i915_gem_gtt.h 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Please try to maintain the following order within this file unless it makes
 * sense to do otherwise. From top to bottom:
 * 1. typedefs
 * 2. #defines, and macros
 * 3. structure definitions
 * 4. function prototypes
 *
 * Within each section, please try to order by generation in ascending order,
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 */

#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__

37 38
#include <linux/io-mapping.h>

39 40
struct drm_i915_file_private;

41 42 43
typedef uint32_t gen6_pte_t;
typedef uint64_t gen8_pte_t;
typedef uint64_t gen8_pde_t;
44 45
typedef uint64_t gen8_ppgtt_pdpe_t;
typedef uint64_t gen8_ppgtt_pml4e_t;
46

47
#define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
48 49 50 51 52 53 54 55 56

/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC		(2 << 1)
#define GEN6_PTE_UNCACHED		(1 << 1)
#define GEN6_PTE_VALID			(1 << 0)

57 58 59 60
#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
#define I915_PDES			512
#define I915_PDE_MASK			(I915_PDES - 1)
61
#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
62 63 64

#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
65
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
66
#define GEN6_PDE_SHIFT			22
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#define GEN6_PDE_VALID			(1 << 0)

#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)

#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
#define BYT_PTE_WRITEABLE		(1 << 1)

/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 */
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
					 (((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED		(0)
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)

/* GEN8 legacy style address is defined as a 3 level page table:
 * 31:30 | 29:21 | 20:12 |  11:0
 * PDPE  |  PDE  |  PTE  | offset
 * The difference as compared to normal x86 3 level page table is the PDPEs are
 * programmed via register.
94 95 96 97
 *
 * GEN8 48b legacy style address is defined as a 4 level page table:
 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
 * PML4E | PDPE  |  PDE  |  PTE  | offset
98
 */
99 100
#define GEN8_PML4ES_PER_PML4		512
#define GEN8_PML4E_SHIFT		39
101
#define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
102
#define GEN8_PDPE_SHIFT			30
103 104 105
/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
 * tables */
#define GEN8_PDPE_MASK			0x1ff
106 107 108 109
#define GEN8_PDE_SHIFT			21
#define GEN8_PDE_MASK			0x1ff
#define GEN8_PTE_SHIFT			12
#define GEN8_PTE_MASK			0x1ff
110
#define GEN8_LEGACY_PDPES		4
111
#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
112

113 114
#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
115

116 117 118 119 120
#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */

121
#define CHV_PPAT_SNOOP			(1<<6)
122 123 124 125 126 127 128 129 130 131 132
#define GEN8_PPAT_AGE(x)		(x<<4)
#define GEN8_PPAT_LLCeLLC		(3<<2)
#define GEN8_PPAT_LLCELLC		(2<<2)
#define GEN8_PPAT_LLC			(1<<2)
#define GEN8_PPAT_WB			(3<<0)
#define GEN8_PPAT_WT			(2<<0)
#define GEN8_PPAT_WC			(1<<0)
#define GEN8_PPAT_UC			(0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))

133 134
enum i915_ggtt_view_type {
	I915_GGTT_VIEW_NORMAL = 0,
135 136
	I915_GGTT_VIEW_ROTATED,
	I915_GGTT_VIEW_PARTIAL,
137 138 139
};

struct intel_rotation_info {
140
	unsigned int uv_offset;
141
	uint32_t pixel_format;
142
	unsigned int uv_start_page;
143 144 145 146
	struct {
		/* tiles */
		unsigned int width, height;
	} plane[2];
147 148 149 150 151
};

struct i915_ggtt_view {
	enum i915_ggtt_view_type type;

152 153
	union {
		struct {
154
			u64 offset;
155 156
			unsigned int size;
		} partial;
157
		struct intel_rotation_info rotated;
158 159
	} params;

160 161 162 163
	struct sg_table *pages;
};

extern const struct i915_ggtt_view i915_ggtt_view_normal;
164
extern const struct i915_ggtt_view i915_ggtt_view_rotated;
165

166
enum i915_cache_level;
167

168 169 170 171 172 173 174 175 176 177 178 179
/**
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 * object into/from the address space.
 *
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 * will always be <= an objects lifetime. So object refcounting should cover us.
 */
struct i915_vma {
	struct drm_mm_node node;
	struct drm_i915_gem_object *obj;
	struct i915_address_space *vm;
180
	void __iomem *iomap;
181

182 183 184 185
	/** Flags and address space this VMA is bound to */
#define GLOBAL_BIND	(1<<0)
#define LOCAL_BIND	(1<<1)
	unsigned int bound : 4;
186
	bool is_ggtt : 1;
187

188 189 190 191 192 193 194 195 196
	/**
	 * Support different GGTT views into the same object.
	 * This means there can be multiple VMA mappings per object and per VM.
	 * i915_ggtt_view_type is used to distinguish between those entries.
	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
	 * assumed in GEM functions which take no ggtt view parameter.
	 */
	struct i915_ggtt_view ggtt_view;

197
	/** This object's place on the active/inactive lists */
198
	struct list_head vm_link;
199

200
	struct list_head obj_link; /* Link in the object's VMA list */
201 202 203 204 205 206 207 208 209 210 211 212 213

	/** This vma's place in the batchbuffer or on the eviction list */
	struct list_head exec_list;

	/**
	 * Used for performing relocations during execbuffer insertion.
	 */
	struct hlist_node exec_node;
	unsigned long exec_handle;
	struct drm_i915_gem_exec_object2 *exec_entry;

	/**
	 * How many users have pinned this object in GTT space. The following
D
Daniel Vetter 已提交
214 215 216 217
	 * users can each hold at most one reference: pwrite/pread, execbuffer
	 * (objects are not allowed multiple times for the same batchbuffer),
	 * and the framebuffer code. When switching/pageflipping, the
	 * framebuffer code has at most two buffers pinned per crtc.
218 219 220 221 222 223 224
	 *
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
	 * bits with absolutely no headroom. So use 4 bits. */
	unsigned int pin_count:4;
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
};

225
struct i915_page_dma {
B
Ben Widawsky 已提交
226
	struct page *page;
227 228 229 230 231 232 233 234 235 236
	union {
		dma_addr_t daddr;

		/* For gen6/gen7 only. This is the offset in the GGTT
		 * where the page directory entries for PPGTT begin
		 */
		uint32_t ggtt_offset;
	};
};

237 238 239 240
#define px_base(px) (&(px)->base)
#define px_page(px) (px_base(px)->page)
#define px_dma(px) (px_base(px)->daddr)

241 242 243 244
struct i915_page_scratch {
	struct i915_page_dma base;
};

245 246
struct i915_page_table {
	struct i915_page_dma base;
247 248

	unsigned long *used_ptes;
B
Ben Widawsky 已提交
249 250
};

251
struct i915_page_directory {
252
	struct i915_page_dma base;
253

254
	unsigned long *used_pdes;
255
	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
B
Ben Widawsky 已提交
256 257
};

258
struct i915_page_directory_pointer {
259 260 261 262
	struct i915_page_dma base;

	unsigned long *used_pdpes;
	struct i915_page_directory **page_directory;
B
Ben Widawsky 已提交
263 264
};

265 266 267 268 269 270 271
struct i915_pml4 {
	struct i915_page_dma base;

	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
};

272 273 274 275
struct i915_address_space {
	struct drm_mm mm;
	struct drm_device *dev;
	struct list_head global_link;
276 277
	u64 start;		/* Start offset always 0 for dri2 */
	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
278

279 280
	bool is_ggtt;

281
	struct i915_page_scratch *scratch_page;
282 283
	struct i915_page_table *scratch_pt;
	struct i915_page_directory *scratch_pd;
284
	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
285 286 287 288 289

	/**
	 * List of objects currently involved in rendering.
	 *
	 * Includes buffers having the contents of their GPU caches
290
	 * flushed, not necessarily primitives. last_read_req
291 292 293 294 295 296 297 298 299 300
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * LRU list of objects which are not in the ringbuffer and
	 * are ready to unbind, but are still in the GTT.
	 *
301
	 * last_read_req is NULL while an object is in this list.
302 303 304 305 306 307 308 309
	 *
	 * A reference is not held on the buffer while on this list,
	 * as merely being GTT-bound shouldn't prevent its being
	 * freed, and we'll pull it off the list in the free path.
	 */
	struct list_head inactive_list;

	/* FIXME: Need a more generic return type */
310 311 312
	gen6_pte_t (*pte_encode)(dma_addr_t addr,
				 enum i915_cache_level level,
				 bool valid, u32 flags); /* Create a valid PTE */
313 314
	/* flags for pte_encode */
#define PTE_READ_ONLY	(1<<0)
315 316 317
	int (*allocate_va_range)(struct i915_address_space *vm,
				 uint64_t start,
				 uint64_t length);
318 319 320 321 322 323 324
	void (*clear_range)(struct i915_address_space *vm,
			    uint64_t start,
			    uint64_t length,
			    bool use_scratch);
	void (*insert_entries)(struct i915_address_space *vm,
			       struct sg_table *st,
			       uint64_t start,
325
			       enum i915_cache_level cache_level, u32 flags);
326
	void (*cleanup)(struct i915_address_space *vm);
327 328 329 330
	/** Unmap an object from an address space. This usually consists of
	 * setting the valid PTE entries to a reserved scratch page. */
	void (*unbind_vma)(struct i915_vma *vma);
	/* Map an object into an address space with the given cache flags. */
331 332 333
	int (*bind_vma)(struct i915_vma *vma,
			enum i915_cache_level cache_level,
			u32 flags);
334 335
};

336 337
#define i915_is_ggtt(V) ((V)->is_ggtt)

338 339 340 341 342 343 344
/* The Graphics Translation Table is the way in which GEN hardware translates a
 * Graphics Virtual Address into a Physical Address. In addition to the normal
 * collateral associated with any va->pa translations GEN hardware also has a
 * portion of the GTT which can be mapped by the CPU and remain both coherent
 * and correct (in cases like swizzling). That region is referred to as GMADR in
 * the spec.
 */
345
struct i915_ggtt {
346 347
	struct i915_address_space base;

348
	size_t stolen_size;		/* Total size of stolen memory */
349
	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
350 351
	size_t stolen_reserved_base;
	size_t stolen_reserved_size;
352
	size_t size;			/* Total size of Global GTT */
353
	u64 mappable_end;		/* End offset that we can CPU map */
354 355 356 357 358 359 360 361 362 363
	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
	phys_addr_t mappable_base;	/* PA of our GMADR */

	/** "Graphics Stolen Memory" holds the global PTEs */
	void __iomem *gsm;

	bool do_idle_maps;

	int mtrr;

364
	int (*probe)(struct i915_ggtt *ggtt);
365 366 367 368 369 370
};

struct i915_hw_ppgtt {
	struct i915_address_space base;
	struct kref ref;
	struct drm_mm_node node;
371
	unsigned long pd_dirty_rings;
B
Ben Widawsky 已提交
372
	union {
373 374 375
		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
		struct i915_page_directory_pointer pdp;	/* GEN8+ */
		struct i915_page_directory pd;		/* GEN6-7 */
B
Ben Widawsky 已提交
376
	};
377

378
	struct drm_i915_file_private *file_priv;
379

380 381
	gen6_pte_t __iomem *pd_addr;

382 383
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
384
			 struct drm_i915_gem_request *req);
385 386 387
	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
};

388 389 390 391 392 393 394 395 396
/* For each pde iterates over every pde between from start until start + length.
 * If start, and start+length are not perfectly divisible, the macro will round
 * down, and up as needed. The macro modifies pde, start, and length. Dev is
 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
 * and length = 2G effectively iterates over every PDE in the system.
 *
 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
 */
#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
397
	for (iter = gen6_pde_index(start); \
398 399
	     length > 0 && iter < I915_PDES ? \
			(pt = (pd)->page_table[iter]), 1 : 0; \
400
	     iter++, \
401 402 403 404
	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
	     temp = min_t(unsigned, temp, length), \
	     start += temp, length -= temp)

405 406 407 408 409
#define gen6_for_all_pdes(pt, ppgtt, iter)  \
	for (iter = 0;		\
	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
	     iter++)

410 411 412 413 414 415 416 417 418 419 420 421 422 423
static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
{
	const uint32_t mask = NUM_PTE(pde_shift) - 1;

	return (address >> PAGE_SHIFT) & mask;
}

/* Helper to counts the number of PTEs within the given length. This count
 * does not cross a page table boundary, so the max value would be
 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
				      uint32_t pde_shift)
{
424
	const uint64_t mask = ~((1ULL << pde_shift) - 1);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	uint64_t end;

	WARN_ON(length == 0);
	WARN_ON(offset_in_page(addr|length));

	end = addr + length;

	if ((addr & mask) != (end & mask))
		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);

	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}

static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
{
	return (addr >> shift) & I915_PDE_MASK;
}

static inline uint32_t gen6_pte_index(uint32_t addr)
{
	return i915_pte_index(addr, GEN6_PDE_SHIFT);
}

static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
{
	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}

static inline uint32_t gen6_pde_index(uint32_t addr)
{
	return i915_pde_index(addr, GEN6_PDE_SHIFT);
}

458 459 460 461
/* Equivalent to the gen6 version, For each pde iterates over every pde
 * between from start until start + length. On gen8+ it simply iterates
 * over every page directory entry in a page directory.
 */
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
#define gen8_for_each_pde(pt, pd, start, length, iter)			\
	for (iter = gen8_pde_index(start);				\
	     length > 0 && iter < I915_PDES &&				\
		(pt = (pd)->page_table[iter], true);			\
	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
	for (iter = gen8_pdpe_index(start);				\
	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
		(pd = (pdp)->page_directory[iter], true);		\
	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
	for (iter = gen8_pml4e_index(start);				\
	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
		(pdp = (pml4)->pdps[iter], true);			\
	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static inline uint32_t gen8_pte_index(uint64_t address)
{
	return i915_pte_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pde_index(uint64_t address)
{
	return i915_pde_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pdpe_index(uint64_t address)
{
	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
}

static inline uint32_t gen8_pml4e_index(uint64_t address)
{
503
	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
504 505
}

506 507 508 509 510
static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
{
	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
}

511 512 513 514
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
{
	return test_bit(n, ppgtt->pdp.used_pdpes) ?
515
		px_dma(ppgtt->pdp.page_directory[n]) :
516
		px_dma(ppgtt->base.scratch_pd);
517 518
}

519
int i915_ggtt_init_hw(struct drm_device *dev);
520
int i915_ggtt_enable_hw(struct drm_device *dev);
521 522
void i915_gem_init_ggtt(struct drm_device *dev);
void i915_ggtt_cleanup_hw(struct drm_device *dev);
523

524
int i915_ppgtt_init_hw(struct drm_device *dev);
525
void i915_ppgtt_release(struct kref *kref);
526 527
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
					struct drm_i915_file_private *fpriv);
528 529 530 531 532 533 534 535 536 537
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_get(&ppgtt->ref);
}
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_put(&ppgtt->ref, i915_ppgtt_release);
}
538

539
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
540 541 542 543 544 545
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
void i915_gem_restore_gtt_mappings(struct drm_device *dev);

int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);

546 547 548 549 550 551 552
static inline bool
i915_ggtt_view_equal(const struct i915_ggtt_view *a,
                     const struct i915_ggtt_view *b)
{
	if (WARN_ON(!a || !b))
		return false;

553 554
	if (a->type != b->type)
		return false;
555
	if (a->type != I915_GGTT_VIEW_NORMAL)
556 557
		return !memcmp(&a->params, &b->params, sizeof(a->params));
	return true;
558 559
}

560 561 562 563
size_t
i915_ggtt_view_size(struct drm_i915_gem_object *obj,
		    const struct i915_ggtt_view *view);

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/**
 * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
 * @vma: VMA to iomap
 *
 * The passed in VMA has to be pinned in the global GTT mappable region.
 * An extra pinning of the VMA is acquired for the return iomapping,
 * the caller must call i915_vma_unpin_iomap to relinquish the pinning
 * after the iomapping is no longer required.
 *
 * Callers must hold the struct_mutex.
 *
 * Returns a valid iomapped pointer or ERR_PTR.
 */
void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);

/**
 * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
 * @vma: VMA to unpin
 *
 * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
 *
 * Callers must hold the struct_mutex. This function is only valid to be
 * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
 */
static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
{
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
	GEM_BUG_ON(vma->pin_count == 0);
	GEM_BUG_ON(vma->iomap == NULL);
	vma->pin_count--;
}

596
#endif