i915_gem_gtt.h 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Please try to maintain the following order within this file unless it makes
 * sense to do otherwise. From top to bottom:
 * 1. typedefs
 * 2. #defines, and macros
 * 3. structure definitions
 * 4. function prototypes
 *
 * Within each section, please try to order by generation in ascending order,
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 */

#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__

37 38
struct drm_i915_file_private;

39 40 41
typedef uint32_t gen6_pte_t;
typedef uint64_t gen8_pte_t;
typedef uint64_t gen8_pde_t;
42 43 44

#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)

45

46 47 48 49 50 51 52 53
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC		(2 << 1)
#define GEN6_PTE_UNCACHED		(1 << 1)
#define GEN6_PTE_VALID			(1 << 0)

54 55 56 57
#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
#define I915_PDES			512
#define I915_PDE_MASK			(I915_PDES - 1)
58
#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
59 60 61

#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
62
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
63
#define GEN6_PDE_SHIFT			22
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
#define GEN6_PDE_VALID			(1 << 0)

#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)

#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
#define BYT_PTE_WRITEABLE		(1 << 1)

/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 */
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
					 (((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED		(0)
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)

/* GEN8 legacy style address is defined as a 3 level page table:
 * 31:30 | 29:21 | 20:12 |  11:0
 * PDPE  |  PDE  |  PTE  | offset
 * The difference as compared to normal x86 3 level page table is the PDPEs are
 * programmed via register.
 */
#define GEN8_PDPE_SHIFT			30
#define GEN8_PDPE_MASK			0x3
#define GEN8_PDE_SHIFT			21
#define GEN8_PDE_MASK			0x1ff
#define GEN8_PTE_SHIFT			12
#define GEN8_PTE_MASK			0x1ff
98
#define GEN8_LEGACY_PDPES		4
99
#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
100 101 102 103 104 105

#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */

106
#define CHV_PPAT_SNOOP			(1<<6)
107 108 109 110 111 112 113 114 115 116 117
#define GEN8_PPAT_AGE(x)		(x<<4)
#define GEN8_PPAT_LLCeLLC		(3<<2)
#define GEN8_PPAT_LLCELLC		(2<<2)
#define GEN8_PPAT_LLC			(1<<2)
#define GEN8_PPAT_WB			(3<<0)
#define GEN8_PPAT_WT			(2<<0)
#define GEN8_PPAT_WC			(1<<0)
#define GEN8_PPAT_UC			(0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))

118 119
enum i915_ggtt_view_type {
	I915_GGTT_VIEW_NORMAL = 0,
120 121
	I915_GGTT_VIEW_ROTATED,
	I915_GGTT_VIEW_PARTIAL,
122 123 124 125 126 127 128
};

struct intel_rotation_info {
	unsigned int height;
	unsigned int pitch;
	uint32_t pixel_format;
	uint64_t fb_modifier;
129 130
	unsigned int width_pages, height_pages;
	uint64_t size;
131 132 133 134 135
};

struct i915_ggtt_view {
	enum i915_ggtt_view_type type;

136 137 138 139 140 141 142
	union {
		struct {
			unsigned long offset;
			unsigned int size;
		} partial;
	} params;

143
	struct sg_table *pages;
144 145 146 147

	union {
		struct intel_rotation_info rotation_info;
	};
148 149 150
};

extern const struct i915_ggtt_view i915_ggtt_view_normal;
151
extern const struct i915_ggtt_view i915_ggtt_view_rotated;
152

153
enum i915_cache_level;
154

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 * object into/from the address space.
 *
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 * will always be <= an objects lifetime. So object refcounting should cover us.
 */
struct i915_vma {
	struct drm_mm_node node;
	struct drm_i915_gem_object *obj;
	struct i915_address_space *vm;

168 169 170 171 172
	/** Flags and address space this VMA is bound to */
#define GLOBAL_BIND	(1<<0)
#define LOCAL_BIND	(1<<1)
	unsigned int bound : 4;

173 174 175 176 177 178 179 180 181
	/**
	 * Support different GGTT views into the same object.
	 * This means there can be multiple VMA mappings per object and per VM.
	 * i915_ggtt_view_type is used to distinguish between those entries.
	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
	 * assumed in GEM functions which take no ggtt view parameter.
	 */
	struct i915_ggtt_view ggtt_view;

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	/** This object's place on the active/inactive lists */
	struct list_head mm_list;

	struct list_head vma_link; /* Link in the object's VMA list */

	/** This vma's place in the batchbuffer or on the eviction list */
	struct list_head exec_list;

	/**
	 * Used for performing relocations during execbuffer insertion.
	 */
	struct hlist_node exec_node;
	unsigned long exec_handle;
	struct drm_i915_gem_exec_object2 *exec_entry;

	/**
	 * How many users have pinned this object in GTT space. The following
D
Daniel Vetter 已提交
199 200 201 202
	 * users can each hold at most one reference: pwrite/pread, execbuffer
	 * (objects are not allowed multiple times for the same batchbuffer),
	 * and the framebuffer code. When switching/pageflipping, the
	 * framebuffer code has at most two buffers pinned per crtc.
203 204 205 206 207 208 209
	 *
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
	 * bits with absolutely no headroom. So use 4 bits. */
	unsigned int pin_count:4;
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
};

210
struct i915_page_dma {
B
Ben Widawsky 已提交
211
	struct page *page;
212 213 214 215 216 217 218 219 220 221
	union {
		dma_addr_t daddr;

		/* For gen6/gen7 only. This is the offset in the GGTT
		 * where the page directory entries for PPGTT begin
		 */
		uint32_t ggtt_offset;
	};
};

222 223 224 225
#define px_base(px) (&(px)->base)
#define px_page(px) (px_base(px)->page)
#define px_dma(px) (px_base(px)->daddr)

226 227 228 229
struct i915_page_scratch {
	struct i915_page_dma base;
};

230 231
struct i915_page_table {
	struct i915_page_dma base;
232 233

	unsigned long *used_ptes;
B
Ben Widawsky 已提交
234 235
};

236
struct i915_page_directory {
237
	struct i915_page_dma base;
238

239
	unsigned long *used_pdes;
240
	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
B
Ben Widawsky 已提交
241 242
};

243
struct i915_page_directory_pointer {
B
Ben Widawsky 已提交
244
	/* struct page *page; */
245
	DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
246
	struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
B
Ben Widawsky 已提交
247 248
};

249 250 251 252
struct i915_address_space {
	struct drm_mm mm;
	struct drm_device *dev;
	struct list_head global_link;
253 254
	u64 start;		/* Start offset always 0 for dri2 */
	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
255

256
	struct i915_page_scratch *scratch_page;
257 258 259 260 261

	/**
	 * List of objects currently involved in rendering.
	 *
	 * Includes buffers having the contents of their GPU caches
262
	 * flushed, not necessarily primitives. last_read_req
263 264 265 266 267 268 269 270 271 272
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * LRU list of objects which are not in the ringbuffer and
	 * are ready to unbind, but are still in the GTT.
	 *
273
	 * last_read_req is NULL while an object is in this list.
274 275 276 277 278 279 280 281
	 *
	 * A reference is not held on the buffer while on this list,
	 * as merely being GTT-bound shouldn't prevent its being
	 * freed, and we'll pull it off the list in the free path.
	 */
	struct list_head inactive_list;

	/* FIXME: Need a more generic return type */
282 283 284
	gen6_pte_t (*pte_encode)(dma_addr_t addr,
				 enum i915_cache_level level,
				 bool valid, u32 flags); /* Create a valid PTE */
285 286
	/* flags for pte_encode */
#define PTE_READ_ONLY	(1<<0)
287 288 289
	int (*allocate_va_range)(struct i915_address_space *vm,
				 uint64_t start,
				 uint64_t length);
290 291 292 293 294 295 296
	void (*clear_range)(struct i915_address_space *vm,
			    uint64_t start,
			    uint64_t length,
			    bool use_scratch);
	void (*insert_entries)(struct i915_address_space *vm,
			       struct sg_table *st,
			       uint64_t start,
297
			       enum i915_cache_level cache_level, u32 flags);
298
	void (*cleanup)(struct i915_address_space *vm);
299 300 301 302
	/** Unmap an object from an address space. This usually consists of
	 * setting the valid PTE entries to a reserved scratch page. */
	void (*unbind_vma)(struct i915_vma *vma);
	/* Map an object into an address space with the given cache flags. */
303 304 305
	int (*bind_vma)(struct i915_vma *vma,
			enum i915_cache_level cache_level,
			u32 flags);
306 307 308 309 310 311 312 313 314 315 316 317
};

/* The Graphics Translation Table is the way in which GEN hardware translates a
 * Graphics Virtual Address into a Physical Address. In addition to the normal
 * collateral associated with any va->pa translations GEN hardware also has a
 * portion of the GTT which can be mapped by the CPU and remain both coherent
 * and correct (in cases like swizzling). That region is referred to as GMADR in
 * the spec.
 */
struct i915_gtt {
	struct i915_address_space base;

318 319
	size_t stolen_size;		/* Total size of stolen memory */
	u64 mappable_end;		/* End offset that we can CPU map */
320 321 322 323 324 325 326 327 328 329 330
	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
	phys_addr_t mappable_base;	/* PA of our GMADR */

	/** "Graphics Stolen Memory" holds the global PTEs */
	void __iomem *gsm;

	bool do_idle_maps;

	int mtrr;

	/* global gtt ops */
331
	int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
332
			  size_t *stolen, phys_addr_t *mappable_base,
333
			  u64 *mappable_end);
334 335 336 337 338 339
};

struct i915_hw_ppgtt {
	struct i915_address_space base;
	struct kref ref;
	struct drm_mm_node node;
340
	unsigned long pd_dirty_rings;
B
Ben Widawsky 已提交
341
	union {
342 343
		struct i915_page_directory_pointer pdp;
		struct i915_page_directory pd;
B
Ben Widawsky 已提交
344
	};
345

346
	struct i915_page_table *scratch_pt;
347
	struct i915_page_directory *scratch_pd;
348

349
	struct drm_i915_file_private *file_priv;
350

351 352
	gen6_pte_t __iomem *pd_addr;

353 354
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
355
			 struct drm_i915_gem_request *req);
356 357 358
	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
};

359 360 361 362 363 364 365 366 367
/* For each pde iterates over every pde between from start until start + length.
 * If start, and start+length are not perfectly divisible, the macro will round
 * down, and up as needed. The macro modifies pde, start, and length. Dev is
 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
 * and length = 2G effectively iterates over every PDE in the system.
 *
 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
 */
#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
368 369 370
	for (iter = gen6_pde_index(start); \
	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
	     iter++, \
371 372 373 374
	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
	     temp = min_t(unsigned, temp, length), \
	     start += temp, length -= temp)

375 376 377 378 379
#define gen6_for_all_pdes(pt, ppgtt, iter)  \
	for (iter = 0;		\
	     pt = ppgtt->pd.page_table[iter], iter < I915_PDES;	\
	     iter++)

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
{
	const uint32_t mask = NUM_PTE(pde_shift) - 1;

	return (address >> PAGE_SHIFT) & mask;
}

/* Helper to counts the number of PTEs within the given length. This count
 * does not cross a page table boundary, so the max value would be
 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
				      uint32_t pde_shift)
{
	const uint64_t mask = ~((1 << pde_shift) - 1);
	uint64_t end;

	WARN_ON(length == 0);
	WARN_ON(offset_in_page(addr|length));

	end = addr + length;

	if ((addr & mask) != (end & mask))
		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);

	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}

static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
{
	return (addr >> shift) & I915_PDE_MASK;
}

static inline uint32_t gen6_pte_index(uint32_t addr)
{
	return i915_pte_index(addr, GEN6_PDE_SHIFT);
}

static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
{
	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}

static inline uint32_t gen6_pde_index(uint32_t addr)
{
	return i915_pde_index(addr, GEN6_PDE_SHIFT);
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/* Equivalent to the gen6 version, For each pde iterates over every pde
 * between from start until start + length. On gen8+ it simply iterates
 * over every page directory entry in a page directory.
 */
#define gen8_for_each_pde(pt, pd, start, length, temp, iter)		\
	for (iter = gen8_pde_index(start); \
	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES;	\
	     iter++,				\
	     temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start,	\
	     temp = min(temp, length),					\
	     start += temp, length -= temp)

#define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter)		\
	for (iter = gen8_pdpe_index(start);	\
	     pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES;	\
	     iter++,				\
	     temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start,	\
	     temp = min(temp, length),					\
	     start += temp, length -= temp)

/* Clamp length to the next page_directory boundary */
static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
{
	uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);

	if (next_pd > (start + length))
		return length;

	return next_pd - start;
}

static inline uint32_t gen8_pte_index(uint64_t address)
{
	return i915_pte_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pde_index(uint64_t address)
{
	return i915_pde_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pdpe_index(uint64_t address)
{
	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
}

static inline uint32_t gen8_pml4e_index(uint64_t address)
{
	WARN_ON(1); /* For 64B */
	return 0;
}

480 481 482 483 484
static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
{
	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
}

485 486 487 488
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
{
	return test_bit(n, ppgtt->pdp.used_pdpes) ?
489 490
		px_dma(ppgtt->pdp.page_directory[n]) :
		px_dma(ppgtt->scratch_pd);
491 492
}

493 494
int i915_gem_gtt_init(struct drm_device *dev);
void i915_gem_init_global_gtt(struct drm_device *dev);
495
void i915_global_gtt_cleanup(struct drm_device *dev);
496

497 498

int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
499
int i915_ppgtt_init_hw(struct drm_device *dev);
500
int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
501
void i915_ppgtt_release(struct kref *kref);
502 503
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
					struct drm_i915_file_private *fpriv);
504 505 506 507 508 509 510 511 512 513
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_get(&ppgtt->ref);
}
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_put(&ppgtt->ref, i915_ppgtt_release);
}
514 515 516 517 518 519 520 521

void i915_check_and_clear_faults(struct drm_device *dev);
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
void i915_gem_restore_gtt_mappings(struct drm_device *dev);

int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);

522 523 524 525 526 527 528
static inline bool
i915_ggtt_view_equal(const struct i915_ggtt_view *a,
                     const struct i915_ggtt_view *b)
{
	if (WARN_ON(!a || !b))
		return false;

529 530 531 532 533
	if (a->type != b->type)
		return false;
	if (a->type == I915_GGTT_VIEW_PARTIAL)
		return !memcmp(&a->params, &b->params, sizeof(a->params));
	return true;
534 535
}

536 537 538 539
size_t
i915_ggtt_view_size(struct drm_i915_gem_object *obj,
		    const struct i915_ggtt_view *view);

540
#endif