2945
		return -EINVAL;

2946 2947 2948
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2949 2950 2951 2952
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2953
	if (obj->pending_gpu_write || write) {
2954
		ret = i915_gem_object_wait_rendering(obj);
2955 2956 2957
		if (ret)
			return ret;
	}
2958

2959
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2960

2961 2962
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2963

2964 2965 2966
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2967 2968
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2969
	if (write) {
2970 2971 2972
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2973 2974
	}

C
Chris Wilson 已提交
2975 2976 2977 2978
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2979 2980 2981 2982
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2983 2984 2985
	return 0;
}

2986 2987 2988
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2989 2990
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3018 3019
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
3020 3021 3022
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3052
/*
3053 3054 3055
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3056 3057
 */
int
3058 3059
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3060
				     struct intel_ring_buffer *pipelined)
3061
{
3062
	u32 old_read_domains, old_write_domain;
3063 3064
	int ret;

3065 3066 3067 3068
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3069
	if (pipelined != obj->ring) {
3070 3071
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3072 3073 3074
			return ret;
	}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3088 3089 3090 3091 3092 3093 3094 3095
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3096 3097
	i915_gem_object_flush_cpu_write_domain(obj);

3098
	old_write_domain = obj->base.write_domain;
3099
	old_read_domains = obj->base.read_domains;
3100 3101 3102 3103 3104

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3105
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3106 3107 3108

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3109
					    old_write_domain);
3110 3111 3112 3113

	return 0;
}

3114
int
3115
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3116
{
3117 3118
	int ret;

3119
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3120 3121
		return 0;

3122
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3123
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3124 3125 3126
		if (ret)
			return ret;
	}
3127

3128 3129 3130 3131
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

3132 3133
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3134
	return 0;
3135 3136
}

3137 3138 3139 3140 3141 3142
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3143
int
3144
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3145
{
C
Chris Wilson 已提交
3146
	uint32_t old_write_domain, old_read_domains;
3147 3148
	int ret;

3149 3150 3151
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3152 3153 3154 3155
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3156 3157 3158 3159 3160
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
3161

3162
	i915_gem_object_flush_gtt_write_domain(obj);
3163

3164 3165
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3166

3167
	/* Flush the CPU cache if it's still invalid. */
3168
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3169 3170
		i915_gem_clflush_object(obj);

3171
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3172 3173 3174 3175 3176
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3177
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3178 3179 3180 3181 3182

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3183 3184
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3185
	}
3186

C
Chris Wilson 已提交
3187 3188 3189 3190
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3191 3192 3193
	return 0;
}

3194 3195 3196
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3197 3198 3199 3200
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3201 3202 3203
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3204
static int
3205
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3206
{
3207 3208
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3209
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3210 3211 3212 3213
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3214

3215 3216 3217
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3218
	spin_lock(&file_priv->mm.lock);
3219
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3220 3221
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3222

3223 3224
		ring = request->ring;
		seqno = request->seqno;
3225
	}
3226
	spin_unlock(&file_priv->mm.lock);
3227

3228 3229
	if (seqno == 0)
		return 0;
3230

3231
	ret = __wait_seqno(ring, seqno, true, NULL);
3232 3233
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3234 3235 3236 3237

	return ret;
}

3238
int
3239 3240
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3241
		    bool map_and_fenceable)
3242 3243 3244
{
	int ret;

3245
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3246

3247 3248 3249 3250
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3251
			     "bo is already pinned with incorrect alignment:"
3252 3253
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3254
			     obj->gtt_offset, alignment,
3255
			     map_and_fenceable,
3256
			     obj->map_and_fenceable);
3257 3258 3259 3260 3261 3262
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3263
	if (obj->gtt_space == NULL) {
3264
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3265
						  map_and_fenceable);
3266
		if (ret)
3267
			return ret;
3268
	}
J
Jesse Barnes 已提交
3269

3270 3271 3272
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3273
	obj->pin_count++;
3274
	obj->pin_mappable |= map_and_fenceable;
3275 3276 3277 3278 3279

	return 0;
}

void
3280
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3281
{
3282 3283
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3284

3285
	if (--obj->pin_count == 0)
3286
		obj->pin_mappable = false;
3287 3288 3289 3290
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3291
		   struct drm_file *file)
3292 3293
{
	struct drm_i915_gem_pin *args = data;
3294
	struct drm_i915_gem_object *obj;
3295 3296
	int ret;

3297 3298 3299
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3300

3301
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3302
	if (&obj->base == NULL) {
3303 3304
		ret = -ENOENT;
		goto unlock;
3305 3306
	}

3307
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3308
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3309 3310
		ret = -EINVAL;
		goto out;
3311 3312
	}

3313
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3314 3315
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3316 3317
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3318 3319
	}

3320 3321 3322
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3323
		ret = i915_gem_object_pin(obj, args->alignment, true);
3324 3325
		if (ret)
			goto out;
3326 3327 3328 3329 3330
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3331
	i915_gem_object_flush_cpu_write_domain(obj);
3332
	args->offset = obj->gtt_offset;
3333
out:
3334
	drm_gem_object_unreference(&obj->base);
3335
unlock:
3336
	mutex_unlock(&dev->struct_mutex);
3337
	return ret;
3338 3339 3340 3341
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3342
		     struct drm_file *file)
3343 3344
{
	struct drm_i915_gem_pin *args = data;
3345
	struct drm_i915_gem_object *obj;
3346
	int ret;
3347

3348 3349 3350
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3351

3352
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3353
	if (&obj->base == NULL) {
3354 3355
		ret = -ENOENT;
		goto unlock;
3356
	}
3357

3358
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3359 3360
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3361 3362
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3363
	}
3364 3365 3366
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3367 3368
		i915_gem_object_unpin(obj);
	}
3369

3370
out:
3371
	drm_gem_object_unreference(&obj->base);
3372
unlock:
3373
	mutex_unlock(&dev->struct_mutex);
3374
	return ret;
3375 3376 3377 3378
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3379
		    struct drm_file *file)
3380 3381
{
	struct drm_i915_gem_busy *args = data;
3382
	struct drm_i915_gem_object *obj;
3383 3384
	int ret;

3385
	ret = i915_mutex_lock_interruptible(dev);
3386
	if (ret)
3387
		return ret;
3388

3389
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3390
	if (&obj->base == NULL) {
3391 3392
		ret = -ENOENT;
		goto unlock;
3393
	}
3394

3395 3396 3397 3398
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3399
	 */
3400
	ret = i915_gem_object_flush_active(obj);
3401

3402
	args->busy = obj->active;
3403

3404
	drm_gem_object_unreference(&obj->base);
3405
unlock:
3406
	mutex_unlock(&dev->struct_mutex);
3407
	return ret;
3408 3409 3410 3411 3412 3413
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3414
	return i915_gem_ring_throttle(dev, file_priv);
3415 3416
}

3417 3418 3419 3420 3421
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3422
	struct drm_i915_gem_object *obj;
3423
	int ret;
3424 3425 3426 3427 3428 3429 3430 3431 3432

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3433 3434 3435 3436
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3437
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3438
	if (&obj->base == NULL) {
3439 3440
		ret = -ENOENT;
		goto unlock;
3441 3442
	}

3443
	if (obj->pin_count) {
3444 3445
		ret = -EINVAL;
		goto out;
3446 3447
	}

3448 3449
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3450

3451
	/* if the object is no longer bound, discard its backing storage */
3452 3453
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3454 3455
		i915_gem_object_truncate(obj);

3456
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3457

3458
out:
3459
	drm_gem_object_unreference(&obj->base);
3460
unlock:
3461
	mutex_unlock(&dev->struct_mutex);
3462
	return ret;
3463 3464
}

3465 3466
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3467
{
3468
	struct drm_i915_private *dev_priv = dev->dev_private;
3469
	struct drm_i915_gem_object *obj;
3470
	struct address_space *mapping;
3471
	u32 mask;
3472

3473 3474 3475
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3476

3477 3478 3479 3480
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3481

3482 3483 3484 3485 3486 3487 3488
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3489
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3490
	mapping_set_gfp_mask(mapping, mask);
3491

3492 3493
	i915_gem_info_add_obj(dev_priv, size);

3494 3495
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3496

3497 3498
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3514
	obj->base.driver_private = NULL;
3515
	obj->fence_reg = I915_FENCE_REG_NONE;
3516
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3517
	INIT_LIST_HEAD(&obj->gtt_list);
3518
	INIT_LIST_HEAD(&obj->ring_list);
3519
	INIT_LIST_HEAD(&obj->exec_list);
3520 3521
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3522 3523
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3524

3525
	return obj;
3526 3527 3528 3529 3530
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3531

3532 3533 3534
	return 0;
}

3535
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3536
{
3537
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3538
	struct drm_device *dev = obj->base.dev;
3539
	drm_i915_private_t *dev_priv = dev->dev_private;
3540

3541 3542
	trace_i915_gem_object_destroy(obj);

3543 3544 3545
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3561
	if (obj->base.map_list.map)
3562
		drm_gem_free_mmap_offset(&obj->base);
3563

3564 3565
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3566

3567 3568
	kfree(obj->bit_17);
	kfree(obj);
3569 3570
}

3571 3572 3573 3574 3575
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3576

3577
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3578

3579
	if (dev_priv->mm.suspended) {
3580 3581
		mutex_unlock(&dev->struct_mutex);
		return 0;
3582 3583
	}

3584
	ret = i915_gpu_idle(dev);
3585 3586
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3587
		return ret;
3588
	}
3589
	i915_gem_retire_requests(dev);
3590

3591
	/* Under UMS, be paranoid and evict. */
3592 3593
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3594

3595 3596
	i915_gem_reset_fences(dev);

3597 3598 3599 3600 3601
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3602
	del_timer_sync(&dev_priv->hangcheck_timer);
3603 3604

	i915_kernel_lost_context(dev);
3605
	i915_gem_cleanup_ringbuffer(dev);
3606

3607 3608
	mutex_unlock(&dev->struct_mutex);

3609 3610 3611
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3612 3613 3614
	return 0;
}

B
Ben Widawsky 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3647 3648 3649 3650
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3651
	if (INTEL_INFO(dev)->gen < 5 ||
3652 3653 3654 3655 3656 3657
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3658 3659 3660
	if (IS_GEN5(dev))
		return;

3661 3662
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3663
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3664
	else
3665
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3666
}
D
Daniel Vetter 已提交
3667 3668 3669 3670 3671 3672

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3673 3674 3675
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3676 3677 3678 3679 3680
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3699 3700 3701 3702
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3703 3704 3705 3706
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3707 3708 3709 3710 3711

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3712 3713
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3714
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3715 3716 3717 3718 3719
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3720
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3721 3722
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3723
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3724 3725 3726 3727 3728 3729

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3746
int
3747
i915_gem_init_hw(struct drm_device *dev)
3748 3749 3750
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3751

D
Daniel Vetter 已提交
3752 3753 3754
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3755 3756
	i915_gem_l3_remap(dev);

3757 3758
	i915_gem_init_swizzling(dev);

3759
	ret = intel_init_render_ring_buffer(dev);
3760
	if (ret)
3761
		return ret;
3762 3763

	if (HAS_BSD(dev)) {
3764
		ret = intel_init_bsd_ring_buffer(dev);
3765 3766
		if (ret)
			goto cleanup_render_ring;
3767
	}
3768

3769
	if (intel_enable_blt(dev)) {
3770 3771 3772 3773 3774
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3775 3776
	dev_priv->next_seqno = 1;

3777 3778 3779 3780 3781
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3782 3783
	i915_gem_init_ppgtt(dev);

3784 3785
	return 0;

3786
cleanup_bsd_ring:
3787
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3788
cleanup_render_ring:
3789
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3790 3791 3792
	return ret;
}

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3852 3853 3854
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3855 3856 3857
	return 0;
}

3858 3859 3860 3861
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3862
	struct intel_ring_buffer *ring;
3863
	int i;
3864

3865 3866
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3867 3868
}

3869 3870 3871 3872 3873
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3874
	int ret;
3875

J
Jesse Barnes 已提交
3876 3877 3878
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3879
	if (atomic_read(&dev_priv->mm.wedged)) {
3880
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3881
		atomic_set(&dev_priv->mm.wedged, 0);
3882 3883 3884
	}

	mutex_lock(&dev->struct_mutex);
3885 3886
	dev_priv->mm.suspended = 0;

3887
	ret = i915_gem_init_hw(dev);
3888 3889
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3890
		return ret;
3891
	}
3892

3893
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3894 3895 3896
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3897

3898 3899 3900
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3901

3902
	return 0;
3903 3904 3905 3906 3907 3908 3909 3910

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3911 3912 3913 3914 3915 3916
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3917 3918 3919
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3920
	drm_irq_uninstall(dev);
3921
	return i915_gem_idle(dev);
3922 3923 3924 3925 3926 3927 3928
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3929 3930 3931
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3932 3933 3934
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3935 3936
}

3937 3938 3939 3940 3941 3942 3943 3944
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3945 3946 3947
void
i915_gem_load(struct drm_device *dev)
{
3948
	int i;
3949 3950
	drm_i915_private_t *dev_priv = dev->dev_private;

3951
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3952 3953
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3954
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3955
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3956 3957
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3958
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3959
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3960 3961
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3962
	init_completion(&dev_priv->error_completion);
3963

3964 3965
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3966 3967
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3968 3969
	}

3970 3971
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3972
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3973 3974
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3975

3976
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3977 3978 3979 3980
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3981
	/* Initialize fence registers to zero */
3982
	i915_gem_reset_fences(dev);
3983

3984
	i915_gem_detect_bit_6_swizzle(dev);
3985
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3986

3987 3988
	dev_priv->mm.interruptible = true;

3989 3990 3991
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3992
}
3993 3994 3995 3996 3997

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3998 3999
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4000 4001 4002 4003 4004 4005 4006 4007
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4008
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4009 4010 4011 4012 4013
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4014
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4027
	kfree(phys_obj);
4028 4029 4030
	return ret;
}

4031
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4056
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4057 4058 4059 4060
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4061
				 struct drm_i915_gem_object *obj)
4062
{
4063
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4064
	char *vaddr;
4065 4066 4067
	int i;
	int page_count;

4068
	if (!obj->phys_obj)
4069
		return;
4070
	vaddr = obj->phys_obj->handle->vaddr;
4071

4072
	page_count = obj->base.size / PAGE_SIZE;
4073
	for (i = 0; i < page_count; i++) {
4074
		struct page *page = shmem_read_mapping_page(mapping, i);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4086
	}
4087
	intel_gtt_chipset_flush();
4088

4089 4090
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4091 4092 4093 4094
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4095
			    struct drm_i915_gem_object *obj,
4096 4097
			    int id,
			    int align)
4098
{
4099
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4100 4101 4102 4103 4104 4105 4106 4107
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4108 4109
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4110 4111 4112 4113 4114 4115 4116
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4117
						obj->base.size, align);
4118
		if (ret) {
4119 4120
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4121
			return ret;
4122 4123 4124 4125
		}
	}

	/* bind to the object */
4126 4127
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4128

4129
	page_count = obj->base.size / PAGE_SIZE;
4130 4131

	for (i = 0; i < page_count; i++) {
4132 4133 4134
		struct page *page;
		char *dst, *src;

4135
		page = shmem_read_mapping_page(mapping, i);
4136 4137
		if (IS_ERR(page))
			return PTR_ERR(page);
4138

4139
		src = kmap_atomic(page);
4140
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4141
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4142
		kunmap_atomic(src);
4143

4144 4145 4146
		mark_page_accessed(page);
		page_cache_release(page);
	}
4147

4148 4149 4150 4151
	return 0;
}

static int
4152 4153
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4154 4155 4156
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4157
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4158
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4173

4174
	intel_gtt_chipset_flush();
4175 4176
	return 0;
}
4177

4178
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4179
{
4180
	struct drm_i915_file_private *file_priv = file->driver_priv;
4181 4182 4183 4184 4185

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4186
	spin_lock(&file_priv->mm.lock);
4187 4188 4189 4190 4191 4192 4193 4194 4195
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4196
	spin_unlock(&file_priv->mm.lock);
4197
}
4198

4199 4200 4201 4202 4203 4204 4205
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4206
		      list_empty(&dev_priv->mm.active_list);
4207 4208 4209 4210

	return !lists_empty;
}

4211
static int
4212
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4213
{
4214 4215 4216 4217 4218 4219
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4220
	int nr_to_scan = sc->nr_to_scan;
4221 4222 4223
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4224
		return 0;
4225 4226 4227

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4228 4229 4230 4231 4232 4233 4234
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4235 4236
	}

4237
rescan:
4238
	/* first scan for clean buffers */
4239
	i915_gem_retire_requests(dev);
4240

4241 4242 4243 4244
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4245 4246
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4247
				break;
4248 4249 4250 4251
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4252 4253 4254 4255
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4256 4257
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4258
			nr_to_scan--;
4259
		else
4260 4261 4262 4263
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4264 4265 4266 4267 4268 4269
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4270
		if (i915_gpu_idle(dev) == 0)
4271 4272
			goto rescan;
	}
4273 4274
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4275
}