bpf_jit_comp.c 30.8 KB
Newer Older
1 2
/* bpf_jit_comp.c : BPF JIT compiler
 *
3
 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4
 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */
#include <linux/netdevice.h>
#include <linux/filter.h>
13
#include <linux/if_vlan.h>
14
#include <asm/cacheflush.h>
L
Laura Abbott 已提交
15
#include <asm/set_memory.h>
16
#include <linux/bpf.h>
17 18 19 20 21 22

int bpf_jit_enable __read_mostly;

/*
 * assembly code in arch/x86/net/bpf_jit.S
 */
23
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
24
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
25
extern u8 sk_load_byte_positive_offset[];
26
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
27
extern u8 sk_load_byte_negative_offset[];
28

29
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
30 31 32 33 34 35 36 37 38 39 40 41
{
	if (len == 1)
		*ptr = bytes;
	else if (len == 2)
		*(u16 *)ptr = bytes;
	else {
		*(u32 *)ptr = bytes;
		barrier();
	}
	return ptr + len;
}

42 43
#define EMIT(bytes, len) \
	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
44 45 46 47 48

#define EMIT1(b1)		EMIT(b1, 1)
#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
49 50 51 52 53 54 55 56
#define EMIT1_off32(b1, off) \
	do {EMIT1(b1); EMIT(off, 4); } while (0)
#define EMIT2_off32(b1, b2, off) \
	do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
#define EMIT3_off32(b1, b2, b3, off) \
	do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
#define EMIT4_off32(b1, b2, b3, b4, off) \
	do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
57

58
static bool is_imm8(int value)
59 60 61 62
{
	return value <= 127 && value >= -128;
}

63
static bool is_simm32(s64 value)
64
{
65
	return value == (s64) (s32) value;
66 67
}

68 69 70 71
/* mov dst, src */
#define EMIT_mov(DST, SRC) \
	do {if (DST != SRC) \
		EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	} while (0)

static int bpf_size_to_x86_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 4; /* imm32 */
	else
		return 0;
}
87 88 89 90 91 92 93 94 95 96

/* list of x86 cond jumps opcodes (. + s8)
 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 */
#define X86_JB  0x72
#define X86_JAE 0x73
#define X86_JE  0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA  0x77
97 98
#define X86_JGE 0x7D
#define X86_JG  0x7F
99

100
static void bpf_flush_icache(void *start, void *end)
101 102 103 104 105 106 107 108 109
{
	mm_segment_t old_fs = get_fs();

	set_fs(KERNEL_DS);
	smp_wmb();
	flush_icache_range((unsigned long)start, (unsigned long)end);
	set_fs(old_fs);
}

110 111
#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
112

113
/* pick a register outside of BPF range for JIT internal work */
114
#define AUX_REG (MAX_BPF_JIT_REG + 1)
115

116 117 118 119 120 121 122 123
/* The following table maps BPF registers to x64 registers.
 *
 * x64 register r12 is unused, since if used as base address
 * register in load/store instructions, it always needs an
 * extra byte of encoding and is callee saved.
 *
 *  r9 caches skb->len - skb->data_len
 * r10 caches skb->data, and used for blinding (if enabled)
124 125 126 127 128 129 130 131 132 133 134 135 136
 */
static const int reg2hex[] = {
	[BPF_REG_0] = 0,  /* rax */
	[BPF_REG_1] = 7,  /* rdi */
	[BPF_REG_2] = 6,  /* rsi */
	[BPF_REG_3] = 2,  /* rdx */
	[BPF_REG_4] = 1,  /* rcx */
	[BPF_REG_5] = 0,  /* r8 */
	[BPF_REG_6] = 3,  /* rbx callee saved */
	[BPF_REG_7] = 5,  /* r13 callee saved */
	[BPF_REG_8] = 6,  /* r14 callee saved */
	[BPF_REG_9] = 7,  /* r15 callee saved */
	[BPF_REG_FP] = 5, /* rbp readonly */
137
	[BPF_REG_AX] = 2, /* r10 temp register */
138 139 140 141 142 143 144
	[AUX_REG] = 3,    /* r11 temp register */
};

/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
 * which need extra byte of encoding.
 * rax,rcx,...,rbp have simpler encoding
 */
145
static bool is_ereg(u32 reg)
146
{
147 148 149 150
	return (1 << reg) & (BIT(BPF_REG_5) |
			     BIT(AUX_REG) |
			     BIT(BPF_REG_7) |
			     BIT(BPF_REG_8) |
151 152
			     BIT(BPF_REG_9) |
			     BIT(BPF_REG_AX));
153 154 155
}

/* add modifiers if 'reg' maps to x64 registers r8..r15 */
156
static u8 add_1mod(u8 byte, u32 reg)
157 158 159 160 161 162
{
	if (is_ereg(reg))
		byte |= 1;
	return byte;
}

163
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
164 165 166 167 168 169 170 171
{
	if (is_ereg(r1))
		byte |= 1;
	if (is_ereg(r2))
		byte |= 4;
	return byte;
}

172
/* encode 'dst_reg' register into x64 opcode 'byte' */
173
static u8 add_1reg(u8 byte, u32 dst_reg)
174
{
175
	return byte + reg2hex[dst_reg];
176 177
}

178
/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
179
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
180
{
181
	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
182 183
}

184 185 186 187 188 189
static void jit_fill_hole(void *area, unsigned int size)
{
	/* fill whole space with int3 instructions */
	memset(area, 0xcc, size);
}

190
struct jit_context {
191
	int cleanup_addr; /* epilogue code offset */
192
	bool seen_ld_abs;
193
	bool seen_ax_reg;
194 195
};

196 197 198 199
/* maximum number of bytes emitted while JITing one eBPF insn */
#define BPF_MAX_INSN_SIZE	128
#define BPF_INSN_SAFETY		64

200 201
#define AUX_STACK_SPACE \
	(32 /* space for rbx, r13, r14, r15 */ + \
202 203
	 8 /* space for skb_copy_bits() buffer */)

204
#define PROLOGUE_SIZE 37
205 206 207 208 209

/* emit x64 prologue code for BPF program and check it's size.
 * bpf_tail_call helper will skip it while jumping into another program
 */
static void emit_prologue(u8 **pprog)
210
{
211 212
	u8 *prog = *pprog;
	int cnt = 0;
213

214 215
	EMIT1(0x55); /* push rbp */
	EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
216

217 218 219 220 221
	/* sub rsp, MAX_BPF_STACK + AUX_STACK_SPACE */
	EMIT3_off32(0x48, 0x81, 0xEC, MAX_BPF_STACK + AUX_STACK_SPACE);

	/* sub rbp, AUX_STACK_SPACE */
	EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE);
222 223 224

	/* all classic BPF filters use R6(rbx) save it */

225 226
	/* mov qword ptr [rbp+0],rbx */
	EMIT4(0x48, 0x89, 0x5D, 0);
227

228
	/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
229 230 231 232 233 234 235
	 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
	 * R8(r14). R9(r15) spill could be made conditional, but there is only
	 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
	 * The overhead of extra spill is negligible for any filter other
	 * than synthetic ones. Therefore not worth adding complexity.
	 */

236 237 238 239 240 241
	/* mov qword ptr [rbp+8],r13 */
	EMIT4(0x4C, 0x89, 0x6D, 8);
	/* mov qword ptr [rbp+16],r14 */
	EMIT4(0x4C, 0x89, 0x75, 16);
	/* mov qword ptr [rbp+24],r15 */
	EMIT4(0x4C, 0x89, 0x7D, 24);
242

243 244 245 246 247
	/* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
	 * we need to reset the counter to 0. It's done in two instructions,
	 * resetting rax register to 0 (xor on eax gets 0 extended), and
	 * moving it to the counter location.
	 */
248

249 250
	/* xor eax, eax */
	EMIT2(0x31, 0xc0);
251 252
	/* mov qword ptr [rbp+32], rax */
	EMIT4(0x48, 0x89, 0x45, 32);
253 254 255 256 257 258 259 260 261 262 263

	BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
	*pprog = prog;
}

/* generate the following code:
 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 *   if (index >= array->map.max_entries)
 *     goto out;
 *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
 *     goto out;
264
 *   prog = array->ptrs[index];
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
 *   if (prog == NULL)
 *     goto out;
 *   goto *(prog->bpf_func + prologue_size);
 * out:
 */
static void emit_bpf_tail_call(u8 **pprog)
{
	u8 *prog = *pprog;
	int label1, label2, label3;
	int cnt = 0;

	/* rdi - pointer to ctx
	 * rsi - pointer to bpf_array
	 * rdx - index in bpf_array
	 */

	/* if (index >= array->map.max_entries)
	 *   goto out;
	 */
	EMIT4(0x48, 0x8B, 0x46,                   /* mov rax, qword ptr [rsi + 16] */
	      offsetof(struct bpf_array, map.max_entries));
	EMIT3(0x48, 0x39, 0xD0);                  /* cmp rax, rdx */
287
#define OFFSET1 47 /* number of bytes to jump */
288 289 290 291 292 293
	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
	label1 = cnt;

	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
	 *   goto out;
	 */
294
	EMIT2_off32(0x8B, 0x85, 36);              /* mov eax, dword ptr [rbp + 36] */
295
	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
296
#define OFFSET2 36
297 298 299
	EMIT2(X86_JA, OFFSET2);                   /* ja out */
	label2 = cnt;
	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
300
	EMIT2_off32(0x89, 0x85, 36);              /* mov dword ptr [rbp + 36], eax */
301

302
	/* prog = array->ptrs[index]; */
303
	EMIT4_off32(0x48, 0x8D, 0x84, 0xD6,       /* lea rax, [rsi + rdx * 8 + offsetof(...)] */
304
		    offsetof(struct bpf_array, ptrs));
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	EMIT3(0x48, 0x8B, 0x00);                  /* mov rax, qword ptr [rax] */

	/* if (prog == NULL)
	 *   goto out;
	 */
	EMIT4(0x48, 0x83, 0xF8, 0x00);            /* cmp rax, 0 */
#define OFFSET3 10
	EMIT2(X86_JE, OFFSET3);                   /* je out */
	label3 = cnt;

	/* goto *(prog->bpf_func + prologue_size); */
	EMIT4(0x48, 0x8B, 0x40,                   /* mov rax, qword ptr [rax + 32] */
	      offsetof(struct bpf_prog, bpf_func));
	EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE);   /* add rax, prologue_size */

	/* now we're ready to jump into next BPF program
	 * rdi == ctx (1st arg)
	 * rax == prog->bpf_func + prologue_size
	 */
	EMIT2(0xFF, 0xE0);                        /* jmp rax */

	/* out: */
	BUILD_BUG_ON(cnt - label1 != OFFSET1);
	BUILD_BUG_ON(cnt - label2 != OFFSET2);
	BUILD_BUG_ON(cnt - label3 != OFFSET3);
	*pprog = prog;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

static void emit_load_skb_data_hlen(u8 **pprog)
{
	u8 *prog = *pprog;
	int cnt = 0;

	/* r9d = skb->len - skb->data_len (headlen)
	 * r10 = skb->data
	 */
	/* mov %r9d, off32(%rdi) */
	EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));

	/* sub %r9d, off32(%rdi) */
	EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));

	/* mov %r10, off32(%rdi) */
	EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
	*pprog = prog;
}

353 354 355 356 357 358
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
		  int oldproglen, struct jit_context *ctx)
{
	struct bpf_insn *insn = bpf_prog->insnsi;
	int insn_cnt = bpf_prog->len;
	bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
359
	bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
360 361 362 363 364 365 366 367
	bool seen_exit = false;
	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
	int i, cnt = 0;
	int proglen = 0;
	u8 *prog = temp;

	emit_prologue(&prog);

368 369
	if (seen_ld_abs)
		emit_load_skb_data_hlen(&prog);
370 371

	for (i = 0; i < insn_cnt; i++, insn++) {
372 373 374
		const s32 imm32 = insn->imm;
		u32 dst_reg = insn->dst_reg;
		u32 src_reg = insn->src_reg;
375 376 377
		u8 b1 = 0, b2 = 0, b3 = 0;
		s64 jmp_offset;
		u8 jmp_cond;
378
		bool reload_skb_data;
379 380 381
		int ilen;
		u8 *func;

382 383 384
		if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
			ctx->seen_ax_reg = seen_ax_reg = true;

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
		switch (insn->code) {
			/* ALU */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU64 | BPF_ADD | BPF_X:
		case BPF_ALU64 | BPF_SUB | BPF_X:
		case BPF_ALU64 | BPF_AND | BPF_X:
		case BPF_ALU64 | BPF_OR | BPF_X:
		case BPF_ALU64 | BPF_XOR | BPF_X:
			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b2 = 0x01; break;
			case BPF_SUB: b2 = 0x29; break;
			case BPF_AND: b2 = 0x21; break;
			case BPF_OR: b2 = 0x09; break;
			case BPF_XOR: b2 = 0x31; break;
403
			}
404
			if (BPF_CLASS(insn->code) == BPF_ALU64)
405 406 407 408
				EMIT1(add_2mod(0x48, dst_reg, src_reg));
			else if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
409
			break;
410

411
			/* mov dst, src */
412
		case BPF_ALU64 | BPF_MOV | BPF_X:
413
			EMIT_mov(dst_reg, src_reg);
414 415
			break;

416
			/* mov32 dst, src */
417
		case BPF_ALU | BPF_MOV | BPF_X:
418 419 420
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT1(add_2mod(0x40, dst_reg, src_reg));
			EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
421
			break;
422

423
			/* neg dst */
424 425 426
		case BPF_ALU | BPF_NEG:
		case BPF_ALU64 | BPF_NEG:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
427 428 429 430
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
431 432 433 434 435 436 437 438 439 440 441 442 443
			break;

		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU64 | BPF_ADD | BPF_K:
		case BPF_ALU64 | BPF_SUB | BPF_K:
		case BPF_ALU64 | BPF_AND | BPF_K:
		case BPF_ALU64 | BPF_OR | BPF_K:
		case BPF_ALU64 | BPF_XOR | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
444 445 446
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
447 448 449 450 451 452 453 454 455

			switch (BPF_OP(insn->code)) {
			case BPF_ADD: b3 = 0xC0; break;
			case BPF_SUB: b3 = 0xE8; break;
			case BPF_AND: b3 = 0xE0; break;
			case BPF_OR: b3 = 0xC8; break;
			case BPF_XOR: b3 = 0xF0; break;
			}

456 457
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
458
			else
459
				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
460 461 462 463 464 465 466
			break;

		case BPF_ALU64 | BPF_MOV | BPF_K:
			/* optimization: if imm32 is positive,
			 * use 'mov eax, imm32' (which zero-extends imm32)
			 * to save 2 bytes
			 */
467
			if (imm32 < 0) {
468
				/* 'mov rax, imm32' sign extends imm32 */
469
				b1 = add_1mod(0x48, dst_reg);
470 471
				b2 = 0xC7;
				b3 = 0xC0;
472
				EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
473
				break;
474 475 476
			}

		case BPF_ALU | BPF_MOV | BPF_K:
477 478 479 480 481 482 483 484 485 486 487 488
			/* optimization: if imm32 is zero, use 'xor <dst>,<dst>'
			 * to save 3 bytes.
			 */
			if (imm32 == 0) {
				if (is_ereg(dst_reg))
					EMIT1(add_2mod(0x40, dst_reg, dst_reg));
				b2 = 0x31; /* xor */
				b3 = 0xC0;
				EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
				break;
			}

489
			/* mov %eax, imm32 */
490 491 492
			if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
			EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
493 494
			break;

495
		case BPF_LD | BPF_IMM | BPF_DW:
496 497 498 499 500 501 502 503 504 505 506 507 508 509
			/* optimization: if imm64 is zero, use 'xor <dst>,<dst>'
			 * to save 7 bytes.
			 */
			if (insn[0].imm == 0 && insn[1].imm == 0) {
				b1 = add_2mod(0x48, dst_reg, dst_reg);
				b2 = 0x31; /* xor */
				b3 = 0xC0;
				EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg));

				insn++;
				i++;
				break;
			}

510 511 512 513 514 515 516 517 518
			/* movabsq %rax, imm64 */
			EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
			EMIT(insn[0].imm, 4);
			EMIT(insn[1].imm, 4);

			insn++;
			i++;
			break;

519
			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
520 521 522 523 524 525 526 527 528 529 530 531
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU64 | BPF_MOD | BPF_X:
		case BPF_ALU64 | BPF_DIV | BPF_X:
		case BPF_ALU64 | BPF_MOD | BPF_K:
		case BPF_ALU64 | BPF_DIV | BPF_K:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

			if (BPF_SRC(insn->code) == BPF_X)
532 533
				/* mov r11, src_reg */
				EMIT_mov(AUX_REG, src_reg);
534
			else
535 536
				/* mov r11, imm32 */
				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
537

538 539
			/* mov rax, dst_reg */
			EMIT_mov(BPF_REG_0, dst_reg);
540 541 542 543 544 545 546

			/* xor edx, edx
			 * equivalent to 'xor rdx, rdx', but one byte less
			 */
			EMIT2(0x31, 0xd2);

			if (BPF_SRC(insn->code) == BPF_X) {
547
				/* if (src_reg == 0) return 0 */
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

				/* cmp r11, 0 */
				EMIT4(0x49, 0x83, 0xFB, 0x00);

				/* jne .+9 (skip over pop, pop, xor and jmp) */
				EMIT2(X86_JNE, 1 + 1 + 2 + 5);
				EMIT1(0x5A); /* pop rdx */
				EMIT1(0x58); /* pop rax */
				EMIT2(0x31, 0xc0); /* xor eax, eax */

				/* jmp cleanup_addr
				 * addrs[i] - 11, because there are 11 bytes
				 * after this insn: div, mov, pop, pop, mov
				 */
				jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
				EMIT1_off32(0xE9, jmp_offset);
			}

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				/* div r11 */
				EMIT3(0x49, 0xF7, 0xF3);
			else
				/* div r11d */
				EMIT3(0x41, 0xF7, 0xF3);

			if (BPF_OP(insn->code) == BPF_MOD)
				/* mov r11, rdx */
				EMIT3(0x49, 0x89, 0xD3);
			else
				/* mov r11, rax */
				EMIT3(0x49, 0x89, 0xC3);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

583 584
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
585 586 587 588 589 590 591 592 593
			break;

		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU64 | BPF_MUL | BPF_K:
		case BPF_ALU64 | BPF_MUL | BPF_X:
			EMIT1(0x50); /* push rax */
			EMIT1(0x52); /* push rdx */

594 595
			/* mov r11, dst_reg */
			EMIT_mov(AUX_REG, dst_reg);
596 597

			if (BPF_SRC(insn->code) == BPF_X)
598 599
				/* mov rax, src_reg */
				EMIT_mov(BPF_REG_0, src_reg);
600
			else
601 602
				/* mov rax, imm32 */
				EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
603 604 605 606 607 608 609 610 611 612 613 614 615 616

			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, AUX_REG));
			else if (is_ereg(AUX_REG))
				EMIT1(add_1mod(0x40, AUX_REG));
			/* mul(q) r11 */
			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));

			/* mov r11, rax */
			EMIT_mov(AUX_REG, BPF_REG_0);

			EMIT1(0x5A); /* pop rdx */
			EMIT1(0x58); /* pop rax */

617 618
			/* mov dst_reg, r11 */
			EMIT_mov(dst_reg, AUX_REG);
619 620 621 622 623 624 625 626 627 628
			break;

			/* shifts */
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_ARSH | BPF_K:
		case BPF_ALU64 | BPF_LSH | BPF_K:
		case BPF_ALU64 | BPF_RSH | BPF_K:
		case BPF_ALU64 | BPF_ARSH | BPF_K:
			if (BPF_CLASS(insn->code) == BPF_ALU64)
629 630 631
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));
632 633 634 635 636 637

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
638
			EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
639 640
			break;

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_ARSH | BPF_X:
		case BPF_ALU64 | BPF_LSH | BPF_X:
		case BPF_ALU64 | BPF_RSH | BPF_X:
		case BPF_ALU64 | BPF_ARSH | BPF_X:

			/* check for bad case when dst_reg == rcx */
			if (dst_reg == BPF_REG_4) {
				/* mov r11, dst_reg */
				EMIT_mov(AUX_REG, dst_reg);
				dst_reg = AUX_REG;
			}

			if (src_reg != BPF_REG_4) { /* common case */
				EMIT1(0x51); /* push rcx */

				/* mov rcx, src_reg */
				EMIT_mov(BPF_REG_4, src_reg);
			}

			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
			if (BPF_CLASS(insn->code) == BPF_ALU64)
				EMIT1(add_1mod(0x48, dst_reg));
			else if (is_ereg(dst_reg))
				EMIT1(add_1mod(0x40, dst_reg));

			switch (BPF_OP(insn->code)) {
			case BPF_LSH: b3 = 0xE0; break;
			case BPF_RSH: b3 = 0xE8; break;
			case BPF_ARSH: b3 = 0xF8; break;
			}
			EMIT2(0xD3, add_1reg(b3, dst_reg));

			if (src_reg != BPF_REG_4)
				EMIT1(0x59); /* pop rcx */

			if (insn->dst_reg == BPF_REG_4)
				/* mov dst_reg, r11 */
				EMIT_mov(insn->dst_reg, AUX_REG);
			break;

683
		case BPF_ALU | BPF_END | BPF_FROM_BE:
684
			switch (imm32) {
685 686 687
			case 16:
				/* emit 'ror %ax, 8' to swap lower 2 bytes */
				EMIT1(0x66);
688
				if (is_ereg(dst_reg))
689
					EMIT1(0x41);
690
				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
691 692 693 694 695 696 697

				/* emit 'movzwl eax, ax' */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
698 699 700
				break;
			case 32:
				/* emit 'bswap eax' to swap lower 4 bytes */
701
				if (is_ereg(dst_reg))
702
					EMIT2(0x41, 0x0F);
703
				else
704
					EMIT1(0x0F);
705
				EMIT1(add_1reg(0xC8, dst_reg));
706
				break;
707 708
			case 64:
				/* emit 'bswap rax' to swap 8 bytes */
709 710
				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
				      add_1reg(0xC8, dst_reg));
711 712
				break;
			}
713 714 715
			break;

		case BPF_ALU | BPF_END | BPF_FROM_LE:
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
			switch (imm32) {
			case 16:
				/* emit 'movzwl eax, ax' to zero extend 16-bit
				 * into 64 bit
				 */
				if (is_ereg(dst_reg))
					EMIT3(0x45, 0x0F, 0xB7);
				else
					EMIT2(0x0F, 0xB7);
				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 32:
				/* emit 'mov eax, eax' to clear upper 32-bits */
				if (is_ereg(dst_reg))
					EMIT1(0x45);
				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
				break;
			case 64:
				/* nop */
				break;
			}
737 738
			break;

739
			/* ST: *(u8*)(dst_reg + off) = imm */
740
		case BPF_ST | BPF_MEM | BPF_B:
741
			if (is_ereg(dst_reg))
742 743 744 745 746
				EMIT2(0x41, 0xC6);
			else
				EMIT1(0xC6);
			goto st;
		case BPF_ST | BPF_MEM | BPF_H:
747
			if (is_ereg(dst_reg))
748 749 750 751 752
				EMIT3(0x66, 0x41, 0xC7);
			else
				EMIT2(0x66, 0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_W:
753
			if (is_ereg(dst_reg))
754 755 756 757 758
				EMIT2(0x41, 0xC7);
			else
				EMIT1(0xC7);
			goto st;
		case BPF_ST | BPF_MEM | BPF_DW:
759
			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
760 761

st:			if (is_imm8(insn->off))
762
				EMIT2(add_1reg(0x40, dst_reg), insn->off);
763
			else
764
				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
765

766
			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
767 768
			break;

769
			/* STX: *(u8*)(dst_reg + off) = src_reg */
770 771
		case BPF_STX | BPF_MEM | BPF_B:
			/* emit 'mov byte ptr [rax + off], al' */
772
			if (is_ereg(dst_reg) || is_ereg(src_reg) ||
773
			    /* have to add extra byte for x86 SIL, DIL regs */
774 775
			    src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
776 777 778 779
			else
				EMIT1(0x88);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_H:
780 781
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
782 783 784 785
			else
				EMIT2(0x66, 0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_W:
786 787
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
788 789 790 791
			else
				EMIT1(0x89);
			goto stx;
		case BPF_STX | BPF_MEM | BPF_DW:
792
			EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
793
stx:			if (is_imm8(insn->off))
794
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
795
			else
796
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
797 798 799
					    insn->off);
			break;

800
			/* LDX: dst_reg = *(u8*)(src_reg + off) */
801 802
		case BPF_LDX | BPF_MEM | BPF_B:
			/* emit 'movzx rax, byte ptr [rax + off]' */
803
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
804 805 806
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_H:
			/* emit 'movzx rax, word ptr [rax + off]' */
807
			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
808 809 810
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_W:
			/* emit 'mov eax, dword ptr [rax+0x14]' */
811 812
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
813 814 815 816 817
			else
				EMIT1(0x8B);
			goto ldx;
		case BPF_LDX | BPF_MEM | BPF_DW:
			/* emit 'mov rax, qword ptr [rax+0x14]' */
818
			EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
819 820 821 822 823
ldx:			/* if insn->off == 0 we can save one extra byte, but
			 * special case of x86 r13 which always needs an offset
			 * is not worth the hassle
			 */
			if (is_imm8(insn->off))
824
				EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
825
			else
826
				EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
827 828 829
					    insn->off);
			break;

830
			/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
831 832
		case BPF_STX | BPF_XADD | BPF_W:
			/* emit 'lock add dword ptr [rax + off], eax' */
833 834
			if (is_ereg(dst_reg) || is_ereg(src_reg))
				EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
835 836 837 838
			else
				EMIT2(0xF0, 0x01);
			goto xadd;
		case BPF_STX | BPF_XADD | BPF_DW:
839
			EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
840
xadd:			if (is_imm8(insn->off))
841
				EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
842
			else
843
				EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
844 845 846 847 848
					    insn->off);
			break;

			/* call */
		case BPF_JMP | BPF_CALL:
849
			func = (u8 *) __bpf_call_base + imm32;
850
			jmp_offset = func - (image + addrs[i]);
851
			if (seen_ld_abs) {
852
				reload_skb_data = bpf_helper_changes_pkt_data(func);
853 854 855 856 857 858 859 860 861 862 863
				if (reload_skb_data) {
					EMIT1(0x57); /* push %rdi */
					jmp_offset += 22; /* pop, mov, sub, mov */
				} else {
					EMIT2(0x41, 0x52); /* push %r10 */
					EMIT2(0x41, 0x51); /* push %r9 */
					/* need to adjust jmp offset, since
					 * pop %r9, pop %r10 take 4 bytes after call insn
					 */
					jmp_offset += 4;
				}
864
			}
865
			if (!imm32 || !is_simm32(jmp_offset)) {
866
				pr_err("unsupported bpf func %d addr %p image %p\n",
867
				       imm32, func, image);
868 869 870
				return -EINVAL;
			}
			EMIT1_off32(0xE8, jmp_offset);
871
			if (seen_ld_abs) {
872 873 874 875 876 877 878
				if (reload_skb_data) {
					EMIT1(0x5F); /* pop %rdi */
					emit_load_skb_data_hlen(&prog);
				} else {
					EMIT2(0x41, 0x59); /* pop %r9 */
					EMIT2(0x41, 0x5A); /* pop %r10 */
				}
879 880 881
			}
			break;

882
		case BPF_JMP | BPF_TAIL_CALL:
883 884 885
			emit_bpf_tail_call(&prog);
			break;

886 887 888 889 890 891 892
			/* cond jump */
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JNE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JSGT | BPF_X:
		case BPF_JMP | BPF_JSGE | BPF_X:
893 894 895
			/* cmp dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
			      add_2reg(0xC0, dst_reg, src_reg));
896 897 898
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_X:
899 900 901
			/* test dst_reg, src_reg */
			EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
			      add_2reg(0xC0, dst_reg, src_reg));
902 903 904
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JSET | BPF_K:
905 906 907
			/* test dst_reg, imm32 */
			EMIT1(add_1mod(0x48, dst_reg));
			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
908 909 910 911 912 913 914 915
			goto emit_cond_jmp;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JNE | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JSGT | BPF_K:
		case BPF_JMP | BPF_JSGE | BPF_K:
916 917
			/* cmp dst_reg, imm8/32 */
			EMIT1(add_1mod(0x48, dst_reg));
918

919 920
			if (is_imm8(imm32))
				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
921
			else
922
				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

emit_cond_jmp:		/* convert BPF opcode to x86 */
			switch (BPF_OP(insn->code)) {
			case BPF_JEQ:
				jmp_cond = X86_JE;
				break;
			case BPF_JSET:
			case BPF_JNE:
				jmp_cond = X86_JNE;
				break;
			case BPF_JGT:
				/* GT is unsigned '>', JA in x86 */
				jmp_cond = X86_JA;
				break;
			case BPF_JGE:
				/* GE is unsigned '>=', JAE in x86 */
				jmp_cond = X86_JAE;
				break;
			case BPF_JSGT:
				/* signed '>', GT in x86 */
				jmp_cond = X86_JG;
				break;
			case BPF_JSGE:
				/* signed '>=', GE in x86 */
				jmp_cond = X86_JGE;
				break;
			default: /* to silence gcc warning */
				return -EFAULT;
			}
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (is_imm8(jmp_offset)) {
				EMIT2(jmp_cond, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
			} else {
				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}

			break;
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		case BPF_JMP | BPF_JA:
			jmp_offset = addrs[i + insn->off] - addrs[i];
			if (!jmp_offset)
				/* optimize out nop jumps */
				break;
emit_jmp:
			if (is_imm8(jmp_offset)) {
				EMIT2(0xEB, jmp_offset);
			} else if (is_simm32(jmp_offset)) {
				EMIT1_off32(0xE9, jmp_offset);
			} else {
				pr_err("jmp gen bug %llx\n", jmp_offset);
				return -EFAULT;
			}
			break;

		case BPF_LD | BPF_IND | BPF_W:
			func = sk_load_word;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_W:
984
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
985 986
common_load:
			ctx->seen_ld_abs = seen_ld_abs = true;
987 988 989
			jmp_offset = func - (image + addrs[i]);
			if (!func || !is_simm32(jmp_offset)) {
				pr_err("unsupported bpf func %d addr %p image %p\n",
990
				       imm32, func, image);
991 992 993 994
				return -EINVAL;
			}
			if (BPF_MODE(insn->code) == BPF_ABS) {
				/* mov %esi, imm32 */
995
				EMIT1_off32(0xBE, imm32);
996
			} else {
997 998 999 1000
				/* mov %rsi, src_reg */
				EMIT_mov(BPF_REG_2, src_reg);
				if (imm32) {
					if (is_imm8(imm32))
1001
						/* add %esi, imm8 */
1002
						EMIT3(0x83, 0xC6, imm32);
1003
					else
1004
						/* add %esi, imm32 */
1005
						EMIT2_off32(0x81, 0xC6, imm32);
1006
				}
1007 1008 1009 1010 1011 1012
			}
			/* skb pointer is in R6 (%rbx), it will be copied into
			 * %rdi if skb_copy_bits() call is necessary.
			 * sk_load_* helpers also use %r10 and %r9d.
			 * See bpf_jit.S
			 */
1013 1014 1015 1016
			if (seen_ax_reg)
				/* r10 = skb->data, mov %r10, off32(%rbx) */
				EMIT3_off32(0x4c, 0x8b, 0x93,
					    offsetof(struct sk_buff, data));
1017 1018 1019 1020 1021 1022 1023
			EMIT1_off32(0xE8, jmp_offset); /* call */
			break;

		case BPF_LD | BPF_IND | BPF_H:
			func = sk_load_half;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_H:
1024
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1025 1026 1027 1028 1029
			goto common_load;
		case BPF_LD | BPF_IND | BPF_B:
			func = sk_load_byte;
			goto common_load;
		case BPF_LD | BPF_ABS | BPF_B:
1030
			func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1031 1032 1033
			goto common_load;

		case BPF_JMP | BPF_EXIT:
1034
			if (seen_exit) {
1035 1036 1037
				jmp_offset = ctx->cleanup_addr - addrs[i];
				goto emit_jmp;
			}
1038
			seen_exit = true;
1039 1040
			/* update cleanup_addr */
			ctx->cleanup_addr = proglen;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			/* mov rbx, qword ptr [rbp+0] */
			EMIT4(0x48, 0x8B, 0x5D, 0);
			/* mov r13, qword ptr [rbp+8] */
			EMIT4(0x4C, 0x8B, 0x6D, 8);
			/* mov r14, qword ptr [rbp+16] */
			EMIT4(0x4C, 0x8B, 0x75, 16);
			/* mov r15, qword ptr [rbp+24] */
			EMIT4(0x4C, 0x8B, 0x7D, 24);

			/* add rbp, AUX_STACK_SPACE */
			EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE);
1052 1053 1054 1055
			EMIT1(0xC9); /* leave */
			EMIT1(0xC3); /* ret */
			break;

1056
		default:
1057 1058 1059
			/* By design x64 JIT should support all BPF instructions
			 * This error will be seen if new instruction was added
			 * to interpreter, but not to JIT
1060
			 * or if there is junk in bpf_prog
1061 1062
			 */
			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1063 1064
			return -EINVAL;
		}
1065

1066
		ilen = prog - temp;
1067
		if (ilen > BPF_MAX_INSN_SIZE) {
1068
			pr_err("bpf_jit: fatal insn size error\n");
1069 1070 1071
			return -EFAULT;
		}

1072 1073
		if (image) {
			if (unlikely(proglen + ilen > oldproglen)) {
1074
				pr_err("bpf_jit: fatal error\n");
1075
				return -EFAULT;
1076
			}
1077
			memcpy(image + proglen, temp, ilen);
1078
		}
1079 1080 1081 1082 1083 1084 1085
		proglen += ilen;
		addrs[i] = proglen;
		prog = temp;
	}
	return proglen;
}

1086
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1087 1088
{
	struct bpf_binary_header *header = NULL;
1089
	struct bpf_prog *tmp, *orig_prog = prog;
1090 1091
	int proglen, oldproglen = 0;
	struct jit_context ctx = {};
1092
	bool tmp_blinded = false;
1093 1094 1095 1096 1097 1098
	u8 *image = NULL;
	int *addrs;
	int pass;
	int i;

	if (!bpf_jit_enable)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		return orig_prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}
1111

1112
	addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1113 1114 1115 1116
	if (!addrs) {
		prog = orig_prog;
		goto out;
	}
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < prog->len; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	ctx.cleanup_addr = proglen;

1127 1128 1129 1130 1131 1132
	/* JITed image shrinks with every pass and the loop iterates
	 * until the image stops shrinking. Very large bpf programs
	 * may converge on the last pass. In such case do one more
	 * pass to emit the final image
	 */
	for (pass = 0; pass < 10 || image; pass++) {
1133 1134 1135 1136
		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
		if (proglen <= 0) {
			image = NULL;
			if (header)
1137
				bpf_jit_binary_free(header);
1138 1139
			prog = orig_prog;
			goto out_addrs;
1140
		}
1141
		if (image) {
1142
			if (proglen != oldproglen) {
1143 1144
				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
				       proglen, oldproglen);
1145 1146
				prog = orig_prog;
				goto out_addrs;
1147
			}
1148 1149 1150
			break;
		}
		if (proglen == oldproglen) {
1151 1152
			header = bpf_jit_binary_alloc(proglen, &image,
						      1, jit_fill_hole);
1153 1154 1155 1156
			if (!header) {
				prog = orig_prog;
				goto out_addrs;
			}
1157 1158 1159
		}
		oldproglen = proglen;
	}
1160

1161
	if (bpf_jit_enable > 1)
1162
		bpf_jit_dump(prog->len, proglen, pass + 1, image);
1163 1164

	if (image) {
1165
		bpf_flush_icache(header, image + proglen);
1166
		bpf_jit_binary_lock_ro(header);
1167
		prog->bpf_func = (void *)image;
1168
		prog->jited = 1;
1169 1170
	} else {
		prog = orig_prog;
1171
	}
1172 1173

out_addrs:
1174
	kfree(addrs);
1175 1176 1177 1178
out:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
1179
	return prog;
1180
}