efi_64.c 22.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
H
Huang, Ying 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * x86_64 specific EFI support functions
 * Based on Extensible Firmware Interface Specification version 1.0
 *
 * Copyright (C) 2005-2008 Intel Co.
 *	Fenghua Yu <fenghua.yu@intel.com>
 *	Bibo Mao <bibo.mao@intel.com>
 *	Chandramouli Narayanan <mouli@linux.intel.com>
 *	Huang Ying <ying.huang@intel.com>
 *
 * Code to convert EFI to E820 map has been implemented in elilo bootloader
 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
 * is setup appropriately for EFI runtime code.
 * - mouli 06/14/2007.
 *
 */

19 20
#define pr_fmt(fmt) "efi: " fmt

H
Huang, Ying 已提交
21 22 23 24 25 26 27
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
28
#include <linux/init.h>
29
#include <linux/mc146818rtc.h>
H
Huang, Ying 已提交
30 31 32 33
#include <linux/efi.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/reboot.h>
34
#include <linux/slab.h>
35
#include <linux/ucs2_string.h>
H
Huang, Ying 已提交
36 37 38

#include <asm/setup.h>
#include <asm/page.h>
39
#include <asm/e820/api.h>
H
Huang, Ying 已提交
40 41 42 43
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm/efi.h>
44
#include <asm/cacheflush.h>
45
#include <asm/fixmap.h>
46
#include <asm/realmode.h>
47
#include <asm/time.h>
48
#include <asm/pgalloc.h>
H
Huang, Ying 已提交
49

50
/*
51
 * We allocate runtime services regions top-down, starting from -4G, i.e.
52 53
 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
 */
54
static u64 efi_va = EFI_VA_START;
55

56
struct efi_scratch efi_scratch;
57

58
static void __init early_code_mapping_set_exec(int executable)
H
Huang, Ying 已提交
59 60 61
{
	efi_memory_desc_t *md;

62 63 64
	if (!(__supported_pte_mask & _PAGE_NX))
		return;

65
	/* Make EFI service code area executable */
66
	for_each_efi_memory_desc(md) {
67 68
		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
		    md->type == EFI_BOOT_SERVICES_CODE)
69
			efi_set_executable(md, executable);
H
Huang, Ying 已提交
70 71 72
	}
}

73
pgd_t * __init efi_call_phys_prolog(void)
H
Huang, Ying 已提交
74
{
75 76 77 78
	unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
	pgd_t *save_pgd, *pgd_k, *pgd_efi;
	p4d_t *p4d, *p4d_k, *p4d_efi;
	pud_t *pud;
79

80
	int pgd;
81
	int n_pgds, i, j;
H
Huang, Ying 已提交
82

83
	if (!efi_enabled(EFI_OLD_MEMMAP)) {
84
		save_pgd = (pgd_t *)__read_cr3();
85 86 87
		write_cr3((unsigned long)efi_scratch.efi_pgt);
		goto out;
	}
88

89
	early_code_mapping_set_exec(1);
90 91

	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
92
	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
93

94 95 96 97 98 99 100 101
	/*
	 * Build 1:1 identity mapping for efi=old_map usage. Note that
	 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
	 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
	 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
	 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
	 * This means here we can only reuse the PMD tables of the direct mapping.
	 */
102
	for (pgd = 0; pgd < n_pgds; pgd++) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
		addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
		vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
		pgd_efi = pgd_offset_k(addr_pgd);
		save_pgd[pgd] = *pgd_efi;

		p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
		if (!p4d) {
			pr_err("Failed to allocate p4d table!\n");
			goto out;
		}

		for (i = 0; i < PTRS_PER_P4D; i++) {
			addr_p4d = addr_pgd + i * P4D_SIZE;
			p4d_efi = p4d + p4d_index(addr_p4d);

			pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
			if (!pud) {
				pr_err("Failed to allocate pud table!\n");
				goto out;
			}

			for (j = 0; j < PTRS_PER_PUD; j++) {
				addr_pud = addr_p4d + j * PUD_SIZE;

				if (addr_pud > (max_pfn << PAGE_SHIFT))
					break;

				vaddr = (unsigned long)__va(addr_pud);

				pgd_k = pgd_offset_k(vaddr);
				p4d_k = p4d_offset(pgd_k, vaddr);
				pud[j] = *pud_offset(p4d_k, vaddr);
			}
		}
137
	}
138
out:
H
Huang, Ying 已提交
139
	__flush_tlb_all();
140 141

	return save_pgd;
H
Huang, Ying 已提交
142 143
}

144
void __init efi_call_phys_epilog(pgd_t *save_pgd)
H
Huang, Ying 已提交
145 146 147 148
{
	/*
	 * After the lock is released, the original page table is restored.
	 */
149
	int pgd_idx, i;
150
	int nr_pgds;
151 152 153
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
154

155 156 157
	if (!efi_enabled(EFI_OLD_MEMMAP)) {
		write_cr3((unsigned long)save_pgd);
		__flush_tlb_all();
158
		return;
159
	}
160

161 162
	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);

163 164
	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
		pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
165 166
		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		if (!(pgd_val(*pgd) & _PAGE_PRESENT))
			continue;

		for (i = 0; i < PTRS_PER_P4D; i++) {
			p4d = p4d_offset(pgd,
					 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);

			if (!(p4d_val(*p4d) & _PAGE_PRESENT))
				continue;

			pud = (pud_t *)p4d_page_vaddr(*p4d);
			pud_free(&init_mm, pud);
		}

		p4d = (p4d_t *)pgd_page_vaddr(*pgd);
		p4d_free(&init_mm, p4d);
	}

185
	kfree(save_pgd);
186

H
Huang, Ying 已提交
187
	__flush_tlb_all();
188
	early_code_mapping_set_exec(0);
H
Huang, Ying 已提交
189
}
190

191 192 193 194 195 196 197 198 199 200 201
static pgd_t *efi_pgd;

/*
 * We need our own copy of the higher levels of the page tables
 * because we want to avoid inserting EFI region mappings (EFI_VA_END
 * to EFI_VA_START) into the standard kernel page tables. Everything
 * else can be shared, see efi_sync_low_kernel_mappings().
 */
int __init efi_alloc_page_tables(void)
{
	pgd_t *pgd;
202
	p4d_t *p4d;
203 204 205 206 207 208
	pud_t *pud;
	gfp_t gfp_mask;

	if (efi_enabled(EFI_OLD_MEMMAP))
		return 0;

209
	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
210 211 212 213 214
	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
	if (!efi_pgd)
		return -ENOMEM;

	pgd = efi_pgd + pgd_index(EFI_VA_END);
215 216 217 218 219
	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
	if (!p4d) {
		free_page((unsigned long)efi_pgd);
		return -ENOMEM;
	}
220

221
	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
222
	if (!pud) {
223 224
		if (CONFIG_PGTABLE_LEVELS > 4)
			free_page((unsigned long) pgd_page_vaddr(*pgd));
225 226 227 228 229 230 231
		free_page((unsigned long)efi_pgd);
		return -ENOMEM;
	}

	return 0;
}

232 233 234 235 236
/*
 * Add low kernel mappings for passing arguments to EFI functions.
 */
void efi_sync_low_kernel_mappings(void)
{
237 238
	unsigned num_entries;
	pgd_t *pgd_k, *pgd_efi;
239
	p4d_t *p4d_k, *p4d_efi;
240
	pud_t *pud_k, *pud_efi;
241 242 243 244

	if (efi_enabled(EFI_OLD_MEMMAP))
		return;

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	/*
	 * We can share all PGD entries apart from the one entry that
	 * covers the EFI runtime mapping space.
	 *
	 * Make sure the EFI runtime region mappings are guaranteed to
	 * only span a single PGD entry and that the entry also maps
	 * other important kernel regions.
	 */
	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
			(EFI_VA_END & PGDIR_MASK));

	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
	pgd_k = pgd_offset_k(PAGE_OFFSET);

	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	/*
	 * As with PGDs, we share all P4D entries apart from the one entry
	 * that covers the EFI runtime mapping space.
	 */
	BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
	BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));

	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
	pgd_k = pgd_offset_k(EFI_VA_END);
	p4d_efi = p4d_offset(pgd_efi, 0);
	p4d_k = p4d_offset(pgd_k, 0);

	num_entries = p4d_index(EFI_VA_END);
	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);

278 279 280 281 282 283 284
	/*
	 * We share all the PUD entries apart from those that map the
	 * EFI regions. Copy around them.
	 */
	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);

285 286
	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
287 288
	pud_efi = pud_offset(p4d_efi, 0);
	pud_k = pud_offset(p4d_k, 0);
289 290 291 292

	num_entries = pud_index(EFI_VA_END);
	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);

293 294
	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
	pud_k = pud_offset(p4d_k, EFI_VA_START);
295 296 297

	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
298 299
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
 */
static inline phys_addr_t
virt_to_phys_or_null_size(void *va, unsigned long size)
{
	bool bad_size;

	if (!va)
		return 0;

	if (virt_addr_valid(va))
		return virt_to_phys(va);

	/*
	 * A fully aligned variable on the stack is guaranteed not to
	 * cross a page bounary. Try to catch strings on the stack by
	 * checking that 'size' is a power of two.
	 */
	bad_size = size > PAGE_SIZE || !is_power_of_2(size);

	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);

	return slow_virt_to_phys(va);
}

#define virt_to_phys_or_null(addr)				\
	virt_to_phys_or_null_size((addr), sizeof(*(addr)))

329
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
330
{
331
	unsigned long pfn, text, pf;
332
	struct page *page;
333
	unsigned npages;
334 335 336 337 338
	pgd_t *pgd;

	if (efi_enabled(EFI_OLD_MEMMAP))
		return 0;

339 340 341 342 343 344
	/*
	 * Since the PGD is encrypted, set the encryption mask so that when
	 * this value is loaded into cr3 the PGD will be decrypted during
	 * the pagetable walk.
	 */
	efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
345
	pgd = efi_pgd;
346

347 348 349 350 351 352
	/*
	 * It can happen that the physical address of new_memmap lands in memory
	 * which is not mapped in the EFI page table. Therefore we need to go
	 * and ident-map those pages containing the map before calling
	 * phys_efi_set_virtual_address_map().
	 */
353
	pfn = pa_memmap >> PAGE_SHIFT;
354 355
	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
356 357 358 359 360 361
		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
		return 1;
	}

	efi_scratch.use_pgd = true;

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * Certain firmware versions are way too sentimential and still believe
	 * they are exclusive and unquestionable owners of the first physical page,
	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
	 * (but then write-access it later during SetVirtualAddressMap()).
	 *
	 * Create a 1:1 mapping for this page, to avoid triple faults during early
	 * boot with such firmware. We are free to hand this page to the BIOS,
	 * as trim_bios_range() will reserve the first page and isolate it away
	 * from memory allocators anyway.
	 */
	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
		pr_err("Failed to create 1:1 mapping for the first page!\n");
		return 1;
	}

378 379 380 381 382 383
	/*
	 * When making calls to the firmware everything needs to be 1:1
	 * mapped and addressable with 32-bit pointers. Map the kernel
	 * text and allocate a new stack because we can't rely on the
	 * stack pointer being < 4GB.
	 */
384
	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
385
		return 0;
386 387 388 389 390 391 392 393

	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
	if (!page)
		panic("Unable to allocate EFI runtime stack < 4GB\n");

	efi_scratch.phys_stack = virt_to_phys(page_address(page));
	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */

394
	npages = (_etext - _text) >> PAGE_SHIFT;
395
	text = __pa(_text);
396
	pfn = text >> PAGE_SHIFT;
397

398 399
	pf = _PAGE_RW | _PAGE_ENC;
	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
400
		pr_err("Failed to map kernel text 1:1\n");
401
		return 1;
402
	}
403 404 405 406

	return 0;
}

407 408
static void __init __map_region(efi_memory_desc_t *md, u64 va)
{
409
	unsigned long flags = _PAGE_RW;
410
	unsigned long pfn;
411
	pgd_t *pgd = efi_pgd;
412 413

	if (!(md->attribute & EFI_MEMORY_WB))
414
		flags |= _PAGE_PCD;
415

416 417
	pfn = md->phys_addr >> PAGE_SHIFT;
	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
			   md->phys_addr, va);
}

void __init efi_map_region(efi_memory_desc_t *md)
{
	unsigned long size = md->num_pages << PAGE_SHIFT;
	u64 pa = md->phys_addr;

	if (efi_enabled(EFI_OLD_MEMMAP))
		return old_map_region(md);

	/*
	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
	 * firmware which doesn't update all internal pointers after switching
	 * to virtual mode and would otherwise crap on us.
	 */
	__map_region(md, md->phys_addr);

437 438 439 440 441 442 443 444 445 446
	/*
	 * Enforce the 1:1 mapping as the default virtual address when
	 * booting in EFI mixed mode, because even though we may be
	 * running a 64-bit kernel, the firmware may only be 32-bit.
	 */
	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
		md->virt_addr = md->phys_addr;
		return;
	}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	efi_va -= size;

	/* Is PA 2M-aligned? */
	if (!(pa & (PMD_SIZE - 1))) {
		efi_va &= PMD_MASK;
	} else {
		u64 pa_offset = pa & (PMD_SIZE - 1);
		u64 prev_va = efi_va;

		/* get us the same offset within this 2M page */
		efi_va = (efi_va & PMD_MASK) + pa_offset;

		if (efi_va > prev_va)
			efi_va -= PMD_SIZE;
	}

	if (efi_va < EFI_VA_END) {
		pr_warn(FW_WARN "VA address range overflow!\n");
		return;
	}

	/* Do the VA map */
	__map_region(md, efi_va);
	md->virt_addr = efi_va;
}

473 474 475 476 477 478 479
/*
 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
 * md->virt_addr is the original virtual address which had been mapped in kexec
 * 1st kernel.
 */
void __init efi_map_region_fixed(efi_memory_desc_t *md)
{
480
	__map_region(md, md->phys_addr);
481 482 483
	__map_region(md, md->virt_addr);
}

484
void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
485
				 u32 type, u64 attribute)
486 487 488 489 490 491 492 493 494
{
	unsigned long last_map_pfn;

	if (type == EFI_MEMORY_MAPPED_IO)
		return ioremap(phys_addr, size);

	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
		unsigned long top = last_map_pfn << PAGE_SHIFT;
495
		efi_ioremap(top, size - (top - phys_addr), type, attribute);
496 497
	}

498 499 500
	if (!(attribute & EFI_MEMORY_WB))
		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);

501 502
	return (void __iomem *)__va(phys_addr);
}
503 504 505 506 507

void __init parse_efi_setup(u64 phys_addr, u32 data_len)
{
	efi_setup = phys_addr + sizeof(struct setup_data);
}
B
Borislav Petkov 已提交
508

509
static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
B
Borislav Petkov 已提交
510
{
511 512
	unsigned long pfn;
	pgd_t *pgd = efi_pgd;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	int err1, err2;

	/* Update the 1:1 mapping */
	pfn = md->phys_addr >> PAGE_SHIFT;
	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
	if (err1) {
		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
			   md->phys_addr, md->virt_addr);
	}

	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
	if (err2) {
		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
			   md->phys_addr, md->virt_addr);
	}

	return err1 || err2;
}

static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
{
	unsigned long pf = 0;

	if (md->attribute & EFI_MEMORY_XP)
		pf |= _PAGE_NX;

	if (!(md->attribute & EFI_MEMORY_RO))
		pf |= _PAGE_RW;

	return efi_update_mappings(md, pf);
}

void __init efi_runtime_update_mappings(void)
{
547 548 549 550 551 552 553 554
	efi_memory_desc_t *md;

	if (efi_enabled(EFI_OLD_MEMMAP)) {
		if (__supported_pte_mask & _PAGE_NX)
			runtime_code_page_mkexec();
		return;
	}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	/*
	 * Use the EFI Memory Attribute Table for mapping permissions if it
	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
	 */
	if (efi_enabled(EFI_MEM_ATTR)) {
		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
		return;
	}

	/*
	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
	 * published by the firmware. Even if we find a buggy implementation of
	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
	 * EFI_PROPERTIES_TABLE, because of the same reason.
	 */

573
	if (!efi_enabled(EFI_NX_PE_DATA))
B
Borislav Petkov 已提交
574 575
		return;

576
	for_each_efi_memory_desc(md) {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		unsigned long pf = 0;

		if (!(md->attribute & EFI_MEMORY_RUNTIME))
			continue;

		if (!(md->attribute & EFI_MEMORY_WB))
			pf |= _PAGE_PCD;

		if ((md->attribute & EFI_MEMORY_XP) ||
			(md->type == EFI_RUNTIME_SERVICES_DATA))
			pf |= _PAGE_NX;

		if (!(md->attribute & EFI_MEMORY_RO) &&
			(md->type != EFI_RUNTIME_SERVICES_CODE))
			pf |= _PAGE_RW;

593
		efi_update_mappings(md, pf);
594
	}
B
Borislav Petkov 已提交
595
}
596 597 598 599

void __init efi_dump_pagetable(void)
{
#ifdef CONFIG_EFI_PGT_DUMP
600 601 602 603
	if (efi_enabled(EFI_OLD_MEMMAP))
		ptdump_walk_pgd_level(NULL, swapper_pg_dir);
	else
		ptdump_walk_pgd_level(NULL, efi_pgd);
604 605
#endif
}
606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
#ifdef CONFIG_EFI_MIXED
extern efi_status_t efi64_thunk(u32, ...);

#define runtime_service32(func)						 \
({									 \
	u32 table = (u32)(unsigned long)efi.systab;			 \
	u32 *rt, *___f;							 \
									 \
	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
	*___f;								 \
})

/*
 * Switch to the EFI page tables early so that we can access the 1:1
 * runtime services mappings which are not mapped in any other page
 * tables. This function must be called before runtime_service32().
 *
 * Also, disable interrupts because the IDT points to 64-bit handlers,
 * which aren't going to function correctly when we switch to 32-bit.
 */
#define efi_thunk(f, ...)						\
({									\
	efi_status_t __s;						\
631 632
	unsigned long __flags;						\
	u32 __func;							\
633
									\
634 635
	local_irq_save(__flags);					\
	arch_efi_call_virt_setup();					\
636
									\
637 638
	__func = runtime_service32(f);					\
	__s = efi64_thunk(__func, __VA_ARGS__);				\
639
									\
640 641
	arch_efi_call_virt_teardown();					\
	local_irq_restore(__flags);					\
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
									\
	__s;								\
})

efi_status_t efi_thunk_set_virtual_address_map(
	void *phys_set_virtual_address_map,
	unsigned long memory_map_size,
	unsigned long descriptor_size,
	u32 descriptor_version,
	efi_memory_desc_t *virtual_map)
{
	efi_status_t status;
	unsigned long flags;
	u32 func;

	efi_sync_low_kernel_mappings();
	local_irq_save(flags);

660
	efi_scratch.prev_cr3 = __read_cr3();
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	write_cr3((unsigned long)efi_scratch.efi_pgt);
	__flush_tlb_all();

	func = (u32)(unsigned long)phys_set_virtual_address_map;
	status = efi64_thunk(func, memory_map_size, descriptor_size,
			     descriptor_version, virtual_map);

	write_cr3(efi_scratch.prev_cr3);
	__flush_tlb_all();
	local_irq_restore(flags);

	return status;
}

static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
	efi_status_t status;
	u32 phys_tm, phys_tc;

	spin_lock(&rtc_lock);

682 683
	phys_tm = virt_to_phys_or_null(tm);
	phys_tc = virt_to_phys_or_null(tc);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	status = efi_thunk(get_time, phys_tm, phys_tc);

	spin_unlock(&rtc_lock);

	return status;
}

static efi_status_t efi_thunk_set_time(efi_time_t *tm)
{
	efi_status_t status;
	u32 phys_tm;

	spin_lock(&rtc_lock);

699
	phys_tm = virt_to_phys_or_null(tm);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

	status = efi_thunk(set_time, phys_tm);

	spin_unlock(&rtc_lock);

	return status;
}

static efi_status_t
efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
			  efi_time_t *tm)
{
	efi_status_t status;
	u32 phys_enabled, phys_pending, phys_tm;

	spin_lock(&rtc_lock);

717 718 719
	phys_enabled = virt_to_phys_or_null(enabled);
	phys_pending = virt_to_phys_or_null(pending);
	phys_tm = virt_to_phys_or_null(tm);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

	status = efi_thunk(get_wakeup_time, phys_enabled,
			     phys_pending, phys_tm);

	spin_unlock(&rtc_lock);

	return status;
}

static efi_status_t
efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
{
	efi_status_t status;
	u32 phys_tm;

	spin_lock(&rtc_lock);

737
	phys_tm = virt_to_phys_or_null(tm);
738 739 740 741 742 743 744 745

	status = efi_thunk(set_wakeup_time, enabled, phys_tm);

	spin_unlock(&rtc_lock);

	return status;
}

746 747 748 749
static unsigned long efi_name_size(efi_char16_t *name)
{
	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
}
750 751 752 753 754 755 756 757 758

static efi_status_t
efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
		       u32 *attr, unsigned long *data_size, void *data)
{
	efi_status_t status;
	u32 phys_name, phys_vendor, phys_attr;
	u32 phys_data_size, phys_data;

759 760 761 762 763
	phys_data_size = virt_to_phys_or_null(data_size);
	phys_vendor = virt_to_phys_or_null(vendor);
	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
	phys_attr = virt_to_phys_or_null(attr);
	phys_data = virt_to_phys_or_null_size(data, *data_size);
764 765 766 767 768 769 770 771 772 773 774 775 776 777

	status = efi_thunk(get_variable, phys_name, phys_vendor,
			   phys_attr, phys_data_size, phys_data);

	return status;
}

static efi_status_t
efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
		       u32 attr, unsigned long data_size, void *data)
{
	u32 phys_name, phys_vendor, phys_data;
	efi_status_t status;

778 779 780
	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
	phys_vendor = virt_to_phys_or_null(vendor);
	phys_data = virt_to_phys_or_null_size(data, data_size);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	/* If data_size is > sizeof(u32) we've got problems */
	status = efi_thunk(set_variable, phys_name, phys_vendor,
			   attr, data_size, phys_data);

	return status;
}

static efi_status_t
efi_thunk_get_next_variable(unsigned long *name_size,
			    efi_char16_t *name,
			    efi_guid_t *vendor)
{
	efi_status_t status;
	u32 phys_name_size, phys_name, phys_vendor;

797 798 799
	phys_name_size = virt_to_phys_or_null(name_size);
	phys_vendor = virt_to_phys_or_null(vendor);
	phys_name = virt_to_phys_or_null_size(name, *name_size);
800 801 802 803 804 805 806 807 808 809 810 811 812

	status = efi_thunk(get_next_variable, phys_name_size,
			   phys_name, phys_vendor);

	return status;
}

static efi_status_t
efi_thunk_get_next_high_mono_count(u32 *count)
{
	efi_status_t status;
	u32 phys_count;

813
	phys_count = virt_to_phys_or_null(count);
814 815 816 817 818 819 820 821 822 823 824
	status = efi_thunk(get_next_high_mono_count, phys_count);

	return status;
}

static void
efi_thunk_reset_system(int reset_type, efi_status_t status,
		       unsigned long data_size, efi_char16_t *data)
{
	u32 phys_data;

825
	phys_data = virt_to_phys_or_null_size(data, data_size);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
}

static efi_status_t
efi_thunk_update_capsule(efi_capsule_header_t **capsules,
			 unsigned long count, unsigned long sg_list)
{
	/*
	 * To properly support this function we would need to repackage
	 * 'capsules' because the firmware doesn't understand 64-bit
	 * pointers.
	 */
	return EFI_UNSUPPORTED;
}

static efi_status_t
efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
			      u64 *remaining_space,
			      u64 *max_variable_size)
{
	efi_status_t status;
	u32 phys_storage, phys_remaining, phys_max;

	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
		return EFI_UNSUPPORTED;

853 854 855
	phys_storage = virt_to_phys_or_null(storage_space);
	phys_remaining = virt_to_phys_or_null(remaining_space);
	phys_max = virt_to_phys_or_null(max_variable_size);
856

857
	status = efi_thunk(query_variable_info, attr, phys_storage,
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
			   phys_remaining, phys_max);

	return status;
}

static efi_status_t
efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
			     unsigned long count, u64 *max_size,
			     int *reset_type)
{
	/*
	 * To properly support this function we would need to repackage
	 * 'capsules' because the firmware doesn't understand 64-bit
	 * pointers.
	 */
	return EFI_UNSUPPORTED;
}

void efi_thunk_runtime_setup(void)
{
	efi.get_time = efi_thunk_get_time;
	efi.set_time = efi_thunk_set_time;
	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
	efi.get_variable = efi_thunk_get_variable;
	efi.get_next_variable = efi_thunk_get_next_variable;
	efi.set_variable = efi_thunk_set_variable;
	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
	efi.reset_system = efi_thunk_reset_system;
	efi.query_variable_info = efi_thunk_query_variable_info;
	efi.update_capsule = efi_thunk_update_capsule;
	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
}
#endif /* CONFIG_EFI_MIXED */