property.c 42.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 */

#include <linux/acpi.h>
11 12
#include <linux/export.h>
#include <linux/kernel.h>
13
#include <linux/of.h>
14
#include <linux/of_address.h>
15
#include <linux/of_graph.h>
16
#include <linux/of_irq.h>
17
#include <linux/property.h>
18 19
#include <linux/etherdevice.h>
#include <linux/phy.h>
20

21
struct property_set {
22
	struct device *dev;
23
	struct fwnode_handle fwnode;
24
	const struct property_entry *properties;
25 26
};

27 28
static const struct fwnode_operations pset_fwnode_ops;

29
static inline bool is_pset_node(const struct fwnode_handle *fwnode)
30
{
31
	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
32 33
}

34 35 36 37 38 39 40 41 42 43 44 45
#define to_pset_node(__fwnode)						\
	({								\
		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
									\
		is_pset_node(__to_pset_node_fwnode) ?			\
			container_of(__to_pset_node_fwnode,		\
				     struct property_set, fwnode) :	\
			NULL;						\
	})

static const struct property_entry *
pset_prop_get(const struct property_set *pset, const char *name)
46
{
47
	const struct property_entry *prop;
48 49 50 51 52 53 54 55 56 57 58

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

59
static const void *pset_prop_find(const struct property_set *pset,
60
				  const char *propname, size_t length)
61
{
62 63
	const struct property_entry *prop;
	const void *pointer;
64

65 66 67
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
68 69 70 71
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
72 73 74 75 76 77 78
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

79
static int pset_prop_read_u8_array(const struct property_set *pset,
80 81 82
				   const char *propname,
				   u8 *values, size_t nval)
{
83
	const void *pointer;
84 85 86 87 88 89 90 91 92 93
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

94
static int pset_prop_read_u16_array(const struct property_set *pset,
95 96 97
				    const char *propname,
				    u16 *values, size_t nval)
{
98
	const void *pointer;
99 100 101 102 103 104 105 106 107 108
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

109
static int pset_prop_read_u32_array(const struct property_set *pset,
110 111 112
				    const char *propname,
				    u32 *values, size_t nval)
{
113
	const void *pointer;
114 115 116 117 118 119 120 121 122 123
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

124
static int pset_prop_read_u64_array(const struct property_set *pset,
125 126 127
				    const char *propname,
				    u64 *values, size_t nval)
{
128
	const void *pointer;
129 130 131 132 133 134 135 136 137 138
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

139
static int pset_prop_count_elems_of_size(const struct property_set *pset,
140 141
					 const char *propname, size_t length)
{
142
	const struct property_entry *prop;
143 144

	prop = pset_prop_get(pset, propname);
145 146
	if (!prop)
		return -EINVAL;
147 148 149 150

	return prop->length / length;
}

151
static int pset_prop_read_string_array(const struct property_set *pset,
152 153 154
				       const char *propname,
				       const char **strings, size_t nval)
{
155
	const struct property_entry *prop;
156
	const void *pointer;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	size_t array_len, length;

	/* Find out the array length. */
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;

	if (!prop->is_array)
		/* The array length for a non-array string property is 1. */
		array_len = 1;
	else
		/* Find the length of an array. */
		array_len = pset_prop_count_elems_of_size(pset, propname,
							  sizeof(const char *));

	/* Return how many there are if strings is NULL. */
	if (!strings)
		return array_len;

	array_len = min(nval, array_len);
	length = array_len * sizeof(*strings);
178 179 180 181 182 183

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
184

185
	return array_len;
186
}
187

188
struct fwnode_handle *dev_fwnode(struct device *dev)
189 190 191 192
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
193
EXPORT_SYMBOL_GPL(dev_fwnode);
194

195
static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
196 197 198 199 200
					 const char *propname)
{
	return !!pset_prop_get(to_pset_node(fwnode), propname);
}

201
static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
202 203 204 205
				      const char *propname,
				      unsigned int elem_size, void *val,
				      size_t nval)
{
206
	const struct property_set *node = to_pset_node(fwnode);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

	if (!val)
		return pset_prop_count_elems_of_size(node, propname, elem_size);

	switch (elem_size) {
	case sizeof(u8):
		return pset_prop_read_u8_array(node, propname, val, nval);
	case sizeof(u16):
		return pset_prop_read_u16_array(node, propname, val, nval);
	case sizeof(u32):
		return pset_prop_read_u32_array(node, propname, val, nval);
	case sizeof(u64):
		return pset_prop_read_u64_array(node, propname, val, nval);
	}

	return -ENXIO;
}

225 226 227 228
static int
pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
				       const char *propname,
				       const char **val, size_t nval)
229 230 231 232 233 234 235 236 237 238 239
{
	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
					   val, nval);
}

static const struct fwnode_operations pset_fwnode_ops = {
	.property_present = pset_fwnode_property_present,
	.property_read_int_array = pset_fwnode_read_int_array,
	.property_read_string_array = pset_fwnode_property_read_string_array,
};

240 241 242 243 244 245 246 247 248
/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
249
	return fwnode_property_present(dev_fwnode(dev), propname);
250 251 252
}
EXPORT_SYMBOL_GPL(device_property_present);

253 254 255 256 257
/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
258 259
bool fwnode_property_present(const struct fwnode_handle *fwnode,
			     const char *propname)
260 261 262
{
	bool ret;

263
	ret = fwnode_call_bool_op(fwnode, property_present, propname);
264 265
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
266
		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
267
					 propname);
268 269
	return ret;
}
270 271
EXPORT_SYMBOL_GPL(fwnode_property_present);

272 273 274 275
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
276
 * @val: The values are stored here or %NULL to return the number of values
277 278 279 280 281
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
282 283
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
284 285 286 287
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
288
 *	   %-ENXIO if no suitable firmware interface is present.
289 290 291 292
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
293
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
294 295 296 297 298 299 300
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
301
 * @val: The values are stored here or %NULL to return the number of values
302 303 304 305 306
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
307 308
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
309 310 311 312
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
313
 *	   %-ENXIO if no suitable firmware interface is present.
314 315 316 317
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
318
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
319 320 321 322 323 324 325
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
326
 * @val: The values are stored here or %NULL to return the number of values
327 328 329 330 331
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
332 333
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
334 335 336 337
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
338
 *	   %-ENXIO if no suitable firmware interface is present.
339 340 341 342
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
343
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
344 345 346 347 348 349 350
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
351
 * @val: The values are stored here or %NULL to return the number of values
352 353 354 355 356
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
357 358
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
359 360 361 362
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
363
 *	   %-ENXIO if no suitable firmware interface is present.
364 365 366 367
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
368
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
369 370 371 372 373 374 375
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
376
 * @val: The values are stored here or %NULL to return the number of values
377 378 379 380 381
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
382 383
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
384 385 386 387
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
388
 *	   %-ENXIO if no suitable firmware interface is present.
389 390 391 392
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
393
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
410
 *	   %-ENXIO if no suitable firmware interface is present.
411 412 413 414
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
415
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
416 417
}
EXPORT_SYMBOL_GPL(device_property_read_string);
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

441
static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
					  const char *propname,
					  unsigned int elem_size, void *val,
					  size_t nval)
{
	int ret;

	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
				 elem_size, val, nval);
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
		ret = fwnode_call_int_op(
			fwnode->secondary, property_read_int_array, propname,
			elem_size, val, nval);

	return ret;
}
458

459 460 461 462
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
463
 * @val: The values are stored here or %NULL to return the number of values
464 465 466 467 468
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
469 470
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
471 472 473 474 475 476
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
477
int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
478 479
				  const char *propname, u8 *val, size_t nval)
{
480 481
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
					      val, nval);
482 483 484 485 486 487 488
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
489
 * @val: The values are stored here or %NULL to return the number of values
490 491 492 493 494
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
495 496
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
497 498 499 500 501 502
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
503
int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
504 505
				   const char *propname, u16 *val, size_t nval)
{
506 507
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
					      val, nval);
508 509 510 511 512 513 514
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
515
 * @val: The values are stored here or %NULL to return the number of values
516 517 518 519 520
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
521 522
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
523 524 525 526 527 528
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
529
int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
530 531
				   const char *propname, u32 *val, size_t nval)
{
532 533
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
					      val, nval);
534 535 536 537 538 539 540
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
541
 * @val: The values are stored here or %NULL to return the number of values
542 543 544 545 546
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
547 548
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
549 550 551 552 553 554
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
555
int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
556 557
				   const char *propname, u64 *val, size_t nval)
{
558 559
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
					      val, nval);
560 561 562 563 564 565 566
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
567
 * @val: The values are stored here or %NULL to return the number of values
568 569 570 571 572
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
573 574
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
575 576
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
577
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
578 579 580
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
581
int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
582 583 584
				      const char *propname, const char **val,
				      size_t nval)
{
585 586
	int ret;

587 588
	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
				 val, nval);
589 590
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
591 592 593
		ret = fwnode_call_int_op(fwnode->secondary,
					 property_read_string_array, propname,
					 val, nval);
594
	return ret;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
613
int fwnode_property_read_string(const struct fwnode_handle *fwnode,
614 615
				const char *propname, const char **val)
{
616
	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
617

618
	return ret < 0 ? ret : 0;
619 620 621
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
637
int fwnode_property_match_string(const struct fwnode_handle *fwnode,
638 639 640
	const char *propname, const char *string)
{
	const char **values;
641
	int nval, ret;
642 643 644 645 646

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

647 648 649
	if (nval == 0)
		return -ENODATA;

650 651 652 653 654 655 656 657
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

658 659 660
	ret = match_string(values, nval, string);
	if (ret < 0)
		ret = -ENODATA;
661 662 663 664 665 666
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/**
 * fwnode_property_get_reference_args() - Find a reference with arguments
 * @fwnode:	Firmware node where to look for the reference
 * @prop:	The name of the property
 * @nargs_prop:	The name of the property telling the number of
 *		arguments in the referred node. NULL if @nargs is known,
 *		otherwise @nargs is ignored. Only relevant on OF.
 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 * @index:	Index of the reference, from zero onwards.
 * @args:	Result structure with reference and integer arguments.
 *
 * Obtain a reference based on a named property in an fwnode, with
 * integer arguments.
 *
 * Caller is responsible to call fwnode_handle_put() on the returned
 * args->fwnode pointer.
 *
684 685 686 687
 * Returns: %0 on success
 *	    %-ENOENT when the index is out of bounds, the index has an empty
 *		     reference or the property was not found
 *	    %-EINVAL on parse error
688 689 690 691 692 693 694 695 696 697 698
 */
int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
				       const char *prop, const char *nargs_prop,
				       unsigned int nargs, unsigned int index,
				       struct fwnode_reference_args *args)
{
	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
				  nargs, index, args);
}
EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static void property_entry_free_data(const struct property_entry *p)
{
	size_t i, nval;

	if (p->is_array) {
		if (p->is_string && p->pointer.str) {
			nval = p->length / sizeof(const char *);
			for (i = 0; i < nval; i++)
				kfree(p->pointer.str[i]);
		}
		kfree(p->pointer.raw_data);
	} else if (p->is_string) {
		kfree(p->value.str);
	}
	kfree(p->name);
}

716 717
static int property_copy_string_array(struct property_entry *dst,
				      const struct property_entry *src)
718
{
719 720 721
	char **d;
	size_t nval = src->length / sizeof(*d);
	int i;
722

723 724 725
	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
726

727 728 729 730 731 732 733
	for (i = 0; i < nval; i++) {
		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
		if (!d[i] && src->pointer.str[i]) {
			while (--i >= 0)
				kfree(d[i]);
			kfree(d);
			return -ENOMEM;
734 735 736
		}
	}

737 738
	dst->pointer.raw_data = d;
	return 0;
739 740
}

741 742
static int property_entry_copy_data(struct property_entry *dst,
				    const struct property_entry *src)
743
{
744
	int error;
745 746

	if (src->is_array) {
747 748
		if (!src->length)
			return -ENODATA;
749

750
		if (src->is_string) {
751 752
			error = property_copy_string_array(dst, src);
			if (error)
753
				return error;
754 755 756
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
757 758
			if (!dst->pointer.raw_data)
				return -ENOMEM;
759 760 761
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
762 763
		if (!dst->value.str && src->value.str)
			return -ENOMEM;
764 765 766 767 768 769 770 771
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

772 773 774
	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		goto out_free_data;
775

776
	return 0;
777

778 779 780
out_free_data:
	property_entry_free_data(dst);
	return -ENOMEM;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
}

/**
 * property_entries_dup - duplicate array of properties
 * @properties: array of properties to copy
 *
 * This function creates a deep copy of the given NULL-terminated array
 * of property entries.
 */
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
	struct property_entry *p;
	int i, n = 0;

	while (properties[n].name)
		n++;

	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n; i++) {
		int ret = property_entry_copy_data(&p[i], &properties[i]);
		if (ret) {
			while (--i >= 0)
				property_entry_free_data(&p[i]);
			kfree(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);

/**
 * property_entries_free - free previously allocated array of properties
 * @properties: array of properties to destroy
 *
 * This function frees given NULL-terminated array of property entries,
 * along with their data.
 */
void property_entries_free(const struct property_entry *properties)
{
	const struct property_entry *p;

	for (p = properties; p->name; p++)
		property_entry_free_data(p);

	kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);

/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	if (!pset)
		return;

	property_entries_free(pset->properties);
	kfree(pset);
849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
863
	struct property_entry *properties;
864 865 866 867 868 869
	struct property_set *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

870 871
	properties = property_entries_dup(pset->properties);
	if (IS_ERR(properties)) {
872
		kfree(p);
873
		return ERR_CAST(properties);
874 875
	}

876
	p->properties = properties;
877 878 879 880
	return p;
}

/**
881
 * device_remove_properties - Remove properties from a device object.
882 883 884
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
885
 * secondary firmware node with device_add_properties(). Memory allocated
886 887
 * to the properties will also be released.
 */
888
void device_remove_properties(struct device *dev)
889 890
{
	struct fwnode_handle *fwnode;
891
	struct property_set *pset;
892 893 894 895 896 897 898 899 900

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
901 902
	pset = to_pset_node(fwnode);
	if (pset) {
903 904
		set_primary_fwnode(dev, NULL);
	} else {
905 906
		pset = to_pset_node(fwnode->secondary);
		if (pset && dev == pset->dev)
907 908
			set_secondary_fwnode(dev, NULL);
	}
909 910
	if (pset && dev == pset->dev)
		pset_free_set(pset);
911
}
912
EXPORT_SYMBOL_GPL(device_remove_properties);
913 914

/**
915
 * device_add_properties - Add a collection of properties to a device object.
916
 * @dev: Device to add properties to.
917
 * @properties: Collection of properties to add.
918
 *
919 920 921
 * Associate a collection of device properties represented by @properties with
 * @dev as its secondary firmware node. The function takes a copy of
 * @properties.
922
 */
923 924
int device_add_properties(struct device *dev,
			  const struct property_entry *properties)
925
{
926
	struct property_set *p, pset;
927

928
	if (!properties)
929 930
		return -EINVAL;

931 932 933
	pset.properties = properties;

	p = pset_copy_set(&pset);
934 935 936
	if (IS_ERR(p))
		return PTR_ERR(p);

937
	p->fwnode.ops = &pset_fwnode_ops;
938
	set_secondary_fwnode(dev, &p->fwnode);
939
	p->dev = dev;
940 941
	return 0;
}
942
EXPORT_SYMBOL_GPL(device_add_properties);
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/**
 * fwnode_get_next_parent - Iterate to the node's parent
 * @fwnode: Firmware whose parent is retrieved
 *
 * This is like fwnode_get_parent() except that it drops the refcount
 * on the passed node, making it suitable for iterating through a
 * node's parents.
 *
 * Returns a node pointer with refcount incremented, use
 * fwnode_handle_node() on it when done.
 */
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = fwnode_get_parent(fwnode);

	fwnode_handle_put(fwnode);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);

965 966 967 968 969 970 971
/**
 * fwnode_get_parent - Return parent firwmare node
 * @fwnode: Firmware whose parent is retrieved
 *
 * Return parent firmware node of the given node if possible or %NULL if no
 * parent was available.
 */
972
struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
973
{
974
	return fwnode_call_ptr_op(fwnode, get_parent);
975 976 977
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);

978
/**
979 980 981
 * fwnode_get_next_child_node - Return the next child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
982
 */
983 984 985
struct fwnode_handle *
fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
			   struct fwnode_handle *child)
986
{
987
	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
988
}
989 990
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 * fwnode_get_next_available_child_node - Return the next
 * available child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
 */
struct fwnode_handle *
fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
				     struct fwnode_handle *child)
{
	struct fwnode_handle *next_child = child;

	if (!fwnode)
		return NULL;

	do {
		next_child = fwnode_get_next_child_node(fwnode, next_child);

		if (!next_child || fwnode_device_is_available(next_child))
			break;
	} while (next_child);

	return next_child;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct fwnode_handle *fwnode = NULL;

	if (dev->of_node)
		fwnode = &dev->of_node->fwnode;
	else if (adev)
		fwnode = acpi_fwnode_handle(adev);

	return fwnode_get_next_child_node(fwnode, child);
}
1035 1036
EXPORT_SYMBOL_GPL(device_get_next_child_node);

1037
/**
1038 1039
 * fwnode_get_named_child_node - Return first matching named child node handle
 * @fwnode: Firmware node to find the named child node for.
1040 1041
 * @childname: String to match child node name against.
 */
1042 1043 1044
struct fwnode_handle *
fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
			    const char *childname)
1045
{
1046
	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047
}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);

/**
 * device_get_named_child_node - Return first matching named child node handle
 * @dev: Device to find the named child node for.
 * @childname: String to match child node name against.
 */
struct fwnode_handle *device_get_named_child_node(struct device *dev,
						  const char *childname)
{
	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
1060 1061
EXPORT_SYMBOL_GPL(device_get_named_child_node);

1062 1063 1064
/**
 * fwnode_handle_get - Obtain a reference to a device node
 * @fwnode: Pointer to the device node to obtain the reference to.
1065 1066
 *
 * Returns the fwnode handle.
1067
 */
1068
struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069
{
1070 1071 1072 1073
	if (!fwnode_has_op(fwnode, get))
		return fwnode;

	return fwnode_call_ptr_op(fwnode, get);
1074 1075 1076
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
1087
	fwnode_call_void_op(fwnode, put);
1088 1089 1090
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

1091 1092 1093 1094
/**
 * fwnode_device_is_available - check if a device is available for use
 * @fwnode: Pointer to the fwnode of the device.
 */
1095
bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096
{
1097
	return fwnode_call_bool_op(fwnode, device_is_available);
1098 1099 1100
}
EXPORT_SYMBOL_GPL(fwnode_device_is_available);

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

1146
/**
1147 1148
 * fwnode_get_phy_mode - Get phy mode for given firmware node
 * @fwnode:	Pointer to the given node
1149 1150 1151 1152 1153
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
1154
int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155 1156 1157 1158
{
	const char *pm;
	int err, i;

1159
	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160
	if (err < 0)
1161
		err = fwnode_property_read_string(fwnode,
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);

/**
 * device_get_phy_mode - Get phy mode for given device
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	return fwnode_get_phy_mode(dev_fwnode(dev));
}
1186 1187
EXPORT_SYMBOL_GPL(device_get_phy_mode);

1188
static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189 1190 1191
				 const char *name, char *addr,
				 int alen)
{
1192
	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193

1194
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195 1196 1197 1198 1199
		return addr;
	return NULL;
}

/**
1200 1201
 * fwnode_get_mac_address - Get the MAC from the firmware node
 * @fwnode:	Pointer to the firmware node
1202 1203 1204 1205
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1216 1217 1218 1219 1220
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1221
*/
1222
void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223
{
1224
	char *res;
1225

1226
	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227 1228 1229
	if (res)
		return res;

1230
	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231 1232
	if (res)
		return res;
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
}
EXPORT_SYMBOL(fwnode_get_mac_address);

/**
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 */
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247 1248
}
EXPORT_SYMBOL(device_get_mac_address);
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/**
 * fwnode_irq_get - Get IRQ directly from a fwnode
 * @fwnode:	Pointer to the firmware node
 * @index:	Zero-based index of the IRQ
 *
 * Returns Linux IRQ number on success. Other values are determined
 * accordingly to acpi_/of_ irq_get() operation.
 */
int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
{
	struct device_node *of_node = to_of_node(fwnode);
	struct resource res;
	int ret;

	if (IS_ENABLED(CONFIG_OF) && of_node)
		return of_irq_get(of_node, index);

	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
	if (ret)
		return ret;

	return res.start;
}
EXPORT_SYMBOL(fwnode_irq_get);

1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * device_graph_get_next_endpoint - Get next endpoint firmware node
 * @fwnode: Pointer to the parent firmware node
 * @prev: Previous endpoint node or %NULL to get the first
 *
 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 * are available.
 */
struct fwnode_handle *
1284
fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285 1286
			       struct fwnode_handle *prev)
{
1287
	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288 1289 1290
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);

1291 1292 1293 1294 1295 1296 1297
/**
 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 * @endpoint: Endpoint firmware node of the port
 *
 * Return: the firmware node of the device the @endpoint belongs to.
 */
struct fwnode_handle *
1298
fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
{
	struct fwnode_handle *port, *parent;

	port = fwnode_get_parent(endpoint);
	parent = fwnode_call_ptr_op(port, graph_get_port_parent);

	fwnode_handle_put(port);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);

1311 1312 1313 1314 1315 1316 1317
/**
 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote device the @fwnode points to.
 */
struct fwnode_handle *
1318
fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319
{
1320
	struct fwnode_handle *endpoint, *parent;
1321

1322 1323
	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
	parent = fwnode_graph_get_port_parent(endpoint);
1324

1325
	fwnode_handle_put(endpoint);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);

/**
 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote port the @fwnode points to.
 */
1337 1338
struct fwnode_handle *
fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339
{
1340
	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);

/**
 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote endpoint the @fwnode points to.
 */
struct fwnode_handle *
1351
fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352
{
1353
	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354 1355
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365
/**
 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
 * @port_id: identifier of the parent port node
 * @endpoint_id: identifier of the endpoint node
 *
 * Return: Remote fwnode handle associated with remote endpoint node linked
 *	   to @node. Use fwnode_node_put() on it when done.
 */
1366 1367 1368
struct fwnode_handle *
fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
			     u32 endpoint_id)
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
{
	struct fwnode_handle *endpoint = NULL;

	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
		struct fwnode_endpoint fwnode_ep;
		struct fwnode_handle *remote;
		int ret;

		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
		if (ret < 0)
			continue;

		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
			continue;

		remote = fwnode_graph_get_remote_port_parent(endpoint);
		if (!remote)
			return NULL;

		return fwnode_device_is_available(remote) ? remote : NULL;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);

1395 1396 1397 1398 1399 1400 1401 1402 1403
/**
 * fwnode_graph_parse_endpoint - parse common endpoint node properties
 * @fwnode: pointer to endpoint fwnode_handle
 * @endpoint: pointer to the fwnode endpoint data structure
 *
 * Parse @fwnode representing a graph endpoint node and store the
 * information in @endpoint. The caller must hold a reference to
 * @fwnode.
 */
1404
int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405 1406 1407 1408
				struct fwnode_endpoint *endpoint)
{
	memset(endpoint, 0, sizeof(*endpoint));

1409
	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410 1411
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412 1413 1414 1415 1416 1417 1418

void *device_get_match_data(struct device *dev)
{
	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data,
				  dev);
}
EXPORT_SYMBOL_GPL(device_get_match_data);