coresight-tmc-etr.c 40.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright(C) 2016 Linaro Limited. All rights reserved.
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/coresight.h>
8
#include <linux/dma-mapping.h>
9
#include <linux/iommu.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
12
#include "coresight-catu.h"
13
#include "coresight-etm-perf.h"
14 15 16
#include "coresight-priv.h"
#include "coresight-tmc.h"

17 18 19 20 21 22 23
struct etr_flat_buf {
	struct device	*dev;
	dma_addr_t	daddr;
	void		*vaddr;
	size_t		size;
};

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * etr_perf_buffer - Perf buffer used for ETR
 * @etr_buf		- Actual buffer used by the ETR
 * @snaphost		- Perf session mode
 * @head		- handle->head at the beginning of the session.
 * @nr_pages		- Number of pages in the ring buffer.
 * @pages		- Array of Pages in the ring buffer.
 */
struct etr_perf_buffer {
	struct etr_buf		*etr_buf;
	bool			snapshot;
	unsigned long		head;
	int			nr_pages;
	void			**pages;
};

/* Convert the perf index to an offset within the ETR buffer */
#define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))

/* Lower limit for ETR hardware buffer */
#define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
 * contain more than one SG buffer and tables.
 *
 * A table entry has the following format:
 *
 * ---Bit31------------Bit4-------Bit1-----Bit0--
 * |     Address[39:12]    | SBZ |  Entry Type  |
 * ----------------------------------------------
 *
 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
 *	    always zero.
 *
 * Entry type:
 *	b00 - Reserved.
 *	b01 - Last entry in the tables, points to 4K page buffer.
 *	b10 - Normal entry, points to 4K page buffer.
 *	b11 - Link. The address points to the base of next table.
 */

typedef u32 sgte_t;

#define ETR_SG_PAGE_SHIFT		12
#define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
#define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
#define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))

#define ETR_SG_ET_MASK			0x3
#define ETR_SG_ET_LAST			0x1
#define ETR_SG_ET_NORMAL		0x2
#define ETR_SG_ET_LINK			0x3

#define ETR_SG_ADDR_SHIFT		4

#define ETR_SG_ENTRY(addr, type) \
	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
		 (type & ETR_SG_ET_MASK))

#define ETR_SG_ADDR(entry) \
	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
#define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)

/*
 * struct etr_sg_table : ETR SG Table
 * @sg_table:		Generic SG Table holding the data/table pages.
 * @hwaddr:		hwaddress used by the TMC, which is the base
 *			address of the table.
 */
struct etr_sg_table {
	struct tmc_sg_table	*sg_table;
	dma_addr_t		hwaddr;
};

/*
 * tmc_etr_sg_table_entries: Total number of table entries required to map
 * @nr_pages system pages.
 *
 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 * with the last entry pointing to another page of table entries.
 * If we spill over to a new page for mapping 1 entry, we could as
 * well replace the link entry of the previous page with the last entry.
 */
static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)
{
	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
	/*
	 * If we spill over to a new page for 1 entry, we could as well
	 * make it the LAST entry in the previous page, skipping the Link
	 * address.
	 */
	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
		nr_sglinks--;
	return nr_sgpages + nr_sglinks;
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
/*
 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 * and map the device address @addr to an offset within the virtual
 * contiguous buffer.
 */
static long
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
{
	int i;
	dma_addr_t page_start;

	for (i = 0; i < tmc_pages->nr_pages; i++) {
		page_start = tmc_pages->daddrs[i];
		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
			return i * PAGE_SIZE + (addr - page_start);
	}

	return -EINVAL;
}

/*
 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 * If the pages were not allocated in tmc_pages_alloc(), we would
 * simply drop the refcount.
 */
static void tmc_pages_free(struct tmc_pages *tmc_pages,
			   struct device *dev, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < tmc_pages->nr_pages; i++) {
		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
			dma_unmap_page(dev, tmc_pages->daddrs[i],
					 PAGE_SIZE, dir);
		if (tmc_pages->pages && tmc_pages->pages[i])
			__free_page(tmc_pages->pages[i]);
	}

	kfree(tmc_pages->pages);
	kfree(tmc_pages->daddrs);
	tmc_pages->pages = NULL;
	tmc_pages->daddrs = NULL;
	tmc_pages->nr_pages = 0;
}

/*
 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 * If @pages is not NULL, the list of page virtual addresses are
 * used as the data pages. The pages are then dma_map'ed for @dev
 * with dma_direction @dir.
 *
 * Returns 0 upon success, else the error number.
 */
static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
			   struct device *dev, int node,
			   enum dma_data_direction dir, void **pages)
{
	int i, nr_pages;
	dma_addr_t paddr;
	struct page *page;

	nr_pages = tmc_pages->nr_pages;
	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
					 GFP_KERNEL);
	if (!tmc_pages->daddrs)
		return -ENOMEM;
	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
					 GFP_KERNEL);
	if (!tmc_pages->pages) {
		kfree(tmc_pages->daddrs);
		tmc_pages->daddrs = NULL;
		return -ENOMEM;
	}

	for (i = 0; i < nr_pages; i++) {
		if (pages && pages[i]) {
			page = virt_to_page(pages[i]);
			/* Hold a refcount on the page */
			get_page(page);
		} else {
			page = alloc_pages_node(node,
						GFP_KERNEL | __GFP_ZERO, 0);
		}
		paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
		if (dma_mapping_error(dev, paddr))
			goto err;
		tmc_pages->daddrs[i] = paddr;
		tmc_pages->pages[i] = page;
	}
	return 0;
err:
	tmc_pages_free(tmc_pages, dev, dir);
	return -ENOMEM;
}

static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
{
	return tmc_pages_get_offset(&sg_table->data_pages, addr);
}

static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
{
	if (sg_table->table_vaddr)
		vunmap(sg_table->table_vaddr);
	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
}

static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
{
	if (sg_table->data_vaddr)
		vunmap(sg_table->data_vaddr);
	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
}

void tmc_free_sg_table(struct tmc_sg_table *sg_table)
{
	tmc_free_table_pages(sg_table);
	tmc_free_data_pages(sg_table);
}

/*
 * Alloc pages for the table. Since this will be used by the device,
 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 * rather than the CPU node).
 */
static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
{
	int rc;
	struct tmc_pages *table_pages = &sg_table->table_pages;

	rc = tmc_pages_alloc(table_pages, sg_table->dev,
			     dev_to_node(sg_table->dev),
			     DMA_TO_DEVICE, NULL);
	if (rc)
		return rc;
	sg_table->table_vaddr = vmap(table_pages->pages,
				     table_pages->nr_pages,
				     VM_MAP,
				     PAGE_KERNEL);
	if (!sg_table->table_vaddr)
		rc = -ENOMEM;
	else
		sg_table->table_daddr = table_pages->daddrs[0];
	return rc;
}

static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
{
	int rc;

	/* Allocate data pages on the node requested by the caller */
	rc = tmc_pages_alloc(&sg_table->data_pages,
			     sg_table->dev, sg_table->node,
			     DMA_FROM_DEVICE, pages);
	if (!rc) {
		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
					    sg_table->data_pages.nr_pages,
					    VM_MAP,
					    PAGE_KERNEL);
		if (!sg_table->data_vaddr)
			rc = -ENOMEM;
	}
	return rc;
}

/*
 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 * and data buffers. TMC writes to the data buffers and reads from the SG
 * Table pages.
 *
 * @dev		- Device to which page should be DMA mapped.
 * @node	- Numa node for mem allocations
 * @nr_tpages	- Number of pages for the table entries.
 * @nr_dpages	- Number of pages for Data buffer.
 * @pages	- Optional list of virtual address of pages.
 */
struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
					int node,
					int nr_tpages,
					int nr_dpages,
					void **pages)
{
	long rc;
	struct tmc_sg_table *sg_table;

	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
	if (!sg_table)
		return ERR_PTR(-ENOMEM);
	sg_table->data_pages.nr_pages = nr_dpages;
	sg_table->table_pages.nr_pages = nr_tpages;
	sg_table->node = node;
	sg_table->dev = dev;

	rc  = tmc_alloc_data_pages(sg_table, pages);
	if (!rc)
		rc = tmc_alloc_table_pages(sg_table);
	if (rc) {
		tmc_free_sg_table(sg_table);
		kfree(sg_table);
		return ERR_PTR(rc);
	}

	return sg_table;
}

/*
 * tmc_sg_table_sync_data_range: Sync the data buffer written
 * by the device from @offset upto a @size bytes.
 */
void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
				  u64 offset, u64 size)
{
	int i, index, start;
	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
	struct device *dev = table->dev;
	struct tmc_pages *data = &table->data_pages;

	start = offset >> PAGE_SHIFT;
	for (i = start; i < (start + npages); i++) {
		index = i % data->nr_pages;
		dma_sync_single_for_cpu(dev, data->daddrs[index],
					PAGE_SIZE, DMA_FROM_DEVICE);
	}
}

/* tmc_sg_sync_table: Sync the page table */
void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
{
	int i;
	struct device *dev = sg_table->dev;
	struct tmc_pages *table_pages = &sg_table->table_pages;

	for (i = 0; i < table_pages->nr_pages; i++)
		dma_sync_single_for_device(dev, table_pages->daddrs[i],
					   PAGE_SIZE, DMA_TO_DEVICE);
}

/*
 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 * in the SG buffer. The @bufpp is updated to point to the buffer.
 * Returns :
 *	the length of linear data available at @offset.
 *	or
 *	<= 0 if no data is available.
 */
ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
			      u64 offset, size_t len, char **bufpp)
{
	size_t size;
	int pg_idx = offset >> PAGE_SHIFT;
	int pg_offset = offset & (PAGE_SIZE - 1);
	struct tmc_pages *data_pages = &sg_table->data_pages;

	size = tmc_sg_table_buf_size(sg_table);
	if (offset >= size)
		return -EINVAL;

	/* Make sure we don't go beyond the end */
	len = (len < (size - offset)) ? len : size - offset;
	/* Respect the page boundaries */
	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
	if (len > 0)
		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
	return len;
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
#ifdef ETR_SG_DEBUG
/* Map a dma address to virtual address */
static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
		      dma_addr_t addr, bool table)
{
	long offset;
	unsigned long base;
	struct tmc_pages *tmc_pages;

	if (table) {
		tmc_pages = &sg_table->table_pages;
		base = (unsigned long)sg_table->table_vaddr;
	} else {
		tmc_pages = &sg_table->data_pages;
		base = (unsigned long)sg_table->data_vaddr;
	}

	offset = tmc_pages_get_offset(tmc_pages, addr);
	if (offset < 0)
		return 0;
	return base + offset;
}

/* Dump the given sg_table */
static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
{
	sgte_t *ptr;
	int i = 0;
	dma_addr_t addr;
	struct tmc_sg_table *sg_table = etr_table->sg_table;

	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
					      etr_table->hwaddr, true);
	while (ptr) {
		addr = ETR_SG_ADDR(*ptr);
		switch (ETR_SG_ET(*ptr)) {
		case ETR_SG_ET_NORMAL:
			dev_dbg(sg_table->dev,
				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
			ptr++;
			break;
		case ETR_SG_ET_LINK:
			dev_dbg(sg_table->dev,
				"%05d: *** %p\t:{L} 0x%llx ***\n",
				 i, ptr, addr);
			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
							      addr, true);
			break;
		case ETR_SG_ET_LAST:
			dev_dbg(sg_table->dev,
				"%05d: ### %p\t:[L] 0x%llx ###\n",
				 i, ptr, addr);
			return;
		default:
			dev_dbg(sg_table->dev,
				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
				 i, ptr, addr);
			return;
		}
		i++;
	}
	dev_dbg(sg_table->dev, "******* End of Table *****\n");
}
#else
static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
#endif

/*
 * Populate the SG Table page table entries from table/data
 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 * So does a Table page. So we keep track of indices of the tables
 * in each system page and move the pointers accordingly.
 */
#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
{
	dma_addr_t paddr;
	int i, type, nr_entries;
	int tpidx = 0; /* index to the current system table_page */
	int sgtidx = 0;	/* index to the sg_table within the current syspage */
	int sgtentry = 0; /* the entry within the sg_table */
	int dpidx = 0; /* index to the current system data_page */
	int spidx = 0; /* index to the SG page within the current data page */
	sgte_t *ptr; /* pointer to the table entry to fill */
	struct tmc_sg_table *sg_table = etr_table->sg_table;
	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;

	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
	/*
	 * Use the contiguous virtual address of the table to update entries.
	 */
	ptr = sg_table->table_vaddr;
	/*
	 * Fill all the entries, except the last entry to avoid special
	 * checks within the loop.
	 */
	for (i = 0; i < nr_entries - 1; i++) {
		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
			/*
			 * Last entry in a sg_table page is a link address to
			 * the next table page. If this sg_table is the last
			 * one in the system page, it links to the first
			 * sg_table in the next system page. Otherwise, it
			 * links to the next sg_table page within the system
			 * page.
			 */
			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
				paddr = table_daddrs[tpidx + 1];
			} else {
				paddr = table_daddrs[tpidx] +
					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
			}
			type = ETR_SG_ET_LINK;
		} else {
			/*
			 * Update the indices to the data_pages to point to the
			 * next sg_page in the data buffer.
			 */
			type = ETR_SG_ET_NORMAL;
			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
				dpidx++;
		}
		*ptr++ = ETR_SG_ENTRY(paddr, type);
		/*
		 * Move to the next table pointer, moving the table page index
		 * if necessary
		 */
		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
				tpidx++;
		}
	}

	/* Set up the last entry, which is always a data pointer */
	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
}

/*
 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 * populate the table.
 *
 * @dev		- Device pointer for the TMC
 * @node	- NUMA node where the memory should be allocated
 * @size	- Total size of the data buffer
 * @pages	- Optional list of page virtual address
 */
544
static struct etr_sg_table *
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
tmc_init_etr_sg_table(struct device *dev, int node,
		      unsigned long size, void **pages)
{
	int nr_entries, nr_tpages;
	int nr_dpages = size >> PAGE_SHIFT;
	struct tmc_sg_table *sg_table;
	struct etr_sg_table *etr_table;

	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
	if (!etr_table)
		return ERR_PTR(-ENOMEM);
	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);

	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
	if (IS_ERR(sg_table)) {
		kfree(etr_table);
562
		return ERR_CAST(sg_table);
563 564 565 566 567 568 569 570 571 572 573 574 575
	}

	etr_table->sg_table = sg_table;
	/* TMC should use table base address for DBA */
	etr_table->hwaddr = sg_table->table_daddr;
	tmc_etr_sg_table_populate(etr_table);
	/* Sync the table pages for the HW */
	tmc_sg_table_sync_table(sg_table);
	tmc_etr_sg_table_dump(etr_table);

	return etr_table;
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/*
 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
 */
static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
				  struct etr_buf *etr_buf, int node,
				  void **pages)
{
	struct etr_flat_buf *flat_buf;

	/* We cannot reuse existing pages for flat buf */
	if (pages)
		return -EINVAL;

	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
	if (!flat_buf)
		return -ENOMEM;

	flat_buf->vaddr = dma_alloc_coherent(drvdata->dev, etr_buf->size,
					     &flat_buf->daddr, GFP_KERNEL);
	if (!flat_buf->vaddr) {
		kfree(flat_buf);
		return -ENOMEM;
	}

	flat_buf->size = etr_buf->size;
	flat_buf->dev = drvdata->dev;
	etr_buf->hwaddr = flat_buf->daddr;
	etr_buf->mode = ETR_MODE_FLAT;
	etr_buf->private = flat_buf;
	return 0;
}

static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
{
	struct etr_flat_buf *flat_buf = etr_buf->private;

	if (flat_buf && flat_buf->daddr)
		dma_free_coherent(flat_buf->dev, flat_buf->size,
				  flat_buf->vaddr, flat_buf->daddr);
	kfree(flat_buf);
}

static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
	/*
	 * Adjust the buffer to point to the beginning of the trace data
	 * and update the available trace data.
	 */
	etr_buf->offset = rrp - etr_buf->hwaddr;
	if (etr_buf->full)
		etr_buf->len = etr_buf->size;
	else
		etr_buf->len = rwp - rrp;
}

static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
					 u64 offset, size_t len, char **bufpp)
{
	struct etr_flat_buf *flat_buf = etr_buf->private;

	*bufpp = (char *)flat_buf->vaddr + offset;
	/*
	 * tmc_etr_buf_get_data already adjusts the length to handle
	 * buffer wrapping around.
	 */
	return len;
}

static const struct etr_buf_operations etr_flat_buf_ops = {
	.alloc = tmc_etr_alloc_flat_buf,
	.free = tmc_etr_free_flat_buf,
	.sync = tmc_etr_sync_flat_buf,
	.get_data = tmc_etr_get_data_flat_buf,
};

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
 * appropriately.
 */
static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
				struct etr_buf *etr_buf, int node,
				void **pages)
{
	struct etr_sg_table *etr_table;

	etr_table = tmc_init_etr_sg_table(drvdata->dev, node,
					  etr_buf->size, pages);
	if (IS_ERR(etr_table))
		return -ENOMEM;
	etr_buf->hwaddr = etr_table->hwaddr;
	etr_buf->mode = ETR_MODE_ETR_SG;
	etr_buf->private = etr_table;
	return 0;
}

static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
{
	struct etr_sg_table *etr_table = etr_buf->private;

	if (etr_table) {
		tmc_free_sg_table(etr_table->sg_table);
		kfree(etr_table);
	}
}

static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
				       size_t len, char **bufpp)
{
	struct etr_sg_table *etr_table = etr_buf->private;

	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
}

static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
	long r_offset, w_offset;
	struct etr_sg_table *etr_table = etr_buf->private;
	struct tmc_sg_table *table = etr_table->sg_table;

	/* Convert hw address to offset in the buffer */
	r_offset = tmc_sg_get_data_page_offset(table, rrp);
	if (r_offset < 0) {
		dev_warn(table->dev,
			 "Unable to map RRP %llx to offset\n", rrp);
		etr_buf->len = 0;
		return;
	}

	w_offset = tmc_sg_get_data_page_offset(table, rwp);
	if (w_offset < 0) {
		dev_warn(table->dev,
			 "Unable to map RWP %llx to offset\n", rwp);
		etr_buf->len = 0;
		return;
	}

	etr_buf->offset = r_offset;
	if (etr_buf->full)
		etr_buf->len = etr_buf->size;
	else
		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
				w_offset - r_offset;
	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
}

static const struct etr_buf_operations etr_sg_buf_ops = {
	.alloc = tmc_etr_alloc_sg_buf,
	.free = tmc_etr_free_sg_buf,
	.sync = tmc_etr_sync_sg_buf,
	.get_data = tmc_etr_get_data_sg_buf,
};

728 729 730 731 732 733 734 735
/*
 * TMC ETR could be connected to a CATU device, which can provide address
 * translation service. This is represented by the Output port of the TMC
 * (ETR) connected to the input port of the CATU.
 *
 * Returns	: coresight_device ptr for the CATU device if a CATU is found.
 *		: NULL otherwise.
 */
736
struct coresight_device *
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
{
	int i;
	struct coresight_device *tmp, *etr = drvdata->csdev;

	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
		return NULL;

	for (i = 0; i < etr->nr_outport; i++) {
		tmp = etr->conns[i].child_dev;
		if (tmp && coresight_is_catu_device(tmp))
			return tmp;
	}

	return NULL;
}

754 755
static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
				      struct etr_buf *etr_buf)
756 757 758 759
{
	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);

	if (catu && helper_ops(catu)->enable)
760 761
		return helper_ops(catu)->enable(catu, etr_buf);
	return 0;
762 763 764 765 766 767 768
}

static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
{
	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);

	if (catu && helper_ops(catu)->disable)
769
		helper_ops(catu)->disable(catu, drvdata->etr_buf);
770 771
}

772 773
static const struct etr_buf_operations *etr_buf_ops[] = {
	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
774
	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
775
	[ETR_MODE_CATU] = &etr_catu_buf_ops,
776 777 778 779 780 781 782
};

static inline int tmc_etr_mode_alloc_buf(int mode,
					 struct tmc_drvdata *drvdata,
					 struct etr_buf *etr_buf, int node,
					 void **pages)
{
783
	int rc = -EINVAL;
784 785 786

	switch (mode) {
	case ETR_MODE_FLAT:
787
	case ETR_MODE_ETR_SG:
788 789 790 791
	case ETR_MODE_CATU:
		if (etr_buf_ops[mode]->alloc)
			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
						      node, pages);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!rc)
			etr_buf->ops = etr_buf_ops[mode];
		return rc;
	default:
		return -EINVAL;
	}
}

/*
 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
 * @drvdata	: ETR device details.
 * @size	: size of the requested buffer.
 * @flags	: Required properties for the buffer.
 * @node	: Node for memory allocations.
 * @pages	: An optional list of pages.
 */
static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
					 ssize_t size, int flags,
					 int node, void **pages)
{
812 813
	int rc = -ENOMEM;
	bool has_etr_sg, has_iommu;
814
	bool has_sg, has_catu;
815 816
	struct etr_buf *etr_buf;

817 818
	has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
	has_iommu = iommu_get_domain_for_dev(drvdata->dev);
819 820 821
	has_catu = !!tmc_etr_get_catu_device(drvdata);

	has_sg = has_catu || has_etr_sg;
822

823 824 825 826 827 828
	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
	if (!etr_buf)
		return ERR_PTR(-ENOMEM);

	etr_buf->size = size;

829 830 831 832 833 834 835 836 837 838 839 840 841
	/*
	 * If we have to use an existing list of pages, we cannot reliably
	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
	 * we use the contiguous DMA memory if at least one of the following
	 * conditions is true:
	 *  a) The ETR cannot use Scatter-Gather.
	 *  b) we have a backing IOMMU
	 *  c) The requested memory size is smaller (< 1M).
	 *
	 * Fallback to available mechanisms.
	 *
	 */
	if (!pages &&
842
	    (!has_sg || has_iommu || size < SZ_1M))
843 844 845 846 847
		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
					    etr_buf, node, pages);
	if (rc && has_etr_sg)
		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
					    etr_buf, node, pages);
848 849 850
	if (rc && has_catu)
		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
					    etr_buf, node, pages);
851 852 853 854 855
	if (rc) {
		kfree(etr_buf);
		return ERR_PTR(rc);
	}

856 857
	dev_dbg(drvdata->dev, "allocated buffer of size %ldKB in mode %d\n",
		(unsigned long)size >> 10, etr_buf->mode);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	return etr_buf;
}

static void tmc_free_etr_buf(struct etr_buf *etr_buf)
{
	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
	etr_buf->ops->free(etr_buf);
	kfree(etr_buf);
}

/*
 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
 * with a maximum of @len bytes.
 * Returns: The size of the linear data available @pos, with *bufpp
 * updated to point to the buffer.
 */
static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
				    u64 offset, size_t len, char **bufpp)
{
	/* Adjust the length to limit this transaction to end of buffer */
	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;

	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
}

static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
{
	ssize_t len;
	char *bufp;

	len = tmc_etr_buf_get_data(etr_buf, offset,
				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
891
	if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		return -EINVAL;
	coresight_insert_barrier_packet(bufp);
	return offset + CORESIGHT_BARRIER_PKT_SIZE;
}

/*
 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
 * Makes sure the trace data is synced to the memory for consumption.
 * @etr_buf->offset will hold the offset to the beginning of the trace data
 * within the buffer, with @etr_buf->len bytes to consume.
 */
static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
{
	struct etr_buf *etr_buf = drvdata->etr_buf;
	u64 rrp, rwp;
	u32 status;

	rrp = tmc_read_rrp(drvdata);
	rwp = tmc_read_rwp(drvdata);
	status = readl_relaxed(drvdata->base + TMC_STS);
	etr_buf->full = status & TMC_STS_FULL;

	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);

	etr_buf->ops->sync(etr_buf, rrp, rwp);

	/* Insert barrier packets at the beginning, if there was an overflow */
	if (etr_buf->full)
		tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
}

923
static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
924
{
925
	u32 axictl, sts;
926
	struct etr_buf *etr_buf = drvdata->etr_buf;
927

928 929 930 931 932
	CS_UNLOCK(drvdata->base);

	/* Wait for TMCSReady bit to be set */
	tmc_wait_for_tmcready(drvdata);

933
	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
934 935 936
	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);

	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
937 938 939
	axictl &= ~TMC_AXICTL_CLEAR_MASK;
	axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
	axictl |= TMC_AXICTL_AXCACHE_OS;
940 941 942 943 944 945

	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
		axictl |= TMC_AXICTL_ARCACHE_OS;
	}

946
	if (etr_buf->mode == ETR_MODE_ETR_SG)
947 948
		axictl |= TMC_AXICTL_SCT_GAT_MODE;

949
	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
950
	tmc_write_dba(drvdata, etr_buf->hwaddr);
951 952 953 954 955 956
	/*
	 * If the TMC pointers must be programmed before the session,
	 * we have to set it properly (i.e, RRP/RWP to base address and
	 * STS to "not full").
	 */
	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
957 958
		tmc_write_rrp(drvdata, etr_buf->hwaddr);
		tmc_write_rwp(drvdata, etr_buf->hwaddr);
959 960 961
		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
		writel_relaxed(sts, drvdata->base + TMC_STS);
	}
962 963 964 965 966 967 968 969 970 971 972

	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
		       TMC_FFCR_TRIGON_TRIGIN,
		       drvdata->base + TMC_FFCR);
	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
	tmc_enable_hw(drvdata);

	CS_LOCK(drvdata->base);
}

973 974 975
static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
			     struct etr_buf *etr_buf)
{
976 977
	int rc;

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	/* Callers should provide an appropriate buffer for use */
	if (WARN_ON(!etr_buf))
		return -EINVAL;

	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
		return -EINVAL;

	if (WARN_ON(drvdata->etr_buf))
		return -EBUSY;

	/*
	 * If this ETR is connected to a CATU, enable it before we turn
	 * this on.
	 */
993
	rc = tmc_etr_enable_catu(drvdata, etr_buf);
994 995 996
	if (rc)
		return rc;
	rc = coresight_claim_device(drvdata->base);
997 998 999 1000
	if (!rc) {
		drvdata->etr_buf = etr_buf;
		__tmc_etr_enable_hw(drvdata);
	}
1001

1002
	return rc;
1003 1004
}

1005
/*
1006 1007 1008 1009 1010
 * Return the available trace data in the buffer (starts at etr_buf->offset,
 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
 * also updating the @bufpp on where to find it. Since the trace data
 * starts at anywhere in the buffer, depending on the RRP, we adjust the
 * @len returned to handle buffer wrapping around.
1011 1012 1013
 *
 * We are protected here by drvdata->reading != 0, which ensures the
 * sysfs_buf stays alive.
1014 1015 1016 1017
 */
ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
				loff_t pos, size_t len, char **bufpp)
{
1018
	s64 offset;
1019
	ssize_t actual = len;
1020
	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1021

1022 1023
	if (pos + actual > etr_buf->len)
		actual = etr_buf->len - pos;
1024 1025 1026
	if (actual <= 0)
		return actual;

1027 1028 1029 1030 1031
	/* Compute the offset from which we read the data */
	offset = etr_buf->offset + pos;
	if (offset >= etr_buf->size)
		offset -= etr_buf->size;
	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1032 1033
}

1034 1035
static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1036
{
1037 1038 1039
	return tmc_alloc_etr_buf(drvdata, drvdata->size,
				 0, cpu_to_node(0), NULL);
}
1040

1041 1042 1043 1044 1045 1046
static void
tmc_etr_free_sysfs_buf(struct etr_buf *buf)
{
	if (buf)
		tmc_free_etr_buf(buf);
}
1047

1048 1049
static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
{
1050 1051 1052 1053 1054 1055 1056 1057
	struct etr_buf *etr_buf = drvdata->etr_buf;

	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
		drvdata->sysfs_buf = NULL;
	} else {
		tmc_sync_etr_buf(drvdata);
	}
1058 1059
}

1060
static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1061 1062 1063 1064
{
	CS_UNLOCK(drvdata->base);

	tmc_flush_and_stop(drvdata);
1065 1066 1067 1068
	/*
	 * When operating in sysFS mode the content of the buffer needs to be
	 * read before the TMC is disabled.
	 */
1069
	if (drvdata->mode == CS_MODE_SYSFS)
1070 1071
		tmc_etr_sync_sysfs_buf(drvdata);

1072 1073 1074
	tmc_disable_hw(drvdata);

	CS_LOCK(drvdata->base);
1075

1076 1077 1078 1079 1080
}

static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
	__tmc_etr_disable_hw(drvdata);
1081 1082
	/* Disable CATU device if this ETR is connected to one */
	tmc_etr_disable_catu(drvdata);
1083
	coresight_disclaim_device(drvdata->base);
1084 1085
	/* Reset the ETR buf used by hardware */
	drvdata->etr_buf = NULL;
1086 1087
}

1088
static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1089
{
1090
	int ret = 0;
1091 1092
	unsigned long flags;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1093
	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1094

1095
	/*
1096 1097 1098 1099 1100 1101
	 * If we are enabling the ETR from disabled state, we need to make
	 * sure we have a buffer with the right size. The etr_buf is not reset
	 * immediately after we stop the tracing in SYSFS mode as we wait for
	 * the user to collect the data. We may be able to reuse the existing
	 * buffer, provided the size matches. Any allocation has to be done
	 * with the lock released.
1102
	 */
1103
	spin_lock_irqsave(&drvdata->spinlock, flags);
1104 1105
	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1106
		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1107

1108 1109 1110 1111
		/* Allocate memory with the locks released */
		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
		if (IS_ERR(new_buf))
			return PTR_ERR(new_buf);
1112 1113 1114 1115 1116

		/* Let's try again */
		spin_lock_irqsave(&drvdata->spinlock, flags);
	}

1117
	if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1118 1119 1120 1121
		ret = -EBUSY;
		goto out;
	}

1122 1123 1124
	/*
	 * In sysFS mode we can have multiple writers per sink.  Since this
	 * sink is already enabled no memory is needed and the HW need not be
1125
	 * touched, even if the buffer size has changed.
1126
	 */
1127
	if (drvdata->mode == CS_MODE_SYSFS)
1128 1129
		goto out;

1130
	/*
1131 1132
	 * If we don't have a buffer or it doesn't match the requested size,
	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1133
	 */
1134 1135 1136 1137
	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
		free_buf = sysfs_buf;
		drvdata->sysfs_buf = new_buf;
1138 1139
	}

1140 1141 1142
	ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
	if (!ret)
		drvdata->mode = CS_MODE_SYSFS;
1143
out:
1144 1145
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

1146
	/* Free memory outside the spinlock if need be */
1147 1148
	if (free_buf)
		tmc_etr_free_sysfs_buf(free_buf);
1149 1150

	if (!ret)
1151
		dev_dbg(drvdata->dev, "TMC-ETR enabled\n");
1152 1153

	return ret;
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * tmc_etr_setup_perf_buf: Allocate ETR buffer for use by perf.
 * The size of the hardware buffer is dependent on the size configured
 * via sysfs and the perf ring buffer size. We prefer to allocate the
 * largest possible size, scaling down the size by half until it
 * reaches a minimum limit (1M), beyond which we give up.
 */
static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, int node, int nr_pages,
		       void **pages, bool snapshot)
{
	struct etr_buf *etr_buf;
	struct etr_perf_buffer *etr_perf;
	unsigned long size;

	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
	if (!etr_perf)
		return ERR_PTR(-ENOMEM);

	/*
	 * Try to match the perf ring buffer size if it is larger
	 * than the size requested via sysfs.
	 */
	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
		etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
					    0, node, NULL);
		if (!IS_ERR(etr_buf))
			goto done;
	}

	/*
	 * Else switch to configured size for this ETR
	 * and scale down until we hit the minimum limit.
	 */
	size = drvdata->size;
	do {
		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
		if (!IS_ERR(etr_buf))
			goto done;
		size /= 2;
	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);

	kfree(etr_perf);
	return ERR_PTR(-ENOMEM);

done:
	etr_perf->etr_buf = etr_buf;
	return etr_perf;
}


static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
				  int cpu, void **pages, int nr_pages,
				  bool snapshot)
{
	struct etr_perf_buffer *etr_perf;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

	if (cpu == -1)
		cpu = smp_processor_id();

	etr_perf = tmc_etr_setup_perf_buf(drvdata, cpu_to_node(cpu),
					  nr_pages, pages, snapshot);
	if (IS_ERR(etr_perf)) {
		dev_dbg(drvdata->dev, "Unable to allocate ETR buffer\n");
		return NULL;
	}

	etr_perf->snapshot = snapshot;
	etr_perf->nr_pages = nr_pages;
	etr_perf->pages = pages;

	return etr_perf;
}

static void tmc_free_etr_buffer(void *config)
{
	struct etr_perf_buffer *etr_perf = config;

	if (etr_perf->etr_buf)
		tmc_free_etr_buf(etr_perf->etr_buf);
	kfree(etr_perf);
}

/*
 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
 * buffer to the perf ring buffer.
 */
static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf)
{
	long bytes, to_copy;
	long pg_idx, pg_offset, src_offset;
	unsigned long head = etr_perf->head;
	char **dst_pages, *src_buf;
	struct etr_buf *etr_buf = etr_perf->etr_buf;

	head = etr_perf->head;
	pg_idx = head >> PAGE_SHIFT;
	pg_offset = head & (PAGE_SIZE - 1);
	dst_pages = (char **)etr_perf->pages;
	src_offset = etr_buf->offset;
	to_copy = etr_buf->len;

	while (to_copy > 0) {
		/*
		 * In one iteration, we can copy minimum of :
		 *  1) what is available in the source buffer,
		 *  2) what is available in the source buffer, before it
		 *     wraps around.
		 *  3) what is available in the destination page.
		 * in one iteration.
		 */
		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
					     &src_buf);
		if (WARN_ON_ONCE(bytes <= 0))
			break;
		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));

		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);

		to_copy -= bytes;

		/* Move destination pointers */
		pg_offset += bytes;
		if (pg_offset == PAGE_SIZE) {
			pg_offset = 0;
			if (++pg_idx == etr_perf->nr_pages)
				pg_idx = 0;
		}

		/* Move source pointers */
		src_offset += bytes;
		if (src_offset >= etr_buf->size)
			src_offset -= etr_buf->size;
	}
}

/*
 * tmc_update_etr_buffer : Update the perf ring buffer with the
 * available trace data. We use software double buffering at the moment.
 *
 * TODO: Add support for reusing the perf ring buffer.
 */
static unsigned long
tmc_update_etr_buffer(struct coresight_device *csdev,
		      struct perf_output_handle *handle,
		      void *config)
{
	bool lost = false;
	unsigned long flags, size = 0;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
	struct etr_perf_buffer *etr_perf = config;
	struct etr_buf *etr_buf = etr_perf->etr_buf;

	spin_lock_irqsave(&drvdata->spinlock, flags);
	if (WARN_ON(drvdata->perf_data != etr_perf)) {
		lost = true;
		spin_unlock_irqrestore(&drvdata->spinlock, flags);
		goto out;
	}

	CS_UNLOCK(drvdata->base);

	tmc_flush_and_stop(drvdata);
	tmc_sync_etr_buf(drvdata);

	CS_LOCK(drvdata->base);
	/* Reset perf specific data */
	drvdata->perf_data = NULL;
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

	size = etr_buf->len;
	tmc_etr_sync_perf_buffer(etr_perf);

	/*
	 * Update handle->head in snapshot mode. Also update the size to the
	 * hardware buffer size if there was an overflow.
	 */
	if (etr_perf->snapshot) {
		handle->head += size;
		if (etr_buf->full)
			size = etr_buf->size;
	}

	lost |= etr_buf->full;
out:
	if (lost)
		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
	return size;
}

1347
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1348
{
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	int rc = 0;
	unsigned long flags;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
	struct perf_output_handle *handle = data;
	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);

	spin_lock_irqsave(&drvdata->spinlock, flags);
	/*
	 * There can be only one writer per sink in perf mode. If the sink
	 * is already open in SYSFS mode, we can't use it.
	 */
	if (drvdata->mode != CS_MODE_DISABLED || WARN_ON(drvdata->perf_data)) {
		rc = -EBUSY;
		goto unlock_out;
	}

	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
		rc = -EINVAL;
		goto unlock_out;
	}

	etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
	drvdata->perf_data = etr_perf;
1372 1373 1374
	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
	if (!rc)
		drvdata->mode = CS_MODE_PERF;
1375 1376 1377 1378

unlock_out:
	spin_unlock_irqrestore(&drvdata->spinlock, flags);
	return rc;
1379 1380
}

1381 1382
static int tmc_enable_etr_sink(struct coresight_device *csdev,
			       u32 mode, void *data)
1383 1384 1385
{
	switch (mode) {
	case CS_MODE_SYSFS:
1386
		return tmc_enable_etr_sink_sysfs(csdev);
1387
	case CS_MODE_PERF:
1388
		return tmc_enable_etr_sink_perf(csdev, data);
1389 1390 1391 1392 1393 1394
	}

	/* We shouldn't be here */
	return -EINVAL;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void tmc_disable_etr_sink(struct coresight_device *csdev)
{
	unsigned long flags;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

	spin_lock_irqsave(&drvdata->spinlock, flags);
	if (drvdata->reading) {
		spin_unlock_irqrestore(&drvdata->spinlock, flags);
		return;
	}

1406
	/* Disable the TMC only if it needs to */
1407
	if (drvdata->mode != CS_MODE_DISABLED) {
1408
		tmc_etr_disable_hw(drvdata);
1409 1410
		drvdata->mode = CS_MODE_DISABLED;
	}
1411

1412 1413
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

1414
	dev_dbg(drvdata->dev, "TMC-ETR disabled\n");
1415 1416 1417 1418 1419
}

static const struct coresight_ops_sink tmc_etr_sink_ops = {
	.enable		= tmc_enable_etr_sink,
	.disable	= tmc_disable_etr_sink,
1420 1421 1422
	.alloc_buffer	= tmc_alloc_etr_buffer,
	.update_buffer	= tmc_update_etr_buffer,
	.free_buffer	= tmc_free_etr_buffer,
1423 1424 1425 1426 1427
};

const struct coresight_ops tmc_etr_cs_ops = {
	.sink_ops	= &tmc_etr_sink_ops,
};
1428 1429 1430

int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
{
1431
	int ret = 0;
1432 1433 1434 1435 1436 1437 1438
	unsigned long flags;

	/* config types are set a boot time and never change */
	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
		return -EINVAL;

	spin_lock_irqsave(&drvdata->spinlock, flags);
1439 1440 1441 1442
	if (drvdata->reading) {
		ret = -EBUSY;
		goto out;
	}
1443

1444 1445 1446 1447 1448
	/*
	 * We can safely allow reads even if the ETR is operating in PERF mode,
	 * since the sysfs session is captured in mode specific data.
	 * If drvdata::sysfs_data is NULL the trace data has been read already.
	 */
1449
	if (!drvdata->sysfs_buf) {
1450 1451 1452 1453
		ret = -EINVAL;
		goto out;
	}

1454
	/* Disable the TMC if we are trying to read from a running session. */
1455
	if (drvdata->mode == CS_MODE_SYSFS)
1456
		__tmc_etr_disable_hw(drvdata);
1457 1458

	drvdata->reading = true;
1459
out:
1460 1461
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

1462
	return ret;
1463 1464 1465 1466 1467
}

int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
{
	unsigned long flags;
1468
	struct etr_buf *sysfs_buf = NULL;
1469 1470 1471 1472 1473 1474 1475 1476

	/* config types are set a boot time and never change */
	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
		return -EINVAL;

	spin_lock_irqsave(&drvdata->spinlock, flags);

	/* RE-enable the TMC if need be */
1477
	if (drvdata->mode == CS_MODE_SYSFS) {
1478 1479
		/*
		 * The trace run will continue with the same allocated trace
1480 1481
		 * buffer. Since the tracer is still enabled drvdata::buf can't
		 * be NULL.
1482
		 */
1483
		__tmc_etr_enable_hw(drvdata);
1484 1485 1486 1487 1488
	} else {
		/*
		 * The ETR is not tracing and the buffer was just read.
		 * As such prepare to free the trace buffer.
		 */
1489 1490
		sysfs_buf = drvdata->sysfs_buf;
		drvdata->sysfs_buf = NULL;
1491
	}
1492 1493 1494 1495

	drvdata->reading = false;
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

1496
	/* Free allocated memory out side of the spinlock */
1497 1498
	if (sysfs_buf)
		tmc_etr_free_sysfs_buf(sysfs_buf);
1499

1500 1501
	return 0;
}