coresight-tmc-etr.c 23.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright(C) 2016 Linaro Limited. All rights reserved.
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/coresight.h>
8
#include <linux/dma-mapping.h>
9
#include <linux/slab.h>
10 11 12
#include "coresight-priv.h"
#include "coresight-tmc.h"

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
 * contain more than one SG buffer and tables.
 *
 * A table entry has the following format:
 *
 * ---Bit31------------Bit4-------Bit1-----Bit0--
 * |     Address[39:12]    | SBZ |  Entry Type  |
 * ----------------------------------------------
 *
 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
 *	    always zero.
 *
 * Entry type:
 *	b00 - Reserved.
 *	b01 - Last entry in the tables, points to 4K page buffer.
 *	b10 - Normal entry, points to 4K page buffer.
 *	b11 - Link. The address points to the base of next table.
 */

typedef u32 sgte_t;

#define ETR_SG_PAGE_SHIFT		12
#define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
#define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
#define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))

#define ETR_SG_ET_MASK			0x3
#define ETR_SG_ET_LAST			0x1
#define ETR_SG_ET_NORMAL		0x2
#define ETR_SG_ET_LINK			0x3

#define ETR_SG_ADDR_SHIFT		4

#define ETR_SG_ENTRY(addr, type) \
	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
		 (type & ETR_SG_ET_MASK))

#define ETR_SG_ADDR(entry) \
	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
#define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)

/*
 * struct etr_sg_table : ETR SG Table
 * @sg_table:		Generic SG Table holding the data/table pages.
 * @hwaddr:		hwaddress used by the TMC, which is the base
 *			address of the table.
 */
struct etr_sg_table {
	struct tmc_sg_table	*sg_table;
	dma_addr_t		hwaddr;
};

/*
 * tmc_etr_sg_table_entries: Total number of table entries required to map
 * @nr_pages system pages.
 *
 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 * with the last entry pointing to another page of table entries.
 * If we spill over to a new page for mapping 1 entry, we could as
 * well replace the link entry of the previous page with the last entry.
 */
static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)
{
	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
	/*
	 * If we spill over to a new page for 1 entry, we could as well
	 * make it the LAST entry in the previous page, skipping the Link
	 * address.
	 */
	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
		nr_sglinks--;
	return nr_sgpages + nr_sglinks;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 * and map the device address @addr to an offset within the virtual
 * contiguous buffer.
 */
static long
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
{
	int i;
	dma_addr_t page_start;

	for (i = 0; i < tmc_pages->nr_pages; i++) {
		page_start = tmc_pages->daddrs[i];
		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
			return i * PAGE_SIZE + (addr - page_start);
	}

	return -EINVAL;
}

/*
 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 * If the pages were not allocated in tmc_pages_alloc(), we would
 * simply drop the refcount.
 */
static void tmc_pages_free(struct tmc_pages *tmc_pages,
			   struct device *dev, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < tmc_pages->nr_pages; i++) {
		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
			dma_unmap_page(dev, tmc_pages->daddrs[i],
					 PAGE_SIZE, dir);
		if (tmc_pages->pages && tmc_pages->pages[i])
			__free_page(tmc_pages->pages[i]);
	}

	kfree(tmc_pages->pages);
	kfree(tmc_pages->daddrs);
	tmc_pages->pages = NULL;
	tmc_pages->daddrs = NULL;
	tmc_pages->nr_pages = 0;
}

/*
 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 * If @pages is not NULL, the list of page virtual addresses are
 * used as the data pages. The pages are then dma_map'ed for @dev
 * with dma_direction @dir.
 *
 * Returns 0 upon success, else the error number.
 */
static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
			   struct device *dev, int node,
			   enum dma_data_direction dir, void **pages)
{
	int i, nr_pages;
	dma_addr_t paddr;
	struct page *page;

	nr_pages = tmc_pages->nr_pages;
	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
					 GFP_KERNEL);
	if (!tmc_pages->daddrs)
		return -ENOMEM;
	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
					 GFP_KERNEL);
	if (!tmc_pages->pages) {
		kfree(tmc_pages->daddrs);
		tmc_pages->daddrs = NULL;
		return -ENOMEM;
	}

	for (i = 0; i < nr_pages; i++) {
		if (pages && pages[i]) {
			page = virt_to_page(pages[i]);
			/* Hold a refcount on the page */
			get_page(page);
		} else {
			page = alloc_pages_node(node,
						GFP_KERNEL | __GFP_ZERO, 0);
		}
		paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
		if (dma_mapping_error(dev, paddr))
			goto err;
		tmc_pages->daddrs[i] = paddr;
		tmc_pages->pages[i] = page;
	}
	return 0;
err:
	tmc_pages_free(tmc_pages, dev, dir);
	return -ENOMEM;
}

static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
{
	return tmc_pages_get_offset(&sg_table->data_pages, addr);
}

static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
{
	if (sg_table->table_vaddr)
		vunmap(sg_table->table_vaddr);
	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
}

static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
{
	if (sg_table->data_vaddr)
		vunmap(sg_table->data_vaddr);
	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
}

void tmc_free_sg_table(struct tmc_sg_table *sg_table)
{
	tmc_free_table_pages(sg_table);
	tmc_free_data_pages(sg_table);
}

/*
 * Alloc pages for the table. Since this will be used by the device,
 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 * rather than the CPU node).
 */
static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
{
	int rc;
	struct tmc_pages *table_pages = &sg_table->table_pages;

	rc = tmc_pages_alloc(table_pages, sg_table->dev,
			     dev_to_node(sg_table->dev),
			     DMA_TO_DEVICE, NULL);
	if (rc)
		return rc;
	sg_table->table_vaddr = vmap(table_pages->pages,
				     table_pages->nr_pages,
				     VM_MAP,
				     PAGE_KERNEL);
	if (!sg_table->table_vaddr)
		rc = -ENOMEM;
	else
		sg_table->table_daddr = table_pages->daddrs[0];
	return rc;
}

static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
{
	int rc;

	/* Allocate data pages on the node requested by the caller */
	rc = tmc_pages_alloc(&sg_table->data_pages,
			     sg_table->dev, sg_table->node,
			     DMA_FROM_DEVICE, pages);
	if (!rc) {
		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
					    sg_table->data_pages.nr_pages,
					    VM_MAP,
					    PAGE_KERNEL);
		if (!sg_table->data_vaddr)
			rc = -ENOMEM;
	}
	return rc;
}

/*
 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 * and data buffers. TMC writes to the data buffers and reads from the SG
 * Table pages.
 *
 * @dev		- Device to which page should be DMA mapped.
 * @node	- Numa node for mem allocations
 * @nr_tpages	- Number of pages for the table entries.
 * @nr_dpages	- Number of pages for Data buffer.
 * @pages	- Optional list of virtual address of pages.
 */
struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
					int node,
					int nr_tpages,
					int nr_dpages,
					void **pages)
{
	long rc;
	struct tmc_sg_table *sg_table;

	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
	if (!sg_table)
		return ERR_PTR(-ENOMEM);
	sg_table->data_pages.nr_pages = nr_dpages;
	sg_table->table_pages.nr_pages = nr_tpages;
	sg_table->node = node;
	sg_table->dev = dev;

	rc  = tmc_alloc_data_pages(sg_table, pages);
	if (!rc)
		rc = tmc_alloc_table_pages(sg_table);
	if (rc) {
		tmc_free_sg_table(sg_table);
		kfree(sg_table);
		return ERR_PTR(rc);
	}

	return sg_table;
}

/*
 * tmc_sg_table_sync_data_range: Sync the data buffer written
 * by the device from @offset upto a @size bytes.
 */
void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
				  u64 offset, u64 size)
{
	int i, index, start;
	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
	struct device *dev = table->dev;
	struct tmc_pages *data = &table->data_pages;

	start = offset >> PAGE_SHIFT;
	for (i = start; i < (start + npages); i++) {
		index = i % data->nr_pages;
		dma_sync_single_for_cpu(dev, data->daddrs[index],
					PAGE_SIZE, DMA_FROM_DEVICE);
	}
}

/* tmc_sg_sync_table: Sync the page table */
void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
{
	int i;
	struct device *dev = sg_table->dev;
	struct tmc_pages *table_pages = &sg_table->table_pages;

	for (i = 0; i < table_pages->nr_pages; i++)
		dma_sync_single_for_device(dev, table_pages->daddrs[i],
					   PAGE_SIZE, DMA_TO_DEVICE);
}

/*
 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 * in the SG buffer. The @bufpp is updated to point to the buffer.
 * Returns :
 *	the length of linear data available at @offset.
 *	or
 *	<= 0 if no data is available.
 */
ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
			      u64 offset, size_t len, char **bufpp)
{
	size_t size;
	int pg_idx = offset >> PAGE_SHIFT;
	int pg_offset = offset & (PAGE_SIZE - 1);
	struct tmc_pages *data_pages = &sg_table->data_pages;

	size = tmc_sg_table_buf_size(sg_table);
	if (offset >= size)
		return -EINVAL;

	/* Make sure we don't go beyond the end */
	len = (len < (size - offset)) ? len : size - offset;
	/* Respect the page boundaries */
	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
	if (len > 0)
		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
	return len;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
#ifdef ETR_SG_DEBUG
/* Map a dma address to virtual address */
static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
		      dma_addr_t addr, bool table)
{
	long offset;
	unsigned long base;
	struct tmc_pages *tmc_pages;

	if (table) {
		tmc_pages = &sg_table->table_pages;
		base = (unsigned long)sg_table->table_vaddr;
	} else {
		tmc_pages = &sg_table->data_pages;
		base = (unsigned long)sg_table->data_vaddr;
	}

	offset = tmc_pages_get_offset(tmc_pages, addr);
	if (offset < 0)
		return 0;
	return base + offset;
}

/* Dump the given sg_table */
static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
{
	sgte_t *ptr;
	int i = 0;
	dma_addr_t addr;
	struct tmc_sg_table *sg_table = etr_table->sg_table;

	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
					      etr_table->hwaddr, true);
	while (ptr) {
		addr = ETR_SG_ADDR(*ptr);
		switch (ETR_SG_ET(*ptr)) {
		case ETR_SG_ET_NORMAL:
			dev_dbg(sg_table->dev,
				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
			ptr++;
			break;
		case ETR_SG_ET_LINK:
			dev_dbg(sg_table->dev,
				"%05d: *** %p\t:{L} 0x%llx ***\n",
				 i, ptr, addr);
			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
							      addr, true);
			break;
		case ETR_SG_ET_LAST:
			dev_dbg(sg_table->dev,
				"%05d: ### %p\t:[L] 0x%llx ###\n",
				 i, ptr, addr);
			return;
		default:
			dev_dbg(sg_table->dev,
				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
				 i, ptr, addr);
			return;
		}
		i++;
	}
	dev_dbg(sg_table->dev, "******* End of Table *****\n");
}
#else
static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
#endif

/*
 * Populate the SG Table page table entries from table/data
 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 * So does a Table page. So we keep track of indices of the tables
 * in each system page and move the pointers accordingly.
 */
#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
{
	dma_addr_t paddr;
	int i, type, nr_entries;
	int tpidx = 0; /* index to the current system table_page */
	int sgtidx = 0;	/* index to the sg_table within the current syspage */
	int sgtentry = 0; /* the entry within the sg_table */
	int dpidx = 0; /* index to the current system data_page */
	int spidx = 0; /* index to the SG page within the current data page */
	sgte_t *ptr; /* pointer to the table entry to fill */
	struct tmc_sg_table *sg_table = etr_table->sg_table;
	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;

	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
	/*
	 * Use the contiguous virtual address of the table to update entries.
	 */
	ptr = sg_table->table_vaddr;
	/*
	 * Fill all the entries, except the last entry to avoid special
	 * checks within the loop.
	 */
	for (i = 0; i < nr_entries - 1; i++) {
		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
			/*
			 * Last entry in a sg_table page is a link address to
			 * the next table page. If this sg_table is the last
			 * one in the system page, it links to the first
			 * sg_table in the next system page. Otherwise, it
			 * links to the next sg_table page within the system
			 * page.
			 */
			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
				paddr = table_daddrs[tpidx + 1];
			} else {
				paddr = table_daddrs[tpidx] +
					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
			}
			type = ETR_SG_ET_LINK;
		} else {
			/*
			 * Update the indices to the data_pages to point to the
			 * next sg_page in the data buffer.
			 */
			type = ETR_SG_ET_NORMAL;
			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
				dpidx++;
		}
		*ptr++ = ETR_SG_ENTRY(paddr, type);
		/*
		 * Move to the next table pointer, moving the table page index
		 * if necessary
		 */
		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
				tpidx++;
		}
	}

	/* Set up the last entry, which is always a data pointer */
	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
}

/*
 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 * populate the table.
 *
 * @dev		- Device pointer for the TMC
 * @node	- NUMA node where the memory should be allocated
 * @size	- Total size of the data buffer
 * @pages	- Optional list of page virtual address
 */
static struct etr_sg_table __maybe_unused *
tmc_init_etr_sg_table(struct device *dev, int node,
		      unsigned long size, void **pages)
{
	int nr_entries, nr_tpages;
	int nr_dpages = size >> PAGE_SHIFT;
	struct tmc_sg_table *sg_table;
	struct etr_sg_table *etr_table;

	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
	if (!etr_table)
		return ERR_PTR(-ENOMEM);
	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);

	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
	if (IS_ERR(sg_table)) {
		kfree(etr_table);
		return ERR_PTR(PTR_ERR(sg_table));
	}

	etr_table->sg_table = sg_table;
	/* TMC should use table base address for DBA */
	etr_table->hwaddr = sg_table->table_daddr;
	tmc_etr_sg_table_populate(etr_table);
	/* Sync the table pages for the HW */
	tmc_sg_table_sync_table(sg_table);
	tmc_etr_sg_table_dump(etr_table);

	return etr_table;
}

543
static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
544
{
545
	u32 axictl, sts;
546 547 548 549 550 551 552 553 554 555

	CS_UNLOCK(drvdata->base);

	/* Wait for TMCSReady bit to be set */
	tmc_wait_for_tmcready(drvdata);

	writel_relaxed(drvdata->size / 4, drvdata->base + TMC_RSZ);
	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);

	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
556 557 558
	axictl &= ~TMC_AXICTL_CLEAR_MASK;
	axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
	axictl |= TMC_AXICTL_AXCACHE_OS;
559 560 561 562 563 564

	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
		axictl |= TMC_AXICTL_ARCACHE_OS;
	}

565
	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
566
	tmc_write_dba(drvdata, drvdata->paddr);
567 568 569 570 571 572 573 574 575 576 577
	/*
	 * If the TMC pointers must be programmed before the session,
	 * we have to set it properly (i.e, RRP/RWP to base address and
	 * STS to "not full").
	 */
	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
		tmc_write_rrp(drvdata, drvdata->paddr);
		tmc_write_rwp(drvdata, drvdata->paddr);
		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
		writel_relaxed(sts, drvdata->base + TMC_STS);
	}
578 579 580 581 582 583 584 585 586 587 588

	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
		       TMC_FFCR_TRIGON_TRIGIN,
		       drvdata->base + TMC_FFCR);
	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
	tmc_enable_hw(drvdata);

	CS_LOCK(drvdata->base);
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/*
 * Return the available trace data in the buffer @pos, with a maximum
 * limit of @len, also updating the @bufpp on where to find it.
 */
ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
				loff_t pos, size_t len, char **bufpp)
{
	ssize_t actual = len;
	char *bufp = drvdata->buf + pos;
	char *bufend = (char *)(drvdata->vaddr + drvdata->size);

	/* Adjust the len to available size @pos */
	if (pos + actual > drvdata->len)
		actual = drvdata->len - pos;

	if (actual <= 0)
		return actual;

	/*
	 * Since we use a circular buffer, with trace data starting
	 * @drvdata->buf, possibly anywhere in the buffer @drvdata->vaddr,
	 * wrap the current @pos to within the buffer.
	 */
	if (bufp >= bufend)
		bufp -= drvdata->size;
	/*
	 * For simplicity, avoid copying over a wrapped around buffer.
	 */
	if ((bufp + actual) > bufend)
		actual = bufend - bufp;
	*bufpp = bufp;
	return actual;
}

623 624
static void tmc_etr_dump_hw(struct tmc_drvdata *drvdata)
{
625 626
	u32 val;
	u64 rwp;
627

628
	rwp = tmc_read_rwp(drvdata);
629 630
	val = readl_relaxed(drvdata->base + TMC_STS);

631 632 633 634
	/*
	 * Adjust the buffer to point to the beginning of the trace data
	 * and update the available trace data.
	 */
635
	if (val & TMC_STS_FULL) {
636
		drvdata->buf = drvdata->vaddr + rwp - drvdata->paddr;
637
		drvdata->len = drvdata->size;
638
		coresight_insert_barrier_packet(drvdata->buf);
639
	} else {
640
		drvdata->buf = drvdata->vaddr;
641 642
		drvdata->len = rwp - drvdata->paddr;
	}
643 644
}

645
static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
646 647 648 649
{
	CS_UNLOCK(drvdata->base);

	tmc_flush_and_stop(drvdata);
650 651 652 653
	/*
	 * When operating in sysFS mode the content of the buffer needs to be
	 * read before the TMC is disabled.
	 */
654
	if (drvdata->mode == CS_MODE_SYSFS)
655
		tmc_etr_dump_hw(drvdata);
656 657 658 659 660
	tmc_disable_hw(drvdata);

	CS_LOCK(drvdata->base);
}

661
static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
662
{
663 664
	int ret = 0;
	bool used = false;
665
	unsigned long flags;
666
	void __iomem *vaddr = NULL;
667
	dma_addr_t paddr = 0;
668 669
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

670 671 672 673
	/*
	 * If we don't have a buffer release the lock and allocate memory.
	 * Otherwise keep the lock and move along.
	 */
674
	spin_lock_irqsave(&drvdata->spinlock, flags);
675
	if (!drvdata->vaddr) {
676
		spin_unlock_irqrestore(&drvdata->spinlock, flags);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

		/*
		 * Contiguous  memory can't be allocated while a spinlock is
		 * held.  As such allocate memory here and free it if a buffer
		 * has already been allocated (from a previous session).
		 */
		vaddr = dma_alloc_coherent(drvdata->dev, drvdata->size,
					   &paddr, GFP_KERNEL);
		if (!vaddr)
			return -ENOMEM;

		/* Let's try again */
		spin_lock_irqsave(&drvdata->spinlock, flags);
	}

	if (drvdata->reading) {
		ret = -EBUSY;
		goto out;
	}

697 698 699 700 701
	/*
	 * In sysFS mode we can have multiple writers per sink.  Since this
	 * sink is already enabled no memory is needed and the HW need not be
	 * touched.
	 */
702
	if (drvdata->mode == CS_MODE_SYSFS)
703 704
		goto out;

705
	/*
706
	 * If drvdata::vaddr == NULL, use the memory allocated above.
707 708 709
	 * Otherwise a buffer still exists from a previous session, so
	 * simply use that.
	 */
710
	if (drvdata->vaddr == NULL) {
711 712 713 714
		used = true;
		drvdata->vaddr = vaddr;
		drvdata->paddr = paddr;
		drvdata->buf = drvdata->vaddr;
715 716
	}

717
	drvdata->mode = CS_MODE_SYSFS;
718
	tmc_etr_enable_hw(drvdata);
719
out:
720 721
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

722 723 724 725 726 727 728 729
	/* Free memory outside the spinlock if need be */
	if (!used && vaddr)
		dma_free_coherent(drvdata->dev, drvdata->size, vaddr, paddr);

	if (!ret)
		dev_info(drvdata->dev, "TMC-ETR enabled\n");

	return ret;
730 731
}

732
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev)
733
{
734 735
	/* We don't support perf mode yet ! */
	return -EINVAL;
736 737 738 739 740 741
}

static int tmc_enable_etr_sink(struct coresight_device *csdev, u32 mode)
{
	switch (mode) {
	case CS_MODE_SYSFS:
742
		return tmc_enable_etr_sink_sysfs(csdev);
743
	case CS_MODE_PERF:
744
		return tmc_enable_etr_sink_perf(csdev);
745 746 747 748 749 750
	}

	/* We shouldn't be here */
	return -EINVAL;
}

751 752 753 754 755 756 757 758 759 760 761
static void tmc_disable_etr_sink(struct coresight_device *csdev)
{
	unsigned long flags;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

	spin_lock_irqsave(&drvdata->spinlock, flags);
	if (drvdata->reading) {
		spin_unlock_irqrestore(&drvdata->spinlock, flags);
		return;
	}

762
	/* Disable the TMC only if it needs to */
763
	if (drvdata->mode != CS_MODE_DISABLED) {
764
		tmc_etr_disable_hw(drvdata);
765 766
		drvdata->mode = CS_MODE_DISABLED;
	}
767

768 769 770 771 772 773 774 775 776 777 778 779 780
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

	dev_info(drvdata->dev, "TMC-ETR disabled\n");
}

static const struct coresight_ops_sink tmc_etr_sink_ops = {
	.enable		= tmc_enable_etr_sink,
	.disable	= tmc_disable_etr_sink,
};

const struct coresight_ops tmc_etr_cs_ops = {
	.sink_ops	= &tmc_etr_sink_ops,
};
781 782 783

int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
{
784
	int ret = 0;
785 786 787 788 789 790 791
	unsigned long flags;

	/* config types are set a boot time and never change */
	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
		return -EINVAL;

	spin_lock_irqsave(&drvdata->spinlock, flags);
792 793 794 795
	if (drvdata->reading) {
		ret = -EBUSY;
		goto out;
	}
796

797
	/* Don't interfere if operated from Perf */
798
	if (drvdata->mode == CS_MODE_PERF) {
799 800 801 802
		ret = -EINVAL;
		goto out;
	}

803 804 805 806 807 808
	/* If drvdata::buf is NULL the trace data has been read already */
	if (drvdata->buf == NULL) {
		ret = -EINVAL;
		goto out;
	}

809
	/* Disable the TMC if need be */
810
	if (drvdata->mode == CS_MODE_SYSFS)
811 812 813
		tmc_etr_disable_hw(drvdata);

	drvdata->reading = true;
814
out:
815 816
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

817
	return ret;
818 819 820 821 822
}

int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
{
	unsigned long flags;
823 824
	dma_addr_t paddr;
	void __iomem *vaddr = NULL;
825 826 827 828 829 830 831 832

	/* config types are set a boot time and never change */
	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
		return -EINVAL;

	spin_lock_irqsave(&drvdata->spinlock, flags);

	/* RE-enable the TMC if need be */
833
	if (drvdata->mode == CS_MODE_SYSFS) {
834 835
		/*
		 * The trace run will continue with the same allocated trace
836 837
		 * buffer. Since the tracer is still enabled drvdata::buf can't
		 * be NULL.
838
		 */
839
		tmc_etr_enable_hw(drvdata);
840 841 842 843 844 845 846
	} else {
		/*
		 * The ETR is not tracing and the buffer was just read.
		 * As such prepare to free the trace buffer.
		 */
		vaddr = drvdata->vaddr;
		paddr = drvdata->paddr;
847
		drvdata->buf = drvdata->vaddr = NULL;
848
	}
849 850 851 852

	drvdata->reading = false;
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

853 854 855 856
	/* Free allocated memory out side of the spinlock */
	if (vaddr)
		dma_free_coherent(drvdata->dev, drvdata->size, vaddr, paddr);

857 858
	return 0;
}