filter.h 28.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 * Linux Socket Filter Data Structures
 */
#ifndef __LINUX_FILTER_H__
#define __LINUX_FILTER_H__

8 9
#include <stdarg.h>

A
Arun Sharma 已提交
10
#include <linux/atomic.h>
11
#include <linux/refcount.h>
12
#include <linux/compat.h>
13
#include <linux/skbuff.h>
14 15
#include <linux/linkage.h>
#include <linux/printk.h>
16
#include <linux/workqueue.h>
17
#include <linux/sched.h>
18
#include <linux/capability.h>
19
#include <linux/cryptohash.h>
20
#include <linux/set_memory.h>
21
#include <linux/kallsyms.h>
22
#include <linux/if_vlan.h>
23

24
#include <net/sch_generic.h>
25 26

#include <uapi/linux/filter.h>
27
#include <uapi/linux/bpf.h>
28 29 30 31

struct sk_buff;
struct sock;
struct seccomp_data;
32
struct bpf_prog_aux;
33
struct xdp_rxq_info;
34
struct xdp_buff;
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/* ArgX, context and stack frame pointer register positions. Note,
 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
 * calls in BPF_CALL instruction.
 */
#define BPF_REG_ARG1	BPF_REG_1
#define BPF_REG_ARG2	BPF_REG_2
#define BPF_REG_ARG3	BPF_REG_3
#define BPF_REG_ARG4	BPF_REG_4
#define BPF_REG_ARG5	BPF_REG_5
#define BPF_REG_CTX	BPF_REG_6
#define BPF_REG_FP	BPF_REG_10

/* Additional register mappings for converted user programs. */
#define BPF_REG_A	BPF_REG_0
#define BPF_REG_X	BPF_REG_7
51 52 53
#define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
#define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
#define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
54

55 56 57 58 59 60 61 62 63
/* Kernel hidden auxiliary/helper register for hardening step.
 * Only used by eBPF JITs. It's nothing more than a temporary
 * register that JITs use internally, only that here it's part
 * of eBPF instructions that have been rewritten for blinding
 * constants. See JIT pre-step in bpf_jit_blind_constants().
 */
#define BPF_REG_AX		MAX_BPF_REG
#define MAX_BPF_JIT_REG		(MAX_BPF_REG + 1)

64 65 66
/* unused opcode to mark special call to bpf_tail_call() helper */
#define BPF_TAIL_CALL	0xf0

67 68 69
/* unused opcode to mark call to interpreter with arguments */
#define BPF_CALL_ARGS	0xe0

70 71 72 73 74 75
/* As per nm, we expose JITed images as text (code) section for
 * kallsyms. That way, tools like perf can find it to match
 * addresses.
 */
#define BPF_SYM_ELF_TYPE	't'

76 77 78
/* BPF program can access up to 512 bytes of stack space. */
#define MAX_BPF_STACK	512

79 80
/* Helper macros for filter block array initializers. */

81
/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
82

83
#define BPF_ALU64_REG(OP, DST, SRC)				\
84
	((struct bpf_insn) {					\
85
		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
86 87
		.dst_reg = DST,					\
		.src_reg = SRC,					\
88 89 90
		.off   = 0,					\
		.imm   = 0 })

91
#define BPF_ALU32_REG(OP, DST, SRC)				\
92
	((struct bpf_insn) {					\
93
		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
94 95
		.dst_reg = DST,					\
		.src_reg = SRC,					\
96 97 98
		.off   = 0,					\
		.imm   = 0 })

99
/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
100

101
#define BPF_ALU64_IMM(OP, DST, IMM)				\
102
	((struct bpf_insn) {					\
103
		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
104 105
		.dst_reg = DST,					\
		.src_reg = 0,					\
106 107 108
		.off   = 0,					\
		.imm   = IMM })

109
#define BPF_ALU32_IMM(OP, DST, IMM)				\
110
	((struct bpf_insn) {					\
111
		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
112 113
		.dst_reg = DST,					\
		.src_reg = 0,					\
114 115 116 117 118
		.off   = 0,					\
		.imm   = IMM })

/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */

119
#define BPF_ENDIAN(TYPE, DST, LEN)				\
120
	((struct bpf_insn) {					\
121
		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
122 123
		.dst_reg = DST,					\
		.src_reg = 0,					\
124 125 126
		.off   = 0,					\
		.imm   = LEN })

127
/* Short form of mov, dst_reg = src_reg */
128

129
#define BPF_MOV64_REG(DST, SRC)					\
130
	((struct bpf_insn) {					\
131
		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
132 133
		.dst_reg = DST,					\
		.src_reg = SRC,					\
134 135 136
		.off   = 0,					\
		.imm   = 0 })

137
#define BPF_MOV32_REG(DST, SRC)					\
138
	((struct bpf_insn) {					\
139
		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
140 141
		.dst_reg = DST,					\
		.src_reg = SRC,					\
142 143 144
		.off   = 0,					\
		.imm   = 0 })

145
/* Short form of mov, dst_reg = imm32 */
146

147
#define BPF_MOV64_IMM(DST, IMM)					\
148
	((struct bpf_insn) {					\
149
		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
150 151
		.dst_reg = DST,					\
		.src_reg = 0,					\
152 153 154
		.off   = 0,					\
		.imm   = IMM })

155
#define BPF_MOV32_IMM(DST, IMM)					\
156
	((struct bpf_insn) {					\
157
		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
158 159
		.dst_reg = DST,					\
		.src_reg = 0,					\
160 161 162
		.off   = 0,					\
		.imm   = IMM })

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
#define BPF_LD_IMM64(DST, IMM)					\
	BPF_LD_IMM64_RAW(DST, 0, IMM)

#define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
	((struct bpf_insn) {					\
		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = 0,					\
		.imm   = (__u32) (IMM) }),			\
	((struct bpf_insn) {					\
		.code  = 0, /* zero is reserved opcode */	\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = 0,					\
		.imm   = ((__u64) (IMM)) >> 32 })

181 182 183 184
/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
#define BPF_LD_MAP_FD(DST, MAP_FD)				\
	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)

185
/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
186

187
#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
188
	((struct bpf_insn) {					\
189
		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
190 191
		.dst_reg = DST,					\
		.src_reg = SRC,					\
192 193 194
		.off   = 0,					\
		.imm   = IMM })

195
#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
196
	((struct bpf_insn) {					\
197
		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
198 199
		.dst_reg = DST,					\
		.src_reg = SRC,					\
200 201 202
		.off   = 0,					\
		.imm   = IMM })

203
/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
204

205
#define BPF_LD_ABS(SIZE, IMM)					\
206
	((struct bpf_insn) {					\
207
		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
208 209
		.dst_reg = 0,					\
		.src_reg = 0,					\
210
		.off   = 0,					\
211
		.imm   = IMM })
212

213
/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
214

215
#define BPF_LD_IND(SIZE, SRC, IMM)				\
216
	((struct bpf_insn) {					\
217
		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
218 219
		.dst_reg = 0,					\
		.src_reg = SRC,					\
220
		.off   = 0,					\
221
		.imm   = IMM })
222

223
/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
224

225
#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
226
	((struct bpf_insn) {					\
227
		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
228 229
		.dst_reg = DST,					\
		.src_reg = SRC,					\
230 231 232
		.off   = OFF,					\
		.imm   = 0 })

233 234 235
/* Memory store, *(uint *) (dst_reg + off16) = src_reg */

#define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
236
	((struct bpf_insn) {					\
237
		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
238 239
		.dst_reg = DST,					\
		.src_reg = SRC,					\
240 241 242
		.off   = OFF,					\
		.imm   = 0 })

243 244 245 246 247 248 249 250 251 252
/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */

#define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
	((struct bpf_insn) {					\
		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
		.dst_reg = DST,					\
		.src_reg = SRC,					\
		.off   = OFF,					\
		.imm   = 0 })

253 254 255
/* Memory store, *(uint *) (dst_reg + off16) = imm32 */

#define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
256
	((struct bpf_insn) {					\
257 258 259 260 261 262 263
		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
		.dst_reg = DST,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = IMM })

/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
264

265
#define BPF_JMP_REG(OP, DST, SRC, OFF)				\
266
	((struct bpf_insn) {					\
267
		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
268 269
		.dst_reg = DST,					\
		.src_reg = SRC,					\
270 271 272
		.off   = OFF,					\
		.imm   = 0 })

273
/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
274

275
#define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
276
	((struct bpf_insn) {					\
277
		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
278 279
		.dst_reg = DST,					\
		.src_reg = 0,					\
280 281 282
		.off   = OFF,					\
		.imm   = IMM })

283 284 285 286 287 288 289 290 291 292
/* Unconditional jumps, goto pc + off16 */

#define BPF_JMP_A(OFF)						\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_JA,			\
		.dst_reg = 0,					\
		.src_reg = 0,					\
		.off   = OFF,					\
		.imm   = 0 })

293 294 295 296 297 298 299 300 301 302
/* Relative call */

#define BPF_CALL_REL(TGT)					\
	((struct bpf_insn) {					\
		.code  = BPF_JMP | BPF_CALL,			\
		.dst_reg = 0,					\
		.src_reg = BPF_PSEUDO_CALL,			\
		.off   = 0,					\
		.imm   = TGT })

303 304
/* Function call */

305 306 307
#define BPF_CAST_CALL(x)					\
		((u64 (*)(u64, u64, u64, u64, u64))(x))

308
#define BPF_EMIT_CALL(FUNC)					\
309
	((struct bpf_insn) {					\
310
		.code  = BPF_JMP | BPF_CALL,			\
311 312
		.dst_reg = 0,					\
		.src_reg = 0,					\
313 314 315 316 317
		.off   = 0,					\
		.imm   = ((FUNC) - __bpf_call_base) })

/* Raw code statement block */

318
#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
319
	((struct bpf_insn) {					\
320
		.code  = CODE,					\
321 322
		.dst_reg = DST,					\
		.src_reg = SRC,					\
323 324 325 326 327 328
		.off   = OFF,					\
		.imm   = IMM })

/* Program exit */

#define BPF_EXIT_INSN()						\
329
	((struct bpf_insn) {					\
330
		.code  = BPF_JMP | BPF_EXIT,			\
331 332
		.dst_reg = 0,					\
		.src_reg = 0,					\
333 334 335
		.off   = 0,					\
		.imm   = 0 })

336 337 338 339 340 341 342 343
/* Internal classic blocks for direct assignment */

#define __BPF_STMT(CODE, K)					\
	((struct sock_filter) BPF_STMT(CODE, K))

#define __BPF_JUMP(CODE, K, JT, JF)				\
	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#define bytes_to_bpf_size(bytes)				\
({								\
	int bpf_size = -EINVAL;					\
								\
	if (bytes == sizeof(u8))				\
		bpf_size = BPF_B;				\
	else if (bytes == sizeof(u16))				\
		bpf_size = BPF_H;				\
	else if (bytes == sizeof(u32))				\
		bpf_size = BPF_W;				\
	else if (bytes == sizeof(u64))				\
		bpf_size = BPF_DW;				\
								\
	bpf_size;						\
})
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#define bpf_size_to_bytes(bpf_size)				\
({								\
	int bytes = -EINVAL;					\
								\
	if (bpf_size == BPF_B)					\
		bytes = sizeof(u8);				\
	else if (bpf_size == BPF_H)				\
		bytes = sizeof(u16);				\
	else if (bpf_size == BPF_W)				\
		bytes = sizeof(u32);				\
	else if (bpf_size == BPF_DW)				\
		bytes = sizeof(u64);				\
								\
	bytes;							\
})

376 377 378 379 380 381 382 383 384 385 386 387 388 389
#define BPF_SIZEOF(type)					\
	({							\
		const int __size = bytes_to_bpf_size(sizeof(type)); \
		BUILD_BUG_ON(__size < 0);			\
		__size;						\
	})

#define BPF_FIELD_SIZEOF(type, field)				\
	({							\
		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
		BUILD_BUG_ON(__size < 0);			\
		__size;						\
	})

390 391
#define BPF_LDST_BYTES(insn)					\
	({							\
392
		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
393 394 395 396
		WARN_ON(__size < 0);				\
		__size;						\
	})

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
#define __BPF_MAP_0(m, v, ...) v
#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)

#define __BPF_REG_0(...) __BPF_PAD(5)
#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)

#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)

#define __BPF_CAST(t, a)						       \
	(__force t)							       \
	(__force							       \
	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
				      (unsigned long)0, (t)0))) a
#define __BPF_V void
#define __BPF_N

#define __BPF_DECL_ARGS(t, a) t   a
#define __BPF_DECL_REGS(t, a) u64 a

#define __BPF_PAD(n)							       \
	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
		  u64, __ur_3, u64, __ur_4, u64, __ur_5)

#define BPF_CALL_x(x, name, ...)					       \
	static __always_inline						       \
	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
	{								       \
		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
	}								       \
	static __always_inline						       \
	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))

#define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
#define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
#define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
#define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
#define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
#define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)

447 448 449 450 451 452 453 454 455 456 457 458
#define bpf_ctx_range(TYPE, MEMBER)						\
	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1

#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
	({									\
		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
		*(PTR_SIZE) = (SIZE);						\
		offsetof(TYPE, MEMBER);						\
	})

459 460
#ifdef CONFIG_COMPAT
/* A struct sock_filter is architecture independent. */
461 462
struct compat_sock_fprog {
	u16		len;
463
	compat_uptr_t	filter;	/* struct sock_filter * */
464 465 466
};
#endif

467 468 469 470 471
struct sock_fprog_kern {
	u16			len;
	struct sock_filter	*filter;
};

472
struct bpf_binary_header {
473
	u32 pages;
474 475
	/* Some arches need word alignment for their instructions */
	u8 image[] __aligned(4);
476 477
};

478
struct bpf_prog {
479
	u16			pages;		/* Number of allocated pages */
480
	u16			jited:1,	/* Is our filter JIT'ed? */
481
				jit_requested:1,/* archs need to JIT the prog */
482
				undo_set_mem:1,	/* Passed set_memory_ro() checkpoint */
483
				gpl_compatible:1, /* Is filter GPL compatible? */
484
				cb_access:1,	/* Is control block accessed? */
485
				dst_needed:1,	/* Do we need dst entry? */
486 487
				blinded:1,	/* Was blinded */
				is_func:1,	/* program is a bpf function */
Y
Yonghong Song 已提交
488 489
				kprobe_override:1, /* Do we override a kprobe? */
				has_callchain_buf:1; /* callchain buffer allocated? */
490
	enum bpf_prog_type	type;		/* Type of BPF program */
491
	enum bpf_attach_type	expected_attach_type; /* For some prog types */
492
	u32			len;		/* Number of filter blocks */
493
	u32			jited_len;	/* Size of jited insns in bytes */
494
	u8			tag[BPF_TAG_SIZE];
495
	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
496
	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
497 498
	unsigned int		(*bpf_func)(const void *ctx,
					    const struct bpf_insn *insn);
499
	/* Instructions for interpreter */
500
	union {
501
		struct sock_filter	insns[0];
502
		struct bpf_insn		insnsi[0];
503
	};
504 505
};

506
struct sk_filter {
507
	refcount_t	refcnt;
508 509 510 511
	struct rcu_head	rcu;
	struct bpf_prog	*prog;
};

512
#define BPF_PROG_RUN(filter, ctx)  (*(filter)->bpf_func)(ctx, (filter)->insnsi)
513

514 515
#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN

516 517
struct bpf_skb_data_end {
	struct qdisc_skb_cb qdisc_cb;
518
	void *data_meta;
519 520 521
	void *data_end;
};

522 523 524 525 526 527 528 529 530 531 532 533
struct sk_msg_buff {
	void *data;
	void *data_end;
	__u32 apply_bytes;
	__u32 cork_bytes;
	int sg_copybreak;
	int sg_start;
	int sg_curr;
	int sg_end;
	struct scatterlist sg_data[MAX_SKB_FRAGS];
	bool sg_copy[MAX_SKB_FRAGS];
	__u32 flags;
534
	struct sock *sk_redir;
535
	struct sock *sk;
536
	struct sk_buff *skb;
537
	struct list_head list;
538 539
};

540 541 542 543 544
/* Compute the linear packet data range [data, data_end) which
 * will be accessed by various program types (cls_bpf, act_bpf,
 * lwt, ...). Subsystems allowing direct data access must (!)
 * ensure that cb[] area can be written to when BPF program is
 * invoked (otherwise cb[] save/restore is necessary).
545
 */
546
static inline void bpf_compute_data_pointers(struct sk_buff *skb)
547 548 549 550
{
	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;

	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
551 552
	cb->data_meta = skb->data - skb_metadata_len(skb);
	cb->data_end  = skb->data + skb_headlen(skb);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static inline u8 *bpf_skb_cb(struct sk_buff *skb)
{
	/* eBPF programs may read/write skb->cb[] area to transfer meta
	 * data between tail calls. Since this also needs to work with
	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
	 *
	 * In some socket filter cases, the cb unfortunately needs to be
	 * saved/restored so that protocol specific skb->cb[] data won't
	 * be lost. In any case, due to unpriviledged eBPF programs
	 * attached to sockets, we need to clear the bpf_skb_cb() area
	 * to not leak previous contents to user space.
	 */
	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
		     FIELD_SIZEOF(struct qdisc_skb_cb, data));

	return qdisc_skb_cb(skb)->data;
}

574 575 576
static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
				       struct sk_buff *skb)
{
577 578
	u8 *cb_data = bpf_skb_cb(skb);
	u8 cb_saved[BPF_SKB_CB_LEN];
579 580 581
	u32 res;

	if (unlikely(prog->cb_access)) {
582 583
		memcpy(cb_saved, cb_data, sizeof(cb_saved));
		memset(cb_data, 0, sizeof(cb_saved));
584 585 586 587 588
	}

	res = BPF_PROG_RUN(prog, skb);

	if (unlikely(prog->cb_access))
589
		memcpy(cb_data, cb_saved, sizeof(cb_saved));
590 591 592 593 594 595 596

	return res;
}

static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
					struct sk_buff *skb)
{
597
	u8 *cb_data = bpf_skb_cb(skb);
598 599

	if (unlikely(prog->cb_access))
600 601
		memset(cb_data, 0, BPF_SKB_CB_LEN);

602 603 604
	return BPF_PROG_RUN(prog, skb);
}

605 606
static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
					    struct xdp_buff *xdp)
607
{
608 609 610 611 612 613 614
	/* Caller needs to hold rcu_read_lock() (!), otherwise program
	 * can be released while still running, or map elements could be
	 * freed early while still having concurrent users. XDP fastpath
	 * already takes rcu_read_lock() when fetching the program, so
	 * it's not necessary here anymore.
	 */
	return BPF_PROG_RUN(prog, xdp);
615 616
}

617 618 619 620 621
static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
{
	return prog->len * sizeof(struct bpf_insn);
}

622
static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
623 624 625 626 627
{
	return round_up(bpf_prog_insn_size(prog) +
			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
}

628
static inline unsigned int bpf_prog_size(unsigned int proglen)
629
{
630 631
	return max(sizeof(struct bpf_prog),
		   offsetof(struct bpf_prog, insns[proglen]));
632 633
}

634 635 636 637 638 639 640 641 642 643
static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
{
	/* When classic BPF programs have been loaded and the arch
	 * does not have a classic BPF JIT (anymore), they have been
	 * converted via bpf_migrate_filter() to eBPF and thus always
	 * have an unspec program type.
	 */
	return prog->type == BPF_PROG_TYPE_UNSPEC;
}

644 645 646 647 648 649 650 651 652 653 654 655
static inline u32 bpf_ctx_off_adjust_machine(u32 size)
{
	const u32 size_machine = sizeof(unsigned long);

	if (size > size_machine && size % size_machine == 0)
		size = size_machine;

	return size;
}

static inline bool bpf_ctx_narrow_align_ok(u32 off, u32 size_access,
					   u32 size_default)
656
{
657 658 659
	size_default = bpf_ctx_off_adjust_machine(size_default);
	size_access  = bpf_ctx_off_adjust_machine(size_access);

660
#ifdef __LITTLE_ENDIAN
661
	return (off & (size_default - 1)) == 0;
662
#else
663
	return (off & (size_default - 1)) + size_access == size_default;
664
#endif
665 666 667 668 669 670 671
}

static inline bool
bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
{
	return bpf_ctx_narrow_align_ok(off, size, size_default) &&
	       size <= size_default && (size & (size - 1)) == 0;
672 673
}

674
#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
675

676 677
static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
{
678 679
	fp->undo_set_mem = 1;
	set_memory_ro((unsigned long)fp, fp->pages);
680 681 682 683
}

static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
{
684 685
	if (fp->undo_set_mem)
		set_memory_rw((unsigned long)fp, fp->pages);
686
}
687

688 689
static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
{
690
	set_memory_ro((unsigned long)hdr, hdr->pages);
691 692
}

693 694
static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
{
695
	set_memory_rw((unsigned long)hdr, hdr->pages);
696
}
697

698 699 700 701 702 703 704 705 706
static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog *fp)
{
	unsigned long real_start = (unsigned long)fp->bpf_func;
	unsigned long addr = real_start & PAGE_MASK;

	return (void *)addr;
}

707 708 709 710 711
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	return sk_filter_trim_cap(sk, skb, 1);
}
712

713
struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
714
void bpf_prog_free(struct bpf_prog *fp);
715

716 717
bool bpf_opcode_in_insntable(u8 code);

718 719 720 721 722 723 724 725 726 727 728
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
				  gfp_t gfp_extra_flags);
void __bpf_prog_free(struct bpf_prog *fp);

static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
{
	bpf_prog_unlock_ro(fp);
	__bpf_prog_free(fp);
}

729 730 731
typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
				       unsigned int flen);

732
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
733
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
734
			      bpf_aux_classic_check_t trans, bool save_orig);
735
void bpf_prog_destroy(struct bpf_prog *fp);
736

737
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
738
int sk_attach_bpf(u32 ufd, struct sock *sk);
739 740
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
741 742 743 744
int sk_detach_filter(struct sock *sk);
int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
		  unsigned int len);

745
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
746
void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
747

748
u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
749 750 751
#define __bpf_call_base_args \
	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
	 __bpf_call_base)
752 753

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
754
void bpf_jit_compile(struct bpf_prog *prog);
755
bool bpf_helper_changes_pkt_data(void *func);
756

757 758 759 760 761 762 763 764
static inline bool bpf_dump_raw_ok(void)
{
	/* Reconstruction of call-sites is dependent on kallsyms,
	 * thus make dump the same restriction.
	 */
	return kallsyms_show_value() == 1;
}

765 766
struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
				       const struct bpf_insn *patch, u32 len);
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static inline int __xdp_generic_ok_fwd_dev(struct sk_buff *skb,
					   struct net_device *fwd)
{
	unsigned int len;

	if (unlikely(!(fwd->flags & IFF_UP)))
		return -ENETDOWN;

	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
	if (skb->len > len)
		return -EMSGSIZE;

	return 0;
}

783 784 785 786
/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
 * same cpu context. Further for best results no more than a single map
 * for the do_redirect/do_flush pair should be used. This limitation is
 * because we only track one map and force a flush when the map changes.
787
 * This does not appear to be a real limitation for existing software.
788
 */
789
int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
790
			    struct xdp_buff *xdp, struct bpf_prog *prog);
791 792 793
int xdp_do_redirect(struct net_device *dev,
		    struct xdp_buff *xdp,
		    struct bpf_prog *prog);
794
void xdp_do_flush_map(void);
795

796
void bpf_warn_invalid_xdp_action(u32 act);
797

798
struct sock *do_sk_redirect_map(struct sk_buff *skb);
799
struct sock *do_msg_redirect_map(struct sk_msg_buff *md);
800

801
#ifdef CONFIG_BPF_JIT
802
extern int bpf_jit_enable;
803
extern int bpf_jit_harden;
804
extern int bpf_jit_kallsyms;
805

806 807 808 809 810 811 812 813 814 815
typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);

struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
		     unsigned int alignment,
		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
void bpf_jit_binary_free(struct bpf_binary_header *hdr);

void bpf_jit_free(struct bpf_prog *fp);

816 817 818
struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);

819 820 821
static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
				u32 pass, void *image)
{
822 823 824
	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
	       proglen, pass, image, current->comm, task_pid_nr(current));

825 826 827 828
	if (image)
		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
			       16, 1, image, proglen, false);
}
829 830 831 832 833 834 835 836 837 838

static inline bool bpf_jit_is_ebpf(void)
{
# ifdef CONFIG_HAVE_EBPF_JIT
	return true;
# else
	return false;
# endif
}

839 840 841 842 843
static inline bool ebpf_jit_enabled(void)
{
	return bpf_jit_enable && bpf_jit_is_ebpf();
}

844 845 846 847 848
static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
	return fp->jited && bpf_jit_is_ebpf();
}

849
static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
850 851 852 853 854 855 856
{
	/* These are the prerequisites, should someone ever have the
	 * idea to call blinding outside of them, we make sure to
	 * bail out.
	 */
	if (!bpf_jit_is_ebpf())
		return false;
857
	if (!prog->jit_requested)
858 859 860 861 862 863 864 865
		return false;
	if (!bpf_jit_harden)
		return false;
	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
		return false;

	return true;
}
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

static inline bool bpf_jit_kallsyms_enabled(void)
{
	/* There are a couple of corner cases where kallsyms should
	 * not be enabled f.e. on hardening.
	 */
	if (bpf_jit_harden)
		return false;
	if (!bpf_jit_kallsyms)
		return false;
	if (bpf_jit_kallsyms == 1)
		return true;

	return false;
}

const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
				 unsigned long *off, char *sym);
bool is_bpf_text_address(unsigned long addr);
int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
		    char *sym);

static inline const char *
bpf_address_lookup(unsigned long addr, unsigned long *size,
		   unsigned long *off, char **modname, char *sym)
{
	const char *ret = __bpf_address_lookup(addr, size, off, sym);

	if (ret && modname)
		*modname = NULL;
	return ret;
}

void bpf_prog_kallsyms_add(struct bpf_prog *fp);
void bpf_prog_kallsyms_del(struct bpf_prog *fp);

#else /* CONFIG_BPF_JIT */

904 905 906 907 908
static inline bool ebpf_jit_enabled(void)
{
	return false;
}

909 910 911 912 913
static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
	return false;
}

914 915 916 917
static inline void bpf_jit_free(struct bpf_prog *fp)
{
	bpf_prog_unlock_free(fp);
}
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

static inline bool bpf_jit_kallsyms_enabled(void)
{
	return false;
}

static inline const char *
__bpf_address_lookup(unsigned long addr, unsigned long *size,
		     unsigned long *off, char *sym)
{
	return NULL;
}

static inline bool is_bpf_text_address(unsigned long addr)
{
	return false;
}

static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
				  char *type, char *sym)
{
	return -ERANGE;
}

static inline const char *
bpf_address_lookup(unsigned long addr, unsigned long *size,
		   unsigned long *off, char **modname, char *sym)
{
	return NULL;
}

static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
}

static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
}
956 957
#endif /* CONFIG_BPF_JIT */

958 959 960
void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);

961 962
#define BPF_ANC		BIT(15)

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static inline bool bpf_needs_clear_a(const struct sock_filter *first)
{
	switch (first->code) {
	case BPF_RET | BPF_K:
	case BPF_LD | BPF_W | BPF_LEN:
		return false;

	case BPF_LD | BPF_W | BPF_ABS:
	case BPF_LD | BPF_H | BPF_ABS:
	case BPF_LD | BPF_B | BPF_ABS:
		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
			return true;
		return false;

	default:
		return true;
	}
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
{
	BUG_ON(ftest->code & BPF_ANC);

	switch (ftest->code) {
	case BPF_LD | BPF_W | BPF_ABS:
	case BPF_LD | BPF_H | BPF_ABS:
	case BPF_LD | BPF_B | BPF_ABS:
#define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
				return BPF_ANC | SKF_AD_##CODE
		switch (ftest->k) {
		BPF_ANCILLARY(PROTOCOL);
		BPF_ANCILLARY(PKTTYPE);
		BPF_ANCILLARY(IFINDEX);
		BPF_ANCILLARY(NLATTR);
		BPF_ANCILLARY(NLATTR_NEST);
		BPF_ANCILLARY(MARK);
		BPF_ANCILLARY(QUEUE);
		BPF_ANCILLARY(HATYPE);
		BPF_ANCILLARY(RXHASH);
		BPF_ANCILLARY(CPU);
		BPF_ANCILLARY(ALU_XOR_X);
		BPF_ANCILLARY(VLAN_TAG);
		BPF_ANCILLARY(VLAN_TAG_PRESENT);
		BPF_ANCILLARY(PAY_OFFSET);
		BPF_ANCILLARY(RANDOM);
1008
		BPF_ANCILLARY(VLAN_TPID);
1009 1010 1011 1012 1013 1014 1015
		}
		/* Fallthrough. */
	default:
		return ftest->code;
	}
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
					   int k, unsigned int size);

static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
				     unsigned int size, void *buffer)
{
	if (k >= 0)
		return skb_header_pointer(skb, k, size, buffer);

	return bpf_internal_load_pointer_neg_helper(skb, k, size);
}

1028 1029
static inline int bpf_tell_extensions(void)
{
1030
	return SKF_AD_MAX;
1031 1032
}

A
Andrey Ignatov 已提交
1033 1034 1035 1036 1037 1038 1039 1040
struct bpf_sock_addr_kern {
	struct sock *sk;
	struct sockaddr *uaddr;
	/* Temporary "register" to make indirect stores to nested structures
	 * defined above. We need three registers to make such a store, but
	 * only two (src and dst) are available at convert_ctx_access time
	 */
	u64 tmp_reg;
A
Andrey Ignatov 已提交
1041
	void *t_ctx;	/* Attach type specific context. */
A
Andrey Ignatov 已提交
1042 1043
};

L
Lawrence Brakmo 已提交
1044 1045 1046 1047
struct bpf_sock_ops_kern {
	struct	sock *sk;
	u32	op;
	union {
1048
		u32 args[4];
L
Lawrence Brakmo 已提交
1049 1050 1051
		u32 reply;
		u32 replylong[4];
	};
1052
	u32	is_fullsock;
1053 1054 1055 1056 1057 1058 1059 1060 1061
	u64	temp;			/* temp and everything after is not
					 * initialized to 0 before calling
					 * the BPF program. New fields that
					 * should be initialized to 0 should
					 * be inserted before temp.
					 * temp is scratch storage used by
					 * sock_ops_convert_ctx_access
					 * as temporary storage of a register.
					 */
L
Lawrence Brakmo 已提交
1062 1063
};

L
Linus Torvalds 已提交
1064
#endif /* __LINUX_FILTER_H__ */