i915_gem_shrinker.c 15.4 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008-2015 Intel Corporation
5 6 7
 */

#include <linux/oom.h>
8
#include <linux/sched/mm.h>
9 10 11 12 13
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
14
#include <linux/vmalloc.h>
15 16 17 18
#include <drm/i915_drm.h>

#include "i915_trace.h"

19 20 21
static bool shrinker_lock(struct drm_i915_private *i915,
			  unsigned int flags,
			  bool *unlock)
22
{
23 24 25
	struct mutex *m = &i915->drm.struct_mutex;

	switch (mutex_trylock_recursive(m)) {
26
	case MUTEX_TRYLOCK_RECURSIVE:
27
		*unlock = false;
28
		return true;
29 30

	case MUTEX_TRYLOCK_FAILED:
31
		*unlock = false;
32 33
		if (flags & I915_SHRINK_ACTIVE &&
		    mutex_lock_killable_nested(m, I915_MM_SHRINKER) == 0)
34
			*unlock = true;
35
		return *unlock;
36

37 38 39
	case MUTEX_TRYLOCK_SUCCESS:
		*unlock = true;
		return true;
40 41
	}

42
	BUG();
43 44
}

45
static void shrinker_unlock(struct drm_i915_private *i915, bool unlock)
46 47 48 49
{
	if (!unlock)
		return;

50
	mutex_unlock(&i915->drm.struct_mutex);
51 52
}

53 54 55 56 57 58 59
static bool swap_available(void)
{
	return get_nr_swap_pages() > 0;
}

static bool can_release_pages(struct drm_i915_gem_object *obj)
{
60 61
	/* Consider only shrinkable ojects. */
	if (!i915_gem_object_is_shrinkable(obj))
62 63
		return false;

64 65 66 67 68 69 70 71
	/* Only report true if by unbinding the object and putting its pages
	 * we can actually make forward progress towards freeing physical
	 * pages.
	 *
	 * If the pages are pinned for any other reason than being bound
	 * to the GPU, simply unbinding from the GPU is not going to succeed
	 * in releasing our pin count on the pages themselves.
	 */
72
	if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count))
73 74
		return false;

75 76 77 78 79 80
	/* If any vma are "permanently" pinned, it will prevent us from
	 * reclaiming the obj->mm.pages. We only allow scanout objects to claim
	 * a permanent pin, along with a few others like the context objects.
	 * To simplify the scan, and to avoid walking the list of vma under the
	 * object, we just check the count of its permanently pinned.
	 */
81
	if (READ_ONCE(obj->pin_global))
82 83 84 85 86 87
		return false;

	/* We can only return physical pages to the system if we can either
	 * discard the contents (because the user has marked them as being
	 * purgeable) or if we can move their contents out to swap.
	 */
C
Chris Wilson 已提交
88
	return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
89 90
}

91 92 93
static bool unsafe_drop_pages(struct drm_i915_gem_object *obj)
{
	if (i915_gem_object_unbind(obj) == 0)
94
		__i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
95
	return !i915_gem_object_has_pages(obj);
96 97
}

98 99
static void try_to_writeback(struct drm_i915_gem_object *obj,
			     unsigned int flags)
100 101 102
{
	switch (obj->mm.madv) {
	case I915_MADV_DONTNEED:
103
		i915_gem_object_truncate(obj);
104 105 106 107
	case __I915_MADV_PURGED:
		return;
	}

108 109
	if (flags & I915_SHRINK_WRITEBACK)
		i915_gem_object_writeback(obj);
110 111
}

112 113
/**
 * i915_gem_shrink - Shrink buffer object caches
114
 * @i915: i915 device
115
 * @target: amount of memory to make available, in pages
116
 * @nr_scanned: optional output for number of pages scanned (incremental)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
 * @flags: control flags for selecting cache types
 *
 * This function is the main interface to the shrinker. It will try to release
 * up to @target pages of main memory backing storage from buffer objects.
 * Selection of the specific caches can be done with @flags. This is e.g. useful
 * when purgeable objects should be removed from caches preferentially.
 *
 * Note that it's not guaranteed that released amount is actually available as
 * free system memory - the pages might still be in-used to due to other reasons
 * (like cpu mmaps) or the mm core has reused them before we could grab them.
 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
 *
 * Also note that any kind of pinning (both per-vma address space pins and
 * backing storage pins at the buffer object level) result in the shrinker code
 * having to skip the object.
 *
 * Returns:
 * The number of pages of backing storage actually released.
 */
137
unsigned long
138
i915_gem_shrink(struct drm_i915_private *i915,
139 140
		unsigned long target,
		unsigned long *nr_scanned,
141
		unsigned int shrink)
142 143 144 145 146
{
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
147
		{ &i915->mm.purge_list, ~0u },
148 149 150 151
		{
			&i915->mm.shrink_list,
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
		},
152 153
		{ NULL, 0 },
	}, *phase;
154
	intel_wakeref_t wakeref = 0;
155
	unsigned long count = 0;
156
	unsigned long scanned = 0;
157 158
	bool unlock;

159
	if (!shrinker_lock(i915, shrink, &unlock))
160
		return 0;
161

162 163 164 165 166 167 168 169 170
	/*
	 * When shrinking the active list, also consider active contexts.
	 * Active contexts are pinned until they are retired, and so can
	 * not be simply unbound to retire and unpin their pages. To shrink
	 * the contexts, we must wait until the gpu is idle.
	 *
	 * We don't care about errors here; if we cannot wait upon the GPU,
	 * we will free as much as we can and hope to get a second chance.
	 */
171
	if (shrink & I915_SHRINK_ACTIVE)
172 173 174
		i915_gem_wait_for_idle(i915,
				       I915_WAIT_LOCKED,
				       MAX_SCHEDULE_TIMEOUT);
175

176
	trace_i915_gem_shrink(i915, target, shrink);
177
	i915_retire_requests(i915);
178

179 180 181 182 183
	/*
	 * Unbinding of objects will require HW access; Let us not wake the
	 * device just to recover a little memory. If absolutely necessary,
	 * we will force the wake during oom-notifier.
	 */
184
	if (shrink & I915_SHRINK_BOUND) {
185 186
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref)
187
			shrink &= ~I915_SHRINK_BOUND;
188
	}
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * As we may completely rewrite the (un)bound list whilst unbinding
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
	 */
	for (phase = phases; phase->list; phase++) {
		struct list_head still_in_list;
211
		struct drm_i915_gem_object *obj;
212
		unsigned long flags;
213

214
		if ((shrink & phase->bit) == 0)
215 216 217
			continue;

		INIT_LIST_HEAD(&still_in_list);
218 219 220 221 222 223 224 225

		/*
		 * We serialize our access to unreferenced objects through
		 * the use of the struct_mutex. While the objects are not
		 * yet freed (due to RCU then a workqueue) we still want
		 * to be able to shrink their pages, so they remain on
		 * the unbound/bound list until actually freed.
		 */
226
		spin_lock_irqsave(&i915->mm.obj_lock, flags);
227 228 229
		while (count < target &&
		       (obj = list_first_entry_or_null(phase->list,
						       typeof(*obj),
230 231
						       mm.link))) {
			list_move_tail(&obj->mm.link, &still_in_list);
232

233
			if (shrink & I915_SHRINK_VMAPS &&
C
Chris Wilson 已提交
234
			    !is_vmalloc_addr(obj->mm.mapping))
235 236
				continue;

237
			if (!(shrink & I915_SHRINK_ACTIVE) &&
238
			    (i915_gem_object_is_active(obj) ||
239
			     i915_gem_object_is_framebuffer(obj)))
240 241
				continue;

242
			if (!(shrink & I915_SHRINK_BOUND) &&
243
			    atomic_read(&obj->bind_count))
244 245
				continue;

246 247 248
			if (!can_release_pages(obj))
				continue;

249
			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
250

251
			if (unsafe_drop_pages(obj)) {
252 253
				/* May arrive from get_pages on another bo */
				mutex_lock_nested(&obj->mm.lock,
254
						  I915_MM_SHRINKER);
255
				if (!i915_gem_object_has_pages(obj)) {
256
					try_to_writeback(obj, shrink);
257 258 259 260
					count += obj->base.size >> PAGE_SHIFT;
				}
				mutex_unlock(&obj->mm.lock);
			}
261
			scanned += obj->base.size >> PAGE_SHIFT;
262

263
			spin_lock_irqsave(&i915->mm.obj_lock, flags);
264
		}
265
		list_splice_tail(&still_in_list, phase->list);
266
		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
267 268
	}

269
	if (shrink & I915_SHRINK_BOUND)
270
		intel_runtime_pm_put(i915, wakeref);
271

272
	i915_retire_requests(i915);
273

274
	shrinker_unlock(i915, unlock);
275

276 277
	if (nr_scanned)
		*nr_scanned += scanned;
278 279 280
	return count;
}

281
/**
282
 * i915_gem_shrink_all - Shrink buffer object caches completely
283
 * @i915: i915 device
284 285 286 287 288 289 290 291 292 293 294
 *
 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
 * caches completely. It also first waits for and retires all outstanding
 * requests to also be able to release backing storage for active objects.
 *
 * This should only be used in code to intentionally quiescent the gpu or as a
 * last-ditch effort when memory seems to have run out.
 *
 * Returns:
 * The number of pages of backing storage actually released.
 */
295
unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
296
{
297
	intel_wakeref_t wakeref;
298
	unsigned long freed = 0;
299

300 301 302 303 304 305
	with_intel_runtime_pm(i915, wakeref) {
		freed = i915_gem_shrink(i915, -1UL, NULL,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_ACTIVE);
	}
306

307
	return freed;
308 309 310 311 312
}

static unsigned long
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
{
313
	struct drm_i915_private *i915 =
314
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
315 316
	unsigned long num_objects;
	unsigned long count;
317

318 319
	count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
	num_objects = READ_ONCE(i915->mm.shrink_count);
320

321 322
	/*
	 * Update our preferred vmscan batch size for the next pass.
323 324 325 326 327 328 329 330 331 332 333 334
	 * Our rough guess for an effective batch size is roughly 2
	 * available GEM objects worth of pages. That is we don't want
	 * the shrinker to fire, until it is worth the cost of freeing an
	 * entire GEM object.
	 */
	if (num_objects) {
		unsigned long avg = 2 * count / num_objects;

		i915->mm.shrinker.batch =
			max((i915->mm.shrinker.batch + avg) >> 1,
			    128ul /* default SHRINK_BATCH */);
	}
335 336 337 338 339 340 341

	return count;
}

static unsigned long
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
{
342
	struct drm_i915_private *i915 =
343 344 345 346
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
	unsigned long freed;
	bool unlock;

347 348
	sc->nr_scanned = 0;

349
	if (!shrinker_lock(i915, 0, &unlock))
350 351
		return SHRINK_STOP;

352
	freed = i915_gem_shrink(i915,
353
				sc->nr_to_scan,
354
				&sc->nr_scanned,
355 356
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
357
				I915_SHRINK_WRITEBACK);
358
	if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
359 360
		intel_wakeref_t wakeref;

361 362 363 364 365 366
		with_intel_runtime_pm(i915, wakeref) {
			freed += i915_gem_shrink(i915,
						 sc->nr_to_scan - sc->nr_scanned,
						 &sc->nr_scanned,
						 I915_SHRINK_ACTIVE |
						 I915_SHRINK_BOUND |
367 368
						 I915_SHRINK_UNBOUND |
						 I915_SHRINK_WRITEBACK);
369
		}
370
	}
371

372
	shrinker_unlock(i915, unlock);
373

374
	return sc->nr_scanned ? freed : SHRINK_STOP;
375 376 377 378 379
}

static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
380
	struct drm_i915_private *i915 =
381 382
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_i915_gem_object *obj;
383
	unsigned long unevictable, available, freed_pages;
384
	intel_wakeref_t wakeref;
385
	unsigned long flags;
386

387 388 389 390
	freed_pages = 0;
	with_intel_runtime_pm(i915, wakeref)
		freed_pages += i915_gem_shrink(i915, -1UL, NULL,
					       I915_SHRINK_BOUND |
391 392
					       I915_SHRINK_UNBOUND |
					       I915_SHRINK_WRITEBACK);
393 394 395 396 397

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
398
	available = unevictable = 0;
399
	spin_lock_irqsave(&i915->mm.obj_lock, flags);
400
	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
401 402
		if (!can_release_pages(obj))
			unevictable += obj->base.size >> PAGE_SHIFT;
403
		else
404
			available += obj->base.size >> PAGE_SHIFT;
405
	}
406
	spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
407

408
	if (freed_pages || available)
409
		pr_info("Purging GPU memory, %lu pages freed, "
410 411
			"%lu pages still pinned, %lu pages left available.\n",
			freed_pages, unevictable, available);
412 413 414 415 416

	*(unsigned long *)ptr += freed_pages;
	return NOTIFY_DONE;
}

417 418 419
static int
i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
{
420
	struct drm_i915_private *i915 =
421
		container_of(nb, struct drm_i915_private, mm.vmap_notifier);
422 423
	struct i915_vma *vma, *next;
	unsigned long freed_pages = 0;
424
	intel_wakeref_t wakeref;
425
	bool unlock;
426

427
	if (!shrinker_lock(i915, 0, &unlock))
428 429
		return NOTIFY_DONE;

430
	/* Force everything onto the inactive lists */
431 432 433
	if (i915_gem_wait_for_idle(i915,
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT))
434 435
		goto out;

436 437 438 439 440
	with_intel_runtime_pm(i915, wakeref)
		freed_pages += i915_gem_shrink(i915, -1UL, NULL,
					       I915_SHRINK_BOUND |
					       I915_SHRINK_UNBOUND |
					       I915_SHRINK_VMAPS);
441 442

	/* We also want to clear any cached iomaps as they wrap vmap */
443
	mutex_lock(&i915->ggtt.vm.mutex);
444
	list_for_each_entry_safe(vma, next,
445
				 &i915->ggtt.vm.bound_list, vm_link) {
446
		unsigned long count = vma->node.size >> PAGE_SHIFT;
447 448 449 450

		if (!vma->iomap || i915_vma_is_active(vma))
			continue;

451
		mutex_unlock(&i915->ggtt.vm.mutex);
452
		if (i915_vma_unbind(vma) == 0)
453
			freed_pages += count;
454
		mutex_lock(&i915->ggtt.vm.mutex);
455
	}
456
	mutex_unlock(&i915->ggtt.vm.mutex);
457

458
out:
459
	shrinker_unlock(i915, unlock);
460 461 462 463 464

	*(unsigned long *)ptr += freed_pages;
	return NOTIFY_DONE;
}

465
/**
466
 * i915_gem_shrinker_register - Register the i915 shrinker
467
 * @i915: i915 device
468 469 470
 *
 * This function registers and sets up the i915 shrinker and OOM handler.
 */
471
void i915_gem_shrinker_register(struct drm_i915_private *i915)
472
{
473 474 475 476 477
	i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
	i915->mm.shrinker.seeks = DEFAULT_SEEKS;
	i915->mm.shrinker.batch = 4096;
	WARN_ON(register_shrinker(&i915->mm.shrinker));
478

479 480
	i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	WARN_ON(register_oom_notifier(&i915->mm.oom_notifier));
481

482 483
	i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
	WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier));
484 485 486
}

/**
487
 * i915_gem_shrinker_unregister - Unregisters the i915 shrinker
488
 * @i915: i915 device
489 490 491
 *
 * This function unregisters the i915 shrinker and OOM handler.
 */
492
void i915_gem_shrinker_unregister(struct drm_i915_private *i915)
493
{
494 495 496
	WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
	WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier));
	unregister_shrinker(&i915->mm.shrinker);
497
}
498

499 500
void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
				    struct mutex *mutex)
501
{
502 503
	bool unlock = false;

504 505 506
	if (!IS_ENABLED(CONFIG_LOCKDEP))
		return;

507 508 509 510 511 512
	if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) {
		mutex_acquire(&i915->drm.struct_mutex.dep_map,
			      I915_MM_NORMAL, 0, _RET_IP_);
		unlock = true;
	}

513
	fs_reclaim_acquire(GFP_KERNEL);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

	/*
	 * As we invariably rely on the struct_mutex within the shrinker,
	 * but have a complicated recursion dance, taint all the mutexes used
	 * within the shrinker with the struct_mutex. For completeness, we
	 * taint with all subclass of struct_mutex, even though we should
	 * only need tainting by I915_MM_NORMAL to catch possible ABBA
	 * deadlocks from using struct_mutex inside @mutex.
	 */
	mutex_acquire(&i915->drm.struct_mutex.dep_map,
		      I915_MM_SHRINKER, 0, _RET_IP_);

	mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
	mutex_release(&mutex->dep_map, 0, _RET_IP_);

	mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_);

531
	fs_reclaim_release(GFP_KERNEL);
532 533 534

	if (unlock)
		mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_);
535
}