property.c 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
14 15
#include <linux/export.h>
#include <linux/kernel.h>
16
#include <linux/of.h>
17
#include <linux/of_address.h>
18
#include <linux/of_graph.h>
19
#include <linux/property.h>
20 21
#include <linux/etherdevice.h>
#include <linux/phy.h>
22

23
struct property_set {
24
	struct device *dev;
25
	struct fwnode_handle fwnode;
26
	const struct property_entry *properties;
27 28
};

29 30
static const struct fwnode_operations pset_fwnode_ops;

31
static inline bool is_pset_node(const struct fwnode_handle *fwnode)
32
{
33
	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
34 35
}

36 37 38 39 40 41 42 43 44 45 46 47
#define to_pset_node(__fwnode)						\
	({								\
		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
									\
		is_pset_node(__to_pset_node_fwnode) ?			\
			container_of(__to_pset_node_fwnode,		\
				     struct property_set, fwnode) :	\
			NULL;						\
	})

static const struct property_entry *
pset_prop_get(const struct property_set *pset, const char *name)
48
{
49
	const struct property_entry *prop;
50 51 52 53 54 55 56 57 58 59 60

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

61
static const void *pset_prop_find(const struct property_set *pset,
62
				  const char *propname, size_t length)
63
{
64 65
	const struct property_entry *prop;
	const void *pointer;
66

67 68 69
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
70 71 72 73
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
74 75 76 77 78 79 80
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

81
static int pset_prop_read_u8_array(const struct property_set *pset,
82 83 84
				   const char *propname,
				   u8 *values, size_t nval)
{
85
	const void *pointer;
86 87 88 89 90 91 92 93 94 95
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

96
static int pset_prop_read_u16_array(const struct property_set *pset,
97 98 99
				    const char *propname,
				    u16 *values, size_t nval)
{
100
	const void *pointer;
101 102 103 104 105 106 107 108 109 110
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

111
static int pset_prop_read_u32_array(const struct property_set *pset,
112 113 114
				    const char *propname,
				    u32 *values, size_t nval)
{
115
	const void *pointer;
116 117 118 119 120 121 122 123 124 125
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

126
static int pset_prop_read_u64_array(const struct property_set *pset,
127 128 129
				    const char *propname,
				    u64 *values, size_t nval)
{
130
	const void *pointer;
131 132 133 134 135 136 137 138 139 140
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

141
static int pset_prop_count_elems_of_size(const struct property_set *pset,
142 143
					 const char *propname, size_t length)
{
144
	const struct property_entry *prop;
145 146

	prop = pset_prop_get(pset, propname);
147 148
	if (!prop)
		return -EINVAL;
149 150 151 152

	return prop->length / length;
}

153
static int pset_prop_read_string_array(const struct property_set *pset,
154 155 156
				       const char *propname,
				       const char **strings, size_t nval)
{
157
	const struct property_entry *prop;
158
	const void *pointer;
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	size_t array_len, length;

	/* Find out the array length. */
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;

	if (!prop->is_array)
		/* The array length for a non-array string property is 1. */
		array_len = 1;
	else
		/* Find the length of an array. */
		array_len = pset_prop_count_elems_of_size(pset, propname,
							  sizeof(const char *));

	/* Return how many there are if strings is NULL. */
	if (!strings)
		return array_len;

	array_len = min(nval, array_len);
	length = array_len * sizeof(*strings);
180 181 182 183 184 185

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
186

187
	return array_len;
188
}
189

190
struct fwnode_handle *dev_fwnode(struct device *dev)
191 192 193 194
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
195
EXPORT_SYMBOL_GPL(dev_fwnode);
196

197
static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
198 199 200 201 202
					 const char *propname)
{
	return !!pset_prop_get(to_pset_node(fwnode), propname);
}

203
static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
204 205 206 207
				      const char *propname,
				      unsigned int elem_size, void *val,
				      size_t nval)
{
208
	const struct property_set *node = to_pset_node(fwnode);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	if (!val)
		return pset_prop_count_elems_of_size(node, propname, elem_size);

	switch (elem_size) {
	case sizeof(u8):
		return pset_prop_read_u8_array(node, propname, val, nval);
	case sizeof(u16):
		return pset_prop_read_u16_array(node, propname, val, nval);
	case sizeof(u32):
		return pset_prop_read_u32_array(node, propname, val, nval);
	case sizeof(u64):
		return pset_prop_read_u64_array(node, propname, val, nval);
	}

	return -ENXIO;
}

227 228 229 230
static int
pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
				       const char *propname,
				       const char **val, size_t nval)
231 232 233 234 235 236 237 238 239 240 241
{
	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
					   val, nval);
}

static const struct fwnode_operations pset_fwnode_ops = {
	.property_present = pset_fwnode_property_present,
	.property_read_int_array = pset_fwnode_read_int_array,
	.property_read_string_array = pset_fwnode_property_read_string_array,
};

242 243 244 245 246 247 248 249 250
/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
251
	return fwnode_property_present(dev_fwnode(dev), propname);
252 253 254
}
EXPORT_SYMBOL_GPL(device_property_present);

255 256 257 258 259
/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
260 261
bool fwnode_property_present(const struct fwnode_handle *fwnode,
			     const char *propname)
262 263 264
{
	bool ret;

265
	ret = fwnode_call_bool_op(fwnode, property_present, propname);
266 267
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
268
		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
269
					 propname);
270 271
	return ret;
}
272 273
EXPORT_SYMBOL_GPL(fwnode_property_present);

274 275 276 277
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
278
 * @val: The values are stored here or %NULL to return the number of values
279 280 281 282 283
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
284 285
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
286 287 288 289
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
290
 *	   %-ENXIO if no suitable firmware interface is present.
291 292 293 294
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
295
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
296 297 298 299 300 301 302
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
303
 * @val: The values are stored here or %NULL to return the number of values
304 305 306 307 308
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
309 310
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
311 312 313 314
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
315
 *	   %-ENXIO if no suitable firmware interface is present.
316 317 318 319
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
320
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
321 322 323 324 325 326 327
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
328
 * @val: The values are stored here or %NULL to return the number of values
329 330 331 332 333
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
334 335
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
336 337 338 339
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
340
 *	   %-ENXIO if no suitable firmware interface is present.
341 342 343 344
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
345
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
346 347 348 349 350 351 352
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
353
 * @val: The values are stored here or %NULL to return the number of values
354 355 356 357 358
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
359 360
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
361 362 363 364
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
365
 *	   %-ENXIO if no suitable firmware interface is present.
366 367 368 369
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
370
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
371 372 373 374 375 376 377
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
378
 * @val: The values are stored here or %NULL to return the number of values
379 380 381 382 383
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
384 385
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
386 387 388 389
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
390
 *	   %-ENXIO if no suitable firmware interface is present.
391 392 393 394
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
395
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
412
 *	   %-ENXIO if no suitable firmware interface is present.
413 414 415 416
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
417
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
418 419
}
EXPORT_SYMBOL_GPL(device_property_read_string);
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

443
static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
					  const char *propname,
					  unsigned int elem_size, void *val,
					  size_t nval)
{
	int ret;

	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
				 elem_size, val, nval);
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
		ret = fwnode_call_int_op(
			fwnode->secondary, property_read_int_array, propname,
			elem_size, val, nval);

	return ret;
}
460

461 462 463 464
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
465
 * @val: The values are stored here or %NULL to return the number of values
466 467 468 469 470
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
471 472
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
473 474 475 476 477 478
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
479
int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
480 481
				  const char *propname, u8 *val, size_t nval)
{
482 483
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
					      val, nval);
484 485 486 487 488 489 490
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
491
 * @val: The values are stored here or %NULL to return the number of values
492 493 494 495 496
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
497 498
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
499 500 501 502 503 504
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
505
int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
506 507
				   const char *propname, u16 *val, size_t nval)
{
508 509
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
					      val, nval);
510 511 512 513 514 515 516
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
517
 * @val: The values are stored here or %NULL to return the number of values
518 519 520 521 522
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
523 524
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
525 526 527 528 529 530
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
531
int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
532 533
				   const char *propname, u32 *val, size_t nval)
{
534 535
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
					      val, nval);
536 537 538 539 540 541 542
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
543
 * @val: The values are stored here or %NULL to return the number of values
544 545 546 547 548
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
549 550
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
551 552 553 554 555 556
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
557
int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
558 559
				   const char *propname, u64 *val, size_t nval)
{
560 561
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
					      val, nval);
562 563 564 565 566 567 568
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
569
 * @val: The values are stored here or %NULL to return the number of values
570 571 572 573 574
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
575 576
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
577 578
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
579
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
580 581 582
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
583
int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
584 585 586
				      const char *propname, const char **val,
				      size_t nval)
{
587 588
	int ret;

589 590
	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
				 val, nval);
591 592
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
593 594 595
		ret = fwnode_call_int_op(fwnode->secondary,
					 property_read_string_array, propname,
					 val, nval);
596
	return ret;
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
615
int fwnode_property_read_string(const struct fwnode_handle *fwnode,
616 617
				const char *propname, const char **val)
{
618
	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
619

620
	return ret < 0 ? ret : 0;
621 622 623
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
639
int fwnode_property_match_string(const struct fwnode_handle *fwnode,
640 641 642
	const char *propname, const char *string)
{
	const char **values;
643
	int nval, ret;
644 645 646 647 648

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

649 650 651
	if (nval == 0)
		return -ENODATA;

652 653 654 655 656 657 658 659
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

660 661 662
	ret = match_string(values, nval, string);
	if (ret < 0)
		ret = -ENODATA;
663 664 665 666 667 668
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
/**
 * fwnode_property_get_reference_args() - Find a reference with arguments
 * @fwnode:	Firmware node where to look for the reference
 * @prop:	The name of the property
 * @nargs_prop:	The name of the property telling the number of
 *		arguments in the referred node. NULL if @nargs is known,
 *		otherwise @nargs is ignored. Only relevant on OF.
 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 * @index:	Index of the reference, from zero onwards.
 * @args:	Result structure with reference and integer arguments.
 *
 * Obtain a reference based on a named property in an fwnode, with
 * integer arguments.
 *
 * Caller is responsible to call fwnode_handle_put() on the returned
 * args->fwnode pointer.
 *
686 687 688 689
 * Returns: %0 on success
 *	    %-ENOENT when the index is out of bounds, the index has an empty
 *		     reference or the property was not found
 *	    %-EINVAL on parse error
690 691 692 693 694 695 696 697 698 699 700
 */
int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
				       const char *prop, const char *nargs_prop,
				       unsigned int nargs, unsigned int index,
				       struct fwnode_reference_args *args)
{
	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
				  nargs, index, args);
}
EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);

701 702
static int property_copy_string_array(struct property_entry *dst,
				      const struct property_entry *src)
703
{
704 705 706
	char **d;
	size_t nval = src->length / sizeof(*d);
	int i;
707

708 709 710
	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
711

712 713 714 715 716 717 718
	for (i = 0; i < nval; i++) {
		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
		if (!d[i] && src->pointer.str[i]) {
			while (--i >= 0)
				kfree(d[i]);
			kfree(d);
			return -ENOMEM;
719 720 721
		}
	}

722 723
	dst->pointer.raw_data = d;
	return 0;
724 725
}

726 727
static int property_entry_copy_data(struct property_entry *dst,
				    const struct property_entry *src)
728
{
729
	int error;
730 731 732 733 734 735

	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		return -ENOMEM;

	if (src->is_array) {
736 737 738 739
		if (!src->length) {
			error = -ENODATA;
			goto out_free_name;
		}
740

741
		if (src->is_string) {
742 743 744
			error = property_copy_string_array(dst, src);
			if (error)
				goto out_free_name;
745 746 747
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
748 749 750 751
			if (!dst->pointer.raw_data) {
				error = -ENOMEM;
				goto out_free_name;
			}
752 753 754
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
755 756 757 758
		if (!dst->value.str && src->value.str) {
			error = -ENOMEM;
			goto out_free_name;
		}
759 760 761 762 763 764 765 766 767
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

	return 0;
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

out_free_name:
	kfree(dst->name);
	return error;
}

static void property_entry_free_data(const struct property_entry *p)
{
	size_t i, nval;

	if (p->is_array) {
		if (p->is_string && p->pointer.str) {
			nval = p->length / sizeof(const char *);
			for (i = 0; i < nval; i++)
				kfree(p->pointer.str[i]);
		}
		kfree(p->pointer.raw_data);
	} else if (p->is_string) {
		kfree(p->value.str);
	}
	kfree(p->name);
}

/**
 * property_entries_dup - duplicate array of properties
 * @properties: array of properties to copy
 *
 * This function creates a deep copy of the given NULL-terminated array
 * of property entries.
 */
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
	struct property_entry *p;
	int i, n = 0;

	while (properties[n].name)
		n++;

	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n; i++) {
		int ret = property_entry_copy_data(&p[i], &properties[i]);
		if (ret) {
			while (--i >= 0)
				property_entry_free_data(&p[i]);
			kfree(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);

/**
 * property_entries_free - free previously allocated array of properties
 * @properties: array of properties to destroy
 *
 * This function frees given NULL-terminated array of property entries,
 * along with their data.
 */
void property_entries_free(const struct property_entry *properties)
{
	const struct property_entry *p;

	for (p = properties; p->name; p++)
		property_entry_free_data(p);

	kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);

/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	if (!pset)
		return;

	property_entries_free(pset->properties);
	kfree(pset);
857 858 859 860 861 862 863 864 865 866 867 868 869 870
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
871
	struct property_entry *properties;
872 873 874 875 876 877
	struct property_set *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

878 879
	properties = property_entries_dup(pset->properties);
	if (IS_ERR(properties)) {
880
		kfree(p);
881
		return ERR_CAST(properties);
882 883
	}

884
	p->properties = properties;
885 886 887 888
	return p;
}

/**
889
 * device_remove_properties - Remove properties from a device object.
890 891 892
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
893
 * secondary firmware node with device_add_properties(). Memory allocated
894 895
 * to the properties will also be released.
 */
896
void device_remove_properties(struct device *dev)
897 898
{
	struct fwnode_handle *fwnode;
899
	struct property_set *pset;
900 901 902 903 904 905 906 907 908

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
909 910
	pset = to_pset_node(fwnode);
	if (pset) {
911 912
		set_primary_fwnode(dev, NULL);
	} else {
913 914
		pset = to_pset_node(fwnode->secondary);
		if (pset && dev == pset->dev)
915 916
			set_secondary_fwnode(dev, NULL);
	}
917 918
	if (pset && dev == pset->dev)
		pset_free_set(pset);
919
}
920
EXPORT_SYMBOL_GPL(device_remove_properties);
921 922

/**
923
 * device_add_properties - Add a collection of properties to a device object.
924
 * @dev: Device to add properties to.
925
 * @properties: Collection of properties to add.
926
 *
927 928 929
 * Associate a collection of device properties represented by @properties with
 * @dev as its secondary firmware node. The function takes a copy of
 * @properties.
930
 */
931 932
int device_add_properties(struct device *dev,
			  const struct property_entry *properties)
933
{
934
	struct property_set *p, pset;
935

936
	if (!properties)
937 938
		return -EINVAL;

939 940 941
	pset.properties = properties;

	p = pset_copy_set(&pset);
942 943 944
	if (IS_ERR(p))
		return PTR_ERR(p);

945
	p->fwnode.ops = &pset_fwnode_ops;
946
	set_secondary_fwnode(dev, &p->fwnode);
947
	p->dev = dev;
948 949
	return 0;
}
950
EXPORT_SYMBOL_GPL(device_add_properties);
951

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/**
 * fwnode_get_next_parent - Iterate to the node's parent
 * @fwnode: Firmware whose parent is retrieved
 *
 * This is like fwnode_get_parent() except that it drops the refcount
 * on the passed node, making it suitable for iterating through a
 * node's parents.
 *
 * Returns a node pointer with refcount incremented, use
 * fwnode_handle_node() on it when done.
 */
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = fwnode_get_parent(fwnode);

	fwnode_handle_put(fwnode);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);

973 974 975 976 977 978 979
/**
 * fwnode_get_parent - Return parent firwmare node
 * @fwnode: Firmware whose parent is retrieved
 *
 * Return parent firmware node of the given node if possible or %NULL if no
 * parent was available.
 */
980
struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
981
{
982
	return fwnode_call_ptr_op(fwnode, get_parent);
983 984 985
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);

986
/**
987 988 989
 * fwnode_get_next_child_node - Return the next child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
990
 */
991 992 993
struct fwnode_handle *
fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
			   struct fwnode_handle *child)
994
{
995
	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
996
}
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);

/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct fwnode_handle *fwnode = NULL;

	if (dev->of_node)
		fwnode = &dev->of_node->fwnode;
	else if (adev)
		fwnode = acpi_fwnode_handle(adev);

	return fwnode_get_next_child_node(fwnode, child);
}
1017 1018
EXPORT_SYMBOL_GPL(device_get_next_child_node);

1019
/**
1020 1021
 * fwnode_get_named_child_node - Return first matching named child node handle
 * @fwnode: Firmware node to find the named child node for.
1022 1023
 * @childname: String to match child node name against.
 */
1024 1025 1026
struct fwnode_handle *
fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
			    const char *childname)
1027
{
1028
	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1029
}
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);

/**
 * device_get_named_child_node - Return first matching named child node handle
 * @dev: Device to find the named child node for.
 * @childname: String to match child node name against.
 */
struct fwnode_handle *device_get_named_child_node(struct device *dev,
						  const char *childname)
{
	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
1042 1043
EXPORT_SYMBOL_GPL(device_get_named_child_node);

1044 1045 1046 1047 1048 1049
/**
 * fwnode_handle_get - Obtain a reference to a device node
 * @fwnode: Pointer to the device node to obtain the reference to.
 */
void fwnode_handle_get(struct fwnode_handle *fwnode)
{
1050
	fwnode_call_void_op(fwnode, get);
1051 1052 1053
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
1064
	fwnode_call_void_op(fwnode, put);
1065 1066 1067
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

1068 1069 1070 1071
/**
 * fwnode_device_is_available - check if a device is available for use
 * @fwnode: Pointer to the fwnode of the device.
 */
1072
bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1073
{
1074
	return fwnode_call_bool_op(fwnode, device_is_available);
1075 1076 1077
}
EXPORT_SYMBOL_GPL(fwnode_device_is_available);

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

1123
/**
1124
 * device_get_phy_mode - Get phy mode for given device
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	const char *pm;
	int err, i;

	err = device_property_read_string(dev, "phy-mode", &pm);
	if (err < 0)
		err = device_property_read_string(dev,
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
EXPORT_SYMBOL_GPL(device_get_phy_mode);

static void *device_get_mac_addr(struct device *dev,
				 const char *name, char *addr,
				 int alen)
{
	int ret = device_property_read_u8_array(dev, name, addr, alen);

1157
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1158 1159 1160 1161 1162
		return addr;
	return NULL;
}

/**
1163 1164 1165 1166 1167 1168
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1179 1180 1181 1182 1183
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1184 1185 1186
*/
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
1187
	char *res;
1188

1189 1190 1191 1192 1193 1194 1195
	res = device_get_mac_addr(dev, "mac-address", addr, alen);
	if (res)
		return res;

	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
	if (res)
		return res;
1196 1197 1198 1199

	return device_get_mac_addr(dev, "address", addr, alen);
}
EXPORT_SYMBOL(device_get_mac_address);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

/**
 * device_graph_get_next_endpoint - Get next endpoint firmware node
 * @fwnode: Pointer to the parent firmware node
 * @prev: Previous endpoint node or %NULL to get the first
 *
 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 * are available.
 */
struct fwnode_handle *
1210
fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1211 1212
			       struct fwnode_handle *prev)
{
1213
	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1214 1215 1216
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);

1217 1218 1219 1220 1221 1222 1223
/**
 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 * @endpoint: Endpoint firmware node of the port
 *
 * Return: the firmware node of the device the @endpoint belongs to.
 */
struct fwnode_handle *
1224
fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	struct fwnode_handle *port, *parent;

	port = fwnode_get_parent(endpoint);
	parent = fwnode_call_ptr_op(port, graph_get_port_parent);

	fwnode_handle_put(port);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);

1237 1238 1239 1240 1241 1242 1243
/**
 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote device the @fwnode points to.
 */
struct fwnode_handle *
1244
fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1245
{
1246
	struct fwnode_handle *endpoint, *parent;
1247

1248 1249
	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
	parent = fwnode_graph_get_port_parent(endpoint);
1250

1251
	fwnode_handle_put(endpoint);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);

/**
 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote port the @fwnode points to.
 */
1263 1264
struct fwnode_handle *
fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1265
{
1266
	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);

/**
 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote endpoint the @fwnode points to.
 */
struct fwnode_handle *
1277
fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1278
{
1279
	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1280 1281
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291
/**
 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
 * @port_id: identifier of the parent port node
 * @endpoint_id: identifier of the endpoint node
 *
 * Return: Remote fwnode handle associated with remote endpoint node linked
 *	   to @node. Use fwnode_node_put() on it when done.
 */
1292 1293 1294
struct fwnode_handle *
fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
			     u32 endpoint_id)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
{
	struct fwnode_handle *endpoint = NULL;

	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
		struct fwnode_endpoint fwnode_ep;
		struct fwnode_handle *remote;
		int ret;

		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
		if (ret < 0)
			continue;

		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
			continue;

		remote = fwnode_graph_get_remote_port_parent(endpoint);
		if (!remote)
			return NULL;

		return fwnode_device_is_available(remote) ? remote : NULL;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);

1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * fwnode_graph_parse_endpoint - parse common endpoint node properties
 * @fwnode: pointer to endpoint fwnode_handle
 * @endpoint: pointer to the fwnode endpoint data structure
 *
 * Parse @fwnode representing a graph endpoint node and store the
 * information in @endpoint. The caller must hold a reference to
 * @fwnode.
 */
1330
int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1331 1332 1333 1334
				struct fwnode_endpoint *endpoint)
{
	memset(endpoint, 0, sizeof(*endpoint));

1335
	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1336 1337
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);