efi_64.c 22.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
H
Huang, Ying 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * x86_64 specific EFI support functions
 * Based on Extensible Firmware Interface Specification version 1.0
 *
 * Copyright (C) 2005-2008 Intel Co.
 *	Fenghua Yu <fenghua.yu@intel.com>
 *	Bibo Mao <bibo.mao@intel.com>
 *	Chandramouli Narayanan <mouli@linux.intel.com>
 *	Huang Ying <ying.huang@intel.com>
 *
 * Code to convert EFI to E820 map has been implemented in elilo bootloader
 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
 * is setup appropriately for EFI runtime code.
 * - mouli 06/14/2007.
 *
 */

19 20
#define pr_fmt(fmt) "efi: " fmt

H
Huang, Ying 已提交
21 22 23 24 25 26 27
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
28
#include <linux/init.h>
29
#include <linux/mc146818rtc.h>
H
Huang, Ying 已提交
30 31 32 33
#include <linux/efi.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/reboot.h>
34
#include <linux/slab.h>
35
#include <linux/ucs2_string.h>
36
#include <linux/mem_encrypt.h>
H
Huang, Ying 已提交
37 38 39

#include <asm/setup.h>
#include <asm/page.h>
40
#include <asm/e820/api.h>
H
Huang, Ying 已提交
41 42 43 44
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm/efi.h>
45
#include <asm/cacheflush.h>
46
#include <asm/fixmap.h>
47
#include <asm/realmode.h>
48
#include <asm/time.h>
49
#include <asm/pgalloc.h>
H
Huang, Ying 已提交
50

51
/*
52
 * We allocate runtime services regions top-down, starting from -4G, i.e.
53 54
 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
 */
55
static u64 efi_va = EFI_VA_START;
56

57
struct efi_scratch efi_scratch;
58

59
static void __init early_code_mapping_set_exec(int executable)
H
Huang, Ying 已提交
60 61 62
{
	efi_memory_desc_t *md;

63 64 65
	if (!(__supported_pte_mask & _PAGE_NX))
		return;

66
	/* Make EFI service code area executable */
67
	for_each_efi_memory_desc(md) {
68 69
		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
		    md->type == EFI_BOOT_SERVICES_CODE)
70
			efi_set_executable(md, executable);
H
Huang, Ying 已提交
71 72 73
	}
}

74
pgd_t * __init efi_call_phys_prolog(void)
H
Huang, Ying 已提交
75
{
76 77 78 79
	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
	pgd_t *save_pgd, *pgd_k, *pgd_efi;
	p4d_t *p4d, *p4d_k, *p4d_efi;
	pud_t *pud;
80

81
	int pgd;
82
	int n_pgds, i, j;
H
Huang, Ying 已提交
83

84
	if (!efi_enabled(EFI_OLD_MEMMAP)) {
85
		save_pgd = (pgd_t *)__read_cr3();
86 87 88
		write_cr3((unsigned long)efi_scratch.efi_pgt);
		goto out;
	}
89

90
	early_code_mapping_set_exec(1);
91 92

	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93
	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94

95 96 97 98 99 100 101 102
	/*
	 * Build 1:1 identity mapping for efi=old_map usage. Note that
	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
	 * This means here we can only reuse the PMD tables of the direct mapping.
	 */
103
	for (pgd = 0; pgd < n_pgds; pgd++) {
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
		pgd_efi = pgd_offset_k(addr_pgd);
		save_pgd[pgd] = *pgd_efi;

		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
		if (!p4d) {
			pr_err("Failed to allocate p4d table!\n");
			goto out;
		}

		for (i = 0; i < PTRS_PER_P4D; i++) {
			addr_p4d = addr_pgd + i * P4D_SIZE;
			p4d_efi = p4d + p4d_index(addr_p4d);

			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
			if (!pud) {
				pr_err("Failed to allocate pud table!\n");
				goto out;
			}

			for (j = 0; j < PTRS_PER_PUD; j++) {
				addr_pud = addr_p4d + j * PUD_SIZE;

				if (addr_pud > (max_pfn << PAGE_SHIFT))
					break;

				vaddr = (unsigned long)__va(addr_pud);

				pgd_k = pgd_offset_k(vaddr);
				p4d_k = p4d_offset(pgd_k, vaddr);
				pud[j] = *pud_offset(p4d_k, vaddr);
			}
		}
138
	}
139
out:
H
Huang, Ying 已提交
140
	__flush_tlb_all();
141 142

	return save_pgd;
H
Huang, Ying 已提交
143 144
}

145
void __init efi_call_phys_epilog(pgd_t *save_pgd)
H
Huang, Ying 已提交
146 147 148 149
{
	/*
	 * After the lock is released, the original page table is restored.
	 */
150
	int pgd_idx, i;
151
	int nr_pgds;
152 153 154
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
155

156 157 158
	if (!efi_enabled(EFI_OLD_MEMMAP)) {
		write_cr3((unsigned long)save_pgd);
		__flush_tlb_all();
159
		return;
160
	}
161

162 163
	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);

164 165
	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
166 167
		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		if (!(pgd_val(*pgd) & _PAGE_PRESENT))
			continue;

		for (i = 0; i < PTRS_PER_P4D; i++) {
			p4d = p4d_offset(pgd,
					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);

			if (!(p4d_val(*p4d) & _PAGE_PRESENT))
				continue;

			pud = (pud_t *)p4d_page_vaddr(*p4d);
			pud_free(&init_mm, pud);
		}

		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
		p4d_free(&init_mm, p4d);
	}

186
	kfree(save_pgd);
187

H
Huang, Ying 已提交
188
	__flush_tlb_all();
189
	early_code_mapping_set_exec(0);
H
Huang, Ying 已提交
190
}
191

192 193 194 195 196 197 198 199 200 201 202
static pgd_t *efi_pgd;

/*
 * We need our own copy of the higher levels of the page tables
 * because we want to avoid inserting EFI region mappings (EFI_VA_END
 * to EFI_VA_START) into the standard kernel page tables. Everything
 * else can be shared, see efi_sync_low_kernel_mappings().
 */
int __init efi_alloc_page_tables(void)
{
	pgd_t *pgd;
203
	p4d_t *p4d;
204 205 206 207 208 209
	pud_t *pud;
	gfp_t gfp_mask;

	if (efi_enabled(EFI_OLD_MEMMAP))
		return 0;

210
	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
211 212 213 214 215
	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
	if (!efi_pgd)
		return -ENOMEM;

	pgd = efi_pgd + pgd_index(EFI_VA_END);
216 217 218 219 220
	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
	if (!p4d) {
		free_page((unsigned long)efi_pgd);
		return -ENOMEM;
	}
221

222
	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
223
	if (!pud) {
224 225
		if (CONFIG_PGTABLE_LEVELS > 4)
			free_page((unsigned long) pgd_page_vaddr(*pgd));
226 227 228 229 230 231 232
		free_page((unsigned long)efi_pgd);
		return -ENOMEM;
	}

	return 0;
}

233 234 235 236 237
/*
 * Add low kernel mappings for passing arguments to EFI functions.
 */
void efi_sync_low_kernel_mappings(void)
{
238 239
	unsigned num_entries;
	pgd_t *pgd_k, *pgd_efi;
240
	p4d_t *p4d_k, *p4d_efi;
241
	pud_t *pud_k, *pud_efi;
242 243 244 245

	if (efi_enabled(EFI_OLD_MEMMAP))
		return;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	/*
	 * We can share all PGD entries apart from the one entry that
	 * covers the EFI runtime mapping space.
	 *
	 * Make sure the EFI runtime region mappings are guaranteed to
	 * only span a single PGD entry and that the entry also maps
	 * other important kernel regions.
	 */
	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
			(EFI_VA_END & PGDIR_MASK));

	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
	pgd_k = pgd_offset_k(PAGE_OFFSET);

	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	/*
	 * As with PGDs, we share all P4D entries apart from the one entry
	 * that covers the EFI runtime mapping space.
	 */
	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));

	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
	pgd_k = pgd_offset_k(EFI_VA_END);
	p4d_efi = p4d_offset(pgd_efi, 0);
	p4d_k = p4d_offset(pgd_k, 0);

	num_entries = p4d_index(EFI_VA_END);
	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);

279 280 281 282 283 284 285
	/*
	 * We share all the PUD entries apart from those that map the
	 * EFI regions. Copy around them.
	 */
	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);

286 287
	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
288 289
	pud_efi = pud_offset(p4d_efi, 0);
	pud_k = pud_offset(p4d_k, 0);
290 291 292 293

	num_entries = pud_index(EFI_VA_END);
	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);

294 295
	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
	pud_k = pud_offset(p4d_k, EFI_VA_START);
296 297 298

	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
 */
static inline phys_addr_t
virt_to_phys_or_null_size(void *va, unsigned long size)
{
	bool bad_size;

	if (!va)
		return 0;

	if (virt_addr_valid(va))
		return virt_to_phys(va);

	/*
	 * A fully aligned variable on the stack is guaranteed not to
	 * cross a page bounary. Try to catch strings on the stack by
	 * checking that 'size' is a power of two.
	 */
	bad_size = size > PAGE_SIZE || !is_power_of_2(size);

	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);

	return slow_virt_to_phys(va);
}

#define virt_to_phys_or_null(addr)				\
	virt_to_phys_or_null_size((addr), sizeof(*(addr)))

330
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
331
{
332
	unsigned long pfn, text, pf;
333
	struct page *page;
334
	unsigned npages;
335 336 337 338 339
	pgd_t *pgd;

	if (efi_enabled(EFI_OLD_MEMMAP))
		return 0;

340 341 342 343 344 345
	/*
	 * Since the PGD is encrypted, set the encryption mask so that when
	 * this value is loaded into cr3 the PGD will be decrypted during
	 * the pagetable walk.
	 */
	efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
346
	pgd = efi_pgd;
347

348 349 350 351 352 353
	/*
	 * It can happen that the physical address of new_memmap lands in memory
	 * which is not mapped in the EFI page table. Therefore we need to go
	 * and ident-map those pages containing the map before calling
	 * phys_efi_set_virtual_address_map().
	 */
354
	pfn = pa_memmap >> PAGE_SHIFT;
355 356
	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
357 358 359 360 361 362
		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
		return 1;
	}

	efi_scratch.use_pgd = true;

363 364 365 366 367 368 369 370 371 372 373
	/*
	 * Certain firmware versions are way too sentimential and still believe
	 * they are exclusive and unquestionable owners of the first physical page,
	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
	 * (but then write-access it later during SetVirtualAddressMap()).
	 *
	 * Create a 1:1 mapping for this page, to avoid triple faults during early
	 * boot with such firmware. We are free to hand this page to the BIOS,
	 * as trim_bios_range() will reserve the first page and isolate it away
	 * from memory allocators anyway.
	 */
374 375 376 377 378
	pf = _PAGE_RW;
	if (sev_active())
		pf |= _PAGE_ENC;

	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
379 380 381 382
		pr_err("Failed to create 1:1 mapping for the first page!\n");
		return 1;
	}

383 384 385 386 387 388
	/*
	 * When making calls to the firmware everything needs to be 1:1
	 * mapped and addressable with 32-bit pointers. Map the kernel
	 * text and allocate a new stack because we can't rely on the
	 * stack pointer being < 4GB.
	 */
389
	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
390
		return 0;
391 392 393 394 395 396 397 398

	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
	if (!page)
		panic("Unable to allocate EFI runtime stack < 4GB\n");

	efi_scratch.phys_stack = virt_to_phys(page_address(page));
	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */

399
	npages = (_etext - _text) >> PAGE_SHIFT;
400
	text = __pa(_text);
401
	pfn = text >> PAGE_SHIFT;
402

403 404
	pf = _PAGE_RW | _PAGE_ENC;
	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
405
		pr_err("Failed to map kernel text 1:1\n");
406
		return 1;
407
	}
408 409 410 411

	return 0;
}

412 413
static void __init __map_region(efi_memory_desc_t *md, u64 va)
{
414
	unsigned long flags = _PAGE_RW;
415
	unsigned long pfn;
416
	pgd_t *pgd = efi_pgd;
417 418

	if (!(md->attribute & EFI_MEMORY_WB))
419
		flags |= _PAGE_PCD;
420

421 422 423
	if (sev_active())
		flags |= _PAGE_ENC;

424 425
	pfn = md->phys_addr >> PAGE_SHIFT;
	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
			   md->phys_addr, va);
}

void __init efi_map_region(efi_memory_desc_t *md)
{
	unsigned long size = md->num_pages << PAGE_SHIFT;
	u64 pa = md->phys_addr;

	if (efi_enabled(EFI_OLD_MEMMAP))
		return old_map_region(md);

	/*
	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
	 * firmware which doesn't update all internal pointers after switching
	 * to virtual mode and would otherwise crap on us.
	 */
	__map_region(md, md->phys_addr);

445 446 447 448 449 450 451 452 453 454
	/*
	 * Enforce the 1:1 mapping as the default virtual address when
	 * booting in EFI mixed mode, because even though we may be
	 * running a 64-bit kernel, the firmware may only be 32-bit.
	 */
	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
		md->virt_addr = md->phys_addr;
		return;
	}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	efi_va -= size;

	/* Is PA 2M-aligned? */
	if (!(pa & (PMD_SIZE - 1))) {
		efi_va &= PMD_MASK;
	} else {
		u64 pa_offset = pa & (PMD_SIZE - 1);
		u64 prev_va = efi_va;

		/* get us the same offset within this 2M page */
		efi_va = (efi_va & PMD_MASK) + pa_offset;

		if (efi_va > prev_va)
			efi_va -= PMD_SIZE;
	}

	if (efi_va < EFI_VA_END) {
		pr_warn(FW_WARN "VA address range overflow!\n");
		return;
	}

	/* Do the VA map */
	__map_region(md, efi_va);
	md->virt_addr = efi_va;
}

481 482 483 484 485 486 487
/*
 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
 * md->virt_addr is the original virtual address which had been mapped in kexec
 * 1st kernel.
 */
void __init efi_map_region_fixed(efi_memory_desc_t *md)
{
488
	__map_region(md, md->phys_addr);
489 490 491
	__map_region(md, md->virt_addr);
}

492
void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
493
				 u32 type, u64 attribute)
494 495 496 497 498 499 500 501 502
{
	unsigned long last_map_pfn;

	if (type == EFI_MEMORY_MAPPED_IO)
		return ioremap(phys_addr, size);

	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
		unsigned long top = last_map_pfn << PAGE_SHIFT;
503
		efi_ioremap(top, size - (top - phys_addr), type, attribute);
504 505
	}

506 507 508
	if (!(attribute & EFI_MEMORY_WB))
		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);

509 510
	return (void __iomem *)__va(phys_addr);
}
511 512 513 514 515

void __init parse_efi_setup(u64 phys_addr, u32 data_len)
{
	efi_setup = phys_addr + sizeof(struct setup_data);
}
B
Borislav Petkov 已提交
516

517
static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
B
Borislav Petkov 已提交
518
{
519 520
	unsigned long pfn;
	pgd_t *pgd = efi_pgd;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	int err1, err2;

	/* Update the 1:1 mapping */
	pfn = md->phys_addr >> PAGE_SHIFT;
	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
	if (err1) {
		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
			   md->phys_addr, md->virt_addr);
	}

	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
	if (err2) {
		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
			   md->phys_addr, md->virt_addr);
	}

	return err1 || err2;
}

static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
{
	unsigned long pf = 0;

	if (md->attribute & EFI_MEMORY_XP)
		pf |= _PAGE_NX;

	if (!(md->attribute & EFI_MEMORY_RO))
		pf |= _PAGE_RW;

550 551 552
	if (sev_active())
		pf |= _PAGE_ENC;

553 554 555 556 557
	return efi_update_mappings(md, pf);
}

void __init efi_runtime_update_mappings(void)
{
558 559 560 561 562 563 564 565
	efi_memory_desc_t *md;

	if (efi_enabled(EFI_OLD_MEMMAP)) {
		if (__supported_pte_mask & _PAGE_NX)
			runtime_code_page_mkexec();
		return;
	}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	/*
	 * Use the EFI Memory Attribute Table for mapping permissions if it
	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
	 */
	if (efi_enabled(EFI_MEM_ATTR)) {
		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
		return;
	}

	/*
	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
	 * published by the firmware. Even if we find a buggy implementation of
	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
	 * EFI_PROPERTIES_TABLE, because of the same reason.
	 */

584
	if (!efi_enabled(EFI_NX_PE_DATA))
B
Borislav Petkov 已提交
585 586
		return;

587
	for_each_efi_memory_desc(md) {
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		unsigned long pf = 0;

		if (!(md->attribute & EFI_MEMORY_RUNTIME))
			continue;

		if (!(md->attribute & EFI_MEMORY_WB))
			pf |= _PAGE_PCD;

		if ((md->attribute & EFI_MEMORY_XP) ||
			(md->type == EFI_RUNTIME_SERVICES_DATA))
			pf |= _PAGE_NX;

		if (!(md->attribute & EFI_MEMORY_RO) &&
			(md->type != EFI_RUNTIME_SERVICES_CODE))
			pf |= _PAGE_RW;

604 605 606
		if (sev_active())
			pf |= _PAGE_ENC;

607
		efi_update_mappings(md, pf);
608
	}
B
Borislav Petkov 已提交
609
}
610 611 612 613

void __init efi_dump_pagetable(void)
{
#ifdef CONFIG_EFI_PGT_DUMP
614 615 616 617
	if (efi_enabled(EFI_OLD_MEMMAP))
		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
	else
		ptdump_walk_pgd_level(NULL, efi_pgd);
618 619
#endif
}
620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
#ifdef CONFIG_EFI_MIXED
extern efi_status_t efi64_thunk(u32, ...);

#define runtime_service32(func)						 \
({									 \
	u32 table = (u32)(unsigned long)efi.systab;			 \
	u32 *rt, *___f;							 \
									 \
	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
	*___f;								 \
})

/*
 * Switch to the EFI page tables early so that we can access the 1:1
 * runtime services mappings which are not mapped in any other page
 * tables. This function must be called before runtime_service32().
 *
 * Also, disable interrupts because the IDT points to 64-bit handlers,
 * which aren't going to function correctly when we switch to 32-bit.
 */
#define efi_thunk(f, ...)						\
({									\
	efi_status_t __s;						\
645 646
	unsigned long __flags;						\
	u32 __func;							\
647
									\
648 649
	local_irq_save(__flags);					\
	arch_efi_call_virt_setup();					\
650
									\
651 652
	__func = runtime_service32(f);					\
	__s = efi64_thunk(__func, __VA_ARGS__);				\
653
									\
654 655
	arch_efi_call_virt_teardown();					\
	local_irq_restore(__flags);					\
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
									\
	__s;								\
})

efi_status_t efi_thunk_set_virtual_address_map(
	void *phys_set_virtual_address_map,
	unsigned long memory_map_size,
	unsigned long descriptor_size,
	u32 descriptor_version,
	efi_memory_desc_t *virtual_map)
{
	efi_status_t status;
	unsigned long flags;
	u32 func;

	efi_sync_low_kernel_mappings();
	local_irq_save(flags);

674
	efi_scratch.prev_cr3 = __read_cr3();
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	write_cr3((unsigned long)efi_scratch.efi_pgt);
	__flush_tlb_all();

	func = (u32)(unsigned long)phys_set_virtual_address_map;
	status = efi64_thunk(func, memory_map_size, descriptor_size,
			     descriptor_version, virtual_map);

	write_cr3(efi_scratch.prev_cr3);
	__flush_tlb_all();
	local_irq_restore(flags);

	return status;
}

static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
	efi_status_t status;
	u32 phys_tm, phys_tc;

	spin_lock(&rtc_lock);

696 697
	phys_tm = virt_to_phys_or_null(tm);
	phys_tc = virt_to_phys_or_null(tc);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

	status = efi_thunk(get_time, phys_tm, phys_tc);

	spin_unlock(&rtc_lock);

	return status;
}

static efi_status_t efi_thunk_set_time(efi_time_t *tm)
{
	efi_status_t status;
	u32 phys_tm;

	spin_lock(&rtc_lock);

713
	phys_tm = virt_to_phys_or_null(tm);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	status = efi_thunk(set_time, phys_tm);

	spin_unlock(&rtc_lock);

	return status;
}

static efi_status_t
efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
			  efi_time_t *tm)
{
	efi_status_t status;
	u32 phys_enabled, phys_pending, phys_tm;

	spin_lock(&rtc_lock);

731 732 733
	phys_enabled = virt_to_phys_or_null(enabled);
	phys_pending = virt_to_phys_or_null(pending);
	phys_tm = virt_to_phys_or_null(tm);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

	status = efi_thunk(get_wakeup_time, phys_enabled,
			     phys_pending, phys_tm);

	spin_unlock(&rtc_lock);

	return status;
}

static efi_status_t
efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
{
	efi_status_t status;
	u32 phys_tm;

	spin_lock(&rtc_lock);

751
	phys_tm = virt_to_phys_or_null(tm);
752 753 754 755 756 757 758 759

	status = efi_thunk(set_wakeup_time, enabled, phys_tm);

	spin_unlock(&rtc_lock);

	return status;
}

760 761 762 763
static unsigned long efi_name_size(efi_char16_t *name)
{
	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
}
764 765 766 767 768 769 770 771 772

static efi_status_t
efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
		       u32 *attr, unsigned long *data_size, void *data)
{
	efi_status_t status;
	u32 phys_name, phys_vendor, phys_attr;
	u32 phys_data_size, phys_data;

773 774 775 776 777
	phys_data_size = virt_to_phys_or_null(data_size);
	phys_vendor = virt_to_phys_or_null(vendor);
	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
	phys_attr = virt_to_phys_or_null(attr);
	phys_data = virt_to_phys_or_null_size(data, *data_size);
778 779 780 781 782 783 784 785 786 787 788 789 790 791

	status = efi_thunk(get_variable, phys_name, phys_vendor,
			   phys_attr, phys_data_size, phys_data);

	return status;
}

static efi_status_t
efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
		       u32 attr, unsigned long data_size, void *data)
{
	u32 phys_name, phys_vendor, phys_data;
	efi_status_t status;

792 793 794
	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
	phys_vendor = virt_to_phys_or_null(vendor);
	phys_data = virt_to_phys_or_null_size(data, data_size);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	/* If data_size is > sizeof(u32) we've got problems */
	status = efi_thunk(set_variable, phys_name, phys_vendor,
			   attr, data_size, phys_data);

	return status;
}

static efi_status_t
efi_thunk_get_next_variable(unsigned long *name_size,
			    efi_char16_t *name,
			    efi_guid_t *vendor)
{
	efi_status_t status;
	u32 phys_name_size, phys_name, phys_vendor;

811 812 813
	phys_name_size = virt_to_phys_or_null(name_size);
	phys_vendor = virt_to_phys_or_null(vendor);
	phys_name = virt_to_phys_or_null_size(name, *name_size);
814 815 816 817 818 819 820 821 822 823 824 825 826

	status = efi_thunk(get_next_variable, phys_name_size,
			   phys_name, phys_vendor);

	return status;
}

static efi_status_t
efi_thunk_get_next_high_mono_count(u32 *count)
{
	efi_status_t status;
	u32 phys_count;

827
	phys_count = virt_to_phys_or_null(count);
828 829 830 831 832 833 834 835 836 837 838
	status = efi_thunk(get_next_high_mono_count, phys_count);

	return status;
}

static void
efi_thunk_reset_system(int reset_type, efi_status_t status,
		       unsigned long data_size, efi_char16_t *data)
{
	u32 phys_data;

839
	phys_data = virt_to_phys_or_null_size(data, data_size);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
}

static efi_status_t
efi_thunk_update_capsule(efi_capsule_header_t **capsules,
			 unsigned long count, unsigned long sg_list)
{
	/*
	 * To properly support this function we would need to repackage
	 * 'capsules' because the firmware doesn't understand 64-bit
	 * pointers.
	 */
	return EFI_UNSUPPORTED;
}

static efi_status_t
efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
			      u64 *remaining_space,
			      u64 *max_variable_size)
{
	efi_status_t status;
	u32 phys_storage, phys_remaining, phys_max;

	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
		return EFI_UNSUPPORTED;

867 868 869
	phys_storage = virt_to_phys_or_null(storage_space);
	phys_remaining = virt_to_phys_or_null(remaining_space);
	phys_max = virt_to_phys_or_null(max_variable_size);
870

871
	status = efi_thunk(query_variable_info, attr, phys_storage,
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
			   phys_remaining, phys_max);

	return status;
}

static efi_status_t
efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
			     unsigned long count, u64 *max_size,
			     int *reset_type)
{
	/*
	 * To properly support this function we would need to repackage
	 * 'capsules' because the firmware doesn't understand 64-bit
	 * pointers.
	 */
	return EFI_UNSUPPORTED;
}

void efi_thunk_runtime_setup(void)
{
	efi.get_time = efi_thunk_get_time;
	efi.set_time = efi_thunk_set_time;
	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
	efi.get_variable = efi_thunk_get_variable;
	efi.get_next_variable = efi_thunk_get_next_variable;
	efi.set_variable = efi_thunk_set_variable;
	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
	efi.reset_system = efi_thunk_reset_system;
	efi.query_variable_info = efi_thunk_query_variable_info;
	efi.update_capsule = efi_thunk_update_capsule;
	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
}
#endif /* CONFIG_EFI_MIXED */