mcdi.c 54.3 KB
Newer Older
1
/****************************************************************************
2 3
 * Driver for Solarflare network controllers and boards
 * Copyright 2008-2013 Solarflare Communications Inc.
4 5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/delay.h>
11
#include <linux/moduleparam.h>
12
#include <asm/cmpxchg.h>
13 14 15
#include "net_driver.h"
#include "nic.h"
#include "io.h"
16
#include "farch_regs.h"
17 18 19 20 21 22 23 24 25 26
#include "mcdi_pcol.h"
#include "phy.h"

/**************************************************************************
 *
 * Management-Controller-to-Driver Interface
 *
 **************************************************************************
 */

27
#define MCDI_RPC_TIMEOUT       (10 * HZ)
28

29 30
/* A reboot/assertion causes the MCDI status word to be set after the
 * command word is set or a REBOOT event is sent. If we notice a reboot
31
 * via these mechanisms then wait 250ms for the status word to be set.
32
 */
33
#define MCDI_STATUS_DELAY_US		100
34
#define MCDI_STATUS_DELAY_COUNT		2500
35 36
#define MCDI_STATUS_SLEEP_MS						\
	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37 38 39 40

#define SEQ_MASK							\
	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))

41 42 43 44 45
struct efx_mcdi_async_param {
	struct list_head list;
	unsigned int cmd;
	size_t inlen;
	size_t outlen;
46
	bool quiet;
47 48 49 50 51 52
	efx_mcdi_async_completer *complete;
	unsigned long cookie;
	/* followed by request/response buffer */
};

static void efx_mcdi_timeout_async(unsigned long context);
53 54
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
			       bool *was_attached_out);
55
static bool efx_mcdi_poll_once(struct efx_nic *efx);
56
static void efx_mcdi_abandon(struct efx_nic *efx);
57

58 59 60 61 62 63 64
#ifdef CONFIG_SFC_MCDI_LOGGING
static bool mcdi_logging_default;
module_param(mcdi_logging_default, bool, 0644);
MODULE_PARM_DESC(mcdi_logging_default,
		 "Enable MCDI logging on newly-probed functions");
#endif

65
int efx_mcdi_init(struct efx_nic *efx)
66 67
{
	struct efx_mcdi_iface *mcdi;
68
	bool already_attached;
69
	int rc = -ENOMEM;
70

71 72
	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
	if (!efx->mcdi)
73
		goto fail;
74

75
	mcdi = efx_mcdi(efx);
76
	mcdi->efx = efx;
77 78 79 80 81
#ifdef CONFIG_SFC_MCDI_LOGGING
	/* consuming code assumes buffer is page-sized */
	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
	if (!mcdi->logging_buffer)
		goto fail1;
82
	mcdi->logging_enabled = mcdi_logging_default;
83
#endif
84 85
	init_waitqueue_head(&mcdi->wq);
	spin_lock_init(&mcdi->iface_lock);
86
	mcdi->state = MCDI_STATE_QUIESCENT;
87
	mcdi->mode = MCDI_MODE_POLL;
88 89 90 91
	spin_lock_init(&mcdi->async_lock);
	INIT_LIST_HEAD(&mcdi->async_list);
	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
		    (unsigned long)mcdi);
92 93

	(void) efx_mcdi_poll_reboot(efx);
94
	mcdi->new_epoch = true;
95 96

	/* Recover from a failed assertion before probing */
97 98
	rc = efx_mcdi_handle_assertion(efx);
	if (rc)
99
		goto fail2;
100 101 102 103 104 105 106 107

	/* Let the MC (and BMC, if this is a LOM) know that the driver
	 * is loaded. We should do this before we reset the NIC.
	 */
	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "Unable to register driver with MCPU\n");
108
		goto fail2;
109 110 111 112 113 114
	}
	if (already_attached)
		/* Not a fatal error */
		netif_err(efx, probe, efx->net_dev,
			  "Host already registered with MCPU\n");

115 116 117 118
	if (efx->mcdi->fn_flags &
	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
		efx->primary = efx;

119
	return 0;
120 121 122 123 124 125 126 127 128
fail2:
#ifdef CONFIG_SFC_MCDI_LOGGING
	free_page((unsigned long)mcdi->logging_buffer);
fail1:
#endif
	kfree(efx->mcdi);
	efx->mcdi = NULL;
fail:
	return rc;
129 130
}

131 132
void efx_mcdi_fini(struct efx_nic *efx)
{
133 134 135 136 137 138 139 140
	if (!efx->mcdi)
		return;

	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);

	/* Relinquish the device (back to the BMC, if this is a LOM) */
	efx_mcdi_drv_attach(efx, false, NULL);

141 142 143 144
#ifdef CONFIG_SFC_MCDI_LOGGING
	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
#endif

145 146 147
	kfree(efx->mcdi);
}

148 149
static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
				  const efx_dword_t *inbuf, size_t inlen)
150 151
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
152 153 154
#ifdef CONFIG_SFC_MCDI_LOGGING
	char *buf = mcdi->logging_buffer; /* page-sized */
#endif
155 156
	efx_dword_t hdr[2];
	size_t hdr_len;
157 158
	u32 xflags, seqno;

159
	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
160

161 162 163 164 165
	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
	spin_lock_bh(&mcdi->iface_lock);
	++mcdi->seqno;
	spin_unlock_bh(&mcdi->iface_lock);

166 167 168 169 170
	seqno = mcdi->seqno & SEQ_MASK;
	xflags = 0;
	if (mcdi->mode == MCDI_MODE_EVENTS)
		xflags |= MCDI_HEADER_XFLAGS_EVREQ;

171 172
	if (efx->type->mcdi_max_ver == 1) {
		/* MCDI v1 */
173
		EFX_POPULATE_DWORD_7(hdr[0],
174 175 176 177 178
				     MCDI_HEADER_RESPONSE, 0,
				     MCDI_HEADER_RESYNC, 1,
				     MCDI_HEADER_CODE, cmd,
				     MCDI_HEADER_DATALEN, inlen,
				     MCDI_HEADER_SEQ, seqno,
179 180
				     MCDI_HEADER_XFLAGS, xflags,
				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
181 182 183 184
		hdr_len = 4;
	} else {
		/* MCDI v2 */
		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
185
		EFX_POPULATE_DWORD_7(hdr[0],
186 187 188 189 190
				     MCDI_HEADER_RESPONSE, 0,
				     MCDI_HEADER_RESYNC, 1,
				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
				     MCDI_HEADER_DATALEN, 0,
				     MCDI_HEADER_SEQ, seqno,
191 192
				     MCDI_HEADER_XFLAGS, xflags,
				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
193 194 195 196 197
		EFX_POPULATE_DWORD_2(hdr[1],
				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
		hdr_len = 8;
	}
198

199
#ifdef CONFIG_SFC_MCDI_LOGGING
200
	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		int bytes = 0;
		int i;
		/* Lengths should always be a whole number of dwords, so scream
		 * if they're not.
		 */
		WARN_ON_ONCE(hdr_len % 4);
		WARN_ON_ONCE(inlen % 4);

		/* We own the logging buffer, as only one MCDI can be in
		 * progress on a NIC at any one time.  So no need for locking.
		 */
		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
					  " %08x", le32_to_cpu(hdr[i].u32[0]));

		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
					  " %08x", le32_to_cpu(inbuf[i].u32[0]));

		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
	}
#endif

224
	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
225 226

	mcdi->new_epoch = false;
227 228
}

229 230 231 232 233 234 235 236
static int efx_mcdi_errno(unsigned int mcdi_err)
{
	switch (mcdi_err) {
	case 0:
		return 0;
#define TRANSLATE_ERROR(name)					\
	case MC_CMD_ERR_ ## name:				\
		return -name;
237
	TRANSLATE_ERROR(EPERM);
238 239
	TRANSLATE_ERROR(ENOENT);
	TRANSLATE_ERROR(EINTR);
240
	TRANSLATE_ERROR(EAGAIN);
241 242 243 244 245 246
	TRANSLATE_ERROR(EACCES);
	TRANSLATE_ERROR(EBUSY);
	TRANSLATE_ERROR(EINVAL);
	TRANSLATE_ERROR(EDEADLK);
	TRANSLATE_ERROR(ENOSYS);
	TRANSLATE_ERROR(ETIME);
247 248
	TRANSLATE_ERROR(EALREADY);
	TRANSLATE_ERROR(ENOSPC);
249
#undef TRANSLATE_ERROR
250 251
	case MC_CMD_ERR_ENOTSUP:
		return -EOPNOTSUPP;
252 253 254 255
	case MC_CMD_ERR_ALLOC_FAIL:
		return -ENOBUFS;
	case MC_CMD_ERR_MAC_EXIST:
		return -EADDRINUSE;
256
	default:
257 258 259 260 261 262 263 264
		return -EPROTO;
	}
}

static void efx_mcdi_read_response_header(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	unsigned int respseq, respcmd, error;
265 266 267
#ifdef CONFIG_SFC_MCDI_LOGGING
	char *buf = mcdi->logging_buffer; /* page-sized */
#endif
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	efx_dword_t hdr;

	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);

	if (respcmd != MC_CMD_V2_EXTN) {
		mcdi->resp_hdr_len = 4;
		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
	} else {
		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
		mcdi->resp_hdr_len = 8;
		mcdi->resp_data_len =
			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
	}

285
#ifdef CONFIG_SFC_MCDI_LOGGING
286
	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
		size_t hdr_len, data_len;
		int bytes = 0;
		int i;

		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
		hdr_len = mcdi->resp_hdr_len / 4;
		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
		 * to dword size, and the MCDI buffer is always dword size
		 */
		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);

		/* We own the logging buffer, as only one MCDI can be in
		 * progress on a NIC at any one time.  So no need for locking.
		 */
		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
					  " %08x", le32_to_cpu(hdr.u32[0]));
		}

		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
			efx->type->mcdi_read_response(efx, &hdr,
					mcdi->resp_hdr_len + (i * 4), 4);
			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
					  " %08x", le32_to_cpu(hdr.u32[0]));
		}

		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
	}
#endif

318 319 320 321 322 323 324 325 326 327 328 329 330 331
	if (error && mcdi->resp_data_len == 0) {
		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
		mcdi->resprc = -EIO;
	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
		netif_err(efx, hw, efx->net_dev,
			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
			  respseq, mcdi->seqno);
		mcdi->resprc = -EIO;
	} else if (error) {
		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
		mcdi->resprc =
			efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
	} else {
		mcdi->resprc = 0;
332 333 334
	}
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static bool efx_mcdi_poll_once(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	rmb();
	if (!efx->type->mcdi_poll_response(efx))
		return false;

	spin_lock_bh(&mcdi->iface_lock);
	efx_mcdi_read_response_header(efx);
	spin_unlock_bh(&mcdi->iface_lock);

	return true;
}

350 351 352
static int efx_mcdi_poll(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
353
	unsigned long time, finish;
354 355
	unsigned int spins;
	int rc;
356 357

	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
358
	rc = efx_mcdi_poll_reboot(efx);
359
	if (rc) {
360
		spin_lock_bh(&mcdi->iface_lock);
361 362 363
		mcdi->resprc = rc;
		mcdi->resp_hdr_len = 0;
		mcdi->resp_data_len = 0;
364
		spin_unlock_bh(&mcdi->iface_lock);
365 366
		return 0;
	}
367 368 369 370 371 372

	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
	 * because generally mcdi responses are fast. After that, back off
	 * and poll once a jiffy (approximately)
	 */
	spins = TICK_USEC;
373
	finish = jiffies + MCDI_RPC_TIMEOUT;
374 375 376 377 378

	while (1) {
		if (spins != 0) {
			--spins;
			udelay(1);
379 380 381
		} else {
			schedule_timeout_uninterruptible(1);
		}
382

383
		time = jiffies;
384

385
		if (efx_mcdi_poll_once(efx))
386 387
			break;

388
		if (time_after(time, finish))
389 390 391 392 393 394 395
			return -ETIMEDOUT;
	}

	/* Return rc=0 like wait_event_timeout() */
	return 0;
}

396 397 398
/* Test and clear MC-rebooted flag for this port/function; reset
 * software state as necessary.
 */
399 400
int efx_mcdi_poll_reboot(struct efx_nic *efx)
{
401 402
	if (!efx->mcdi)
		return 0;
403

404
	return efx->type->mcdi_poll_reboot(efx);
405 406
}

407 408 409 410 411 412 413 414
static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
{
	return cmpxchg(&mcdi->state,
		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
		MCDI_STATE_QUIESCENT;
}

static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
415 416
{
	/* Wait until the interface becomes QUIESCENT and we win the race
417 418
	 * to mark it RUNNING_SYNC.
	 */
419
	wait_event(mcdi->wq,
420
		   cmpxchg(&mcdi->state,
421
			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
422
		   MCDI_STATE_QUIESCENT);
423 424 425 426 427 428
}

static int efx_mcdi_await_completion(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

429 430
	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
			       MCDI_RPC_TIMEOUT) == 0)
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		return -ETIMEDOUT;

	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
	 * completed the request first, then we'll just end up completing the
	 * request again, which is safe.
	 *
	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
	 * wait_event_timeout() implicitly provides.
	 */
	if (mcdi->mode == MCDI_MODE_POLL)
		return efx_mcdi_poll(efx);

	return 0;
}

447 448 449 450
/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
 * requester.  Return whether this was done.  Does not take any locks.
 */
static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
451
{
452 453 454
	if (cmpxchg(&mcdi->state,
		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
	    MCDI_STATE_RUNNING_SYNC) {
455 456 457 458 459 460 461 462 463
		wake_up(&mcdi->wq);
		return true;
	}

	return false;
}

static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
{
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	if (mcdi->mode == MCDI_MODE_EVENTS) {
		struct efx_mcdi_async_param *async;
		struct efx_nic *efx = mcdi->efx;

		/* Process the asynchronous request queue */
		spin_lock_bh(&mcdi->async_lock);
		async = list_first_entry_or_null(
			&mcdi->async_list, struct efx_mcdi_async_param, list);
		if (async) {
			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
			efx_mcdi_send_request(efx, async->cmd,
					      (const efx_dword_t *)(async + 1),
					      async->inlen);
			mod_timer(&mcdi->async_timer,
				  jiffies + MCDI_RPC_TIMEOUT);
		}
		spin_unlock_bh(&mcdi->async_lock);

		if (async)
			return;
	}

486
	mcdi->state = MCDI_STATE_QUIESCENT;
487 488 489
	wake_up(&mcdi->wq);
}

490 491 492 493 494 495 496 497 498
/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
 * asynchronous completion function, and release the interface.
 * Return whether this was done.  Must be called in bh-disabled
 * context.  Will take iface_lock and async_lock.
 */
static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
{
	struct efx_nic *efx = mcdi->efx;
	struct efx_mcdi_async_param *async;
499
	size_t hdr_len, data_len, err_len;
500
	efx_dword_t *outbuf;
501
	MCDI_DECLARE_BUF_ERR(errbuf);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	int rc;

	if (cmpxchg(&mcdi->state,
		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
	    MCDI_STATE_RUNNING_ASYNC)
		return false;

	spin_lock(&mcdi->iface_lock);
	if (timeout) {
		/* Ensure that if the completion event arrives later,
		 * the seqno check in efx_mcdi_ev_cpl() will fail
		 */
		++mcdi->seqno;
		++mcdi->credits;
		rc = -ETIMEDOUT;
		hdr_len = 0;
		data_len = 0;
	} else {
		rc = mcdi->resprc;
		hdr_len = mcdi->resp_hdr_len;
		data_len = mcdi->resp_data_len;
	}
	spin_unlock(&mcdi->iface_lock);

	/* Stop the timer.  In case the timer function is running, we
	 * must wait for it to return so that there is no possibility
	 * of it aborting the next request.
	 */
	if (!timeout)
		del_timer_sync(&mcdi->async_timer);

	spin_lock(&mcdi->async_lock);
	async = list_first_entry(&mcdi->async_list,
				 struct efx_mcdi_async_param, list);
	list_del(&async->list);
	spin_unlock(&mcdi->async_lock);

	outbuf = (efx_dword_t *)(async + 1);
	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
				      min(async->outlen, data_len));
542 543 544 545 546 547 548
	if (!timeout && rc && !async->quiet) {
		err_len = min(sizeof(errbuf), data_len);
		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
					      sizeof(errbuf));
		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
				       err_len, rc);
	}
549 550 551 552 553 554 555 556
	async->complete(efx, async->cookie, rc, outbuf, data_len);
	kfree(async);

	efx_mcdi_release(mcdi);

	return true;
}

557
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
558
			    unsigned int datalen, unsigned int mcdi_err)
559 560 561 562 563 564 565 566 567 568 569
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	bool wake = false;

	spin_lock(&mcdi->iface_lock);

	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
		if (mcdi->credits)
			/* The request has been cancelled */
			--mcdi->credits;
		else
570 571 572
			netif_err(efx, hw, efx->net_dev,
				  "MC response mismatch tx seq 0x%x rx "
				  "seq 0x%x\n", seqno, mcdi->seqno);
573
	} else {
574 575 576 577 578 579 580 581
		if (efx->type->mcdi_max_ver >= 2) {
			/* MCDI v2 responses don't fit in an event */
			efx_mcdi_read_response_header(efx);
		} else {
			mcdi->resprc = efx_mcdi_errno(mcdi_err);
			mcdi->resp_hdr_len = 4;
			mcdi->resp_data_len = datalen;
		}
582 583 584 585 586 587

		wake = true;
	}

	spin_unlock(&mcdi->iface_lock);

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	if (wake) {
		if (!efx_mcdi_complete_async(mcdi, false))
			(void) efx_mcdi_complete_sync(mcdi);

		/* If the interface isn't RUNNING_ASYNC or
		 * RUNNING_SYNC then we've received a duplicate
		 * completion after we've already transitioned back to
		 * QUIESCENT. [A subsequent invocation would increment
		 * seqno, so would have failed the seqno check].
		 */
	}
}

static void efx_mcdi_timeout_async(unsigned long context)
{
	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;

	efx_mcdi_complete_async(mcdi, true);
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int
efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
{
	if (efx->type->mcdi_max_ver < 0 ||
	     (efx->type->mcdi_max_ver < 2 &&
	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
		return -EINVAL;

	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
	    (efx->type->mcdi_max_ver < 2 &&
	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
		return -EMSGSIZE;

	return 0;
}

624 625 626 627 628
static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
				efx_dword_t *outbuf, size_t outlen,
				size_t *outlen_actual, bool quiet)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
629
	MCDI_DECLARE_BUF_ERR(errbuf);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	int rc;

	if (mcdi->mode == MCDI_MODE_POLL)
		rc = efx_mcdi_poll(efx);
	else
		rc = efx_mcdi_await_completion(efx);

	if (rc != 0) {
		netif_err(efx, hw, efx->net_dev,
			  "MC command 0x%x inlen %d mode %d timed out\n",
			  cmd, (int)inlen, mcdi->mode);

		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
			netif_err(efx, hw, efx->net_dev,
				  "MCDI request was completed without an event\n");
			rc = 0;
		}

648 649
		efx_mcdi_abandon(efx);

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		/* Close the race with efx_mcdi_ev_cpl() executing just too late
		 * and completing a request we've just cancelled, by ensuring
		 * that the seqno check therein fails.
		 */
		spin_lock_bh(&mcdi->iface_lock);
		++mcdi->seqno;
		++mcdi->credits;
		spin_unlock_bh(&mcdi->iface_lock);
	}

	if (rc != 0) {
		if (outlen_actual)
			*outlen_actual = 0;
	} else {
		size_t hdr_len, data_len, err_len;

		/* At the very least we need a memory barrier here to ensure
		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
		 * a spurious efx_mcdi_ev_cpl() running concurrently by
		 * acquiring the iface_lock. */
		spin_lock_bh(&mcdi->iface_lock);
		rc = mcdi->resprc;
		hdr_len = mcdi->resp_hdr_len;
		data_len = mcdi->resp_data_len;
		err_len = min(sizeof(errbuf), data_len);
		spin_unlock_bh(&mcdi->iface_lock);

		BUG_ON(rc > 0);

		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
					      min(outlen, data_len));
		if (outlen_actual)
			*outlen_actual = data_len;

		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);

		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
			/* Don't reset if MC_CMD_REBOOT returns EIO */
		} else if (rc == -EIO || rc == -EINTR) {
			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
				  -rc);
			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
		} else if (rc && !quiet) {
			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
					       rc);
		}

		if (rc == -EIO || rc == -EINTR) {
			msleep(MCDI_STATUS_SLEEP_MS);
			efx_mcdi_poll_reboot(efx);
			mcdi->new_epoch = true;
		}
	}

	efx_mcdi_release(mcdi);
	return rc;
}

static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
			 const efx_dword_t *inbuf, size_t inlen,
			 efx_dword_t *outbuf, size_t outlen,
			 size_t *outlen_actual, bool quiet)
{
	int rc;

	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
	if (rc) {
		if (outlen_actual)
			*outlen_actual = 0;
		return rc;
	}
	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
				    outlen_actual, quiet);
}

725
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
726 727
		 const efx_dword_t *inbuf, size_t inlen,
		 efx_dword_t *outbuf, size_t outlen,
728
		 size_t *outlen_actual)
729
{
730 731 732
	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
			     outlen_actual, false);
}
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
/* Normally, on receiving an error code in the MCDI response,
 * efx_mcdi_rpc will log an error message containing (among other
 * things) the raw error code, by means of efx_mcdi_display_error.
 * This _quiet version suppresses that; if the caller wishes to log
 * the error conditionally on the return code, it should call this
 * function and is then responsible for calling efx_mcdi_display_error
 * as needed.
 */
int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
		       const efx_dword_t *inbuf, size_t inlen,
		       efx_dword_t *outbuf, size_t outlen,
		       size_t *outlen_actual)
{
	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
			     outlen_actual, true);
749 750
}

751 752
int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
		       const efx_dword_t *inbuf, size_t inlen)
753 754
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
755
	int rc;
756

757 758 759
	rc = efx_mcdi_check_supported(efx, cmd, inlen);
	if (rc)
		return rc;
760

761 762 763
	if (efx->mc_bist_for_other_fn)
		return -ENETDOWN;

764 765 766
	if (mcdi->mode == MCDI_MODE_FAIL)
		return -ENETDOWN;

767
	efx_mcdi_acquire_sync(mcdi);
768
	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
769
	return 0;
770 771
}

772 773 774 775 776
static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
			       const efx_dword_t *inbuf, size_t inlen,
			       size_t outlen,
			       efx_mcdi_async_completer *complete,
			       unsigned long cookie, bool quiet)
777 778 779 780 781 782 783 784 785
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	struct efx_mcdi_async_param *async;
	int rc;

	rc = efx_mcdi_check_supported(efx, cmd, inlen);
	if (rc)
		return rc;

786 787 788
	if (efx->mc_bist_for_other_fn)
		return -ENETDOWN;

789 790 791 792 793 794 795 796
	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
			GFP_ATOMIC);
	if (!async)
		return -ENOMEM;

	async->cmd = cmd;
	async->inlen = inlen;
	async->outlen = outlen;
797
	async->quiet = quiet;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	async->complete = complete;
	async->cookie = cookie;
	memcpy(async + 1, inbuf, inlen);

	spin_lock_bh(&mcdi->async_lock);

	if (mcdi->mode == MCDI_MODE_EVENTS) {
		list_add_tail(&async->list, &mcdi->async_list);

		/* If this is at the front of the queue, try to start it
		 * immediately
		 */
		if (mcdi->async_list.next == &async->list &&
		    efx_mcdi_acquire_async(mcdi)) {
			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
			mod_timer(&mcdi->async_timer,
				  jiffies + MCDI_RPC_TIMEOUT);
		}
	} else {
		kfree(async);
		rc = -ENETDOWN;
	}

	spin_unlock_bh(&mcdi->async_lock);

	return rc;
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/**
 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
 * @efx: NIC through which to issue the command
 * @cmd: Command type number
 * @inbuf: Command parameters
 * @inlen: Length of command parameters, in bytes
 * @outlen: Length to allocate for response buffer, in bytes
 * @complete: Function to be called on completion or cancellation.
 * @cookie: Arbitrary value to be passed to @complete.
 *
 * This function does not sleep and therefore may be called in atomic
 * context.  It will fail if event queues are disabled or if MCDI
 * event completions have been disabled due to an error.
 *
 * If it succeeds, the @complete function will be called exactly once
 * in atomic context, when one of the following occurs:
 * (a) the completion event is received (in NAPI context)
 * (b) event queues are disabled (in the process that disables them)
 * (c) the request times-out (in timer context)
 */
int
efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
		   efx_mcdi_async_completer *complete, unsigned long cookie)
{
	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
				   cookie, false);
}

int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
			     const efx_dword_t *inbuf, size_t inlen,
			     size_t outlen, efx_mcdi_async_completer *complete,
			     unsigned long cookie)
{
	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
				   cookie, true);
}

864
int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
865 866
			efx_dword_t *outbuf, size_t outlen,
			size_t *outlen_actual)
867
{
868 869 870
	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
				    outlen_actual, false);
}
871

872 873 874 875 876 877 878
int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
			      efx_dword_t *outbuf, size_t outlen,
			      size_t *outlen_actual)
{
	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
				    outlen_actual, true);
}
879

880 881 882 883 884
void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
			    size_t inlen, efx_dword_t *outbuf,
			    size_t outlen, int rc)
{
	int code = 0, err_arg = 0;
885

886 887 888 889 890 891 892
	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
		code = MCDI_DWORD(outbuf, ERR_CODE);
	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
	netif_err(efx, hw, efx->net_dev,
		  "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
		  cmd, (int)inlen, rc, code, err_arg);
893 894
}

895 896 897 898
/* Switch to polled MCDI completions.  This can be called in various
 * error conditions with various locks held, so it must be lockless.
 * Caller is responsible for flushing asynchronous requests later.
 */
899 900 901 902
void efx_mcdi_mode_poll(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi;

903
	if (!efx->mcdi)
904 905 906
		return;

	mcdi = efx_mcdi(efx);
907 908 909 910 911
	/* If already in polling mode, nothing to do.
	 * If in fail-fast state, don't switch to polled completion.
	 * FLR recovery will do that later.
	 */
	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
912 913 914 915 916 917 918 919
		return;

	/* We can switch from event completion to polled completion, because
	 * mcdi requests are always completed in shared memory. We do this by
	 * switching the mode to POLL'd then completing the request.
	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
	 *
	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
920
	 * which efx_mcdi_complete_sync() provides for us.
921 922 923
	 */
	mcdi->mode = MCDI_MODE_POLL;

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	efx_mcdi_complete_sync(mcdi);
}

/* Flush any running or queued asynchronous requests, after event processing
 * is stopped
 */
void efx_mcdi_flush_async(struct efx_nic *efx)
{
	struct efx_mcdi_async_param *async, *next;
	struct efx_mcdi_iface *mcdi;

	if (!efx->mcdi)
		return;

	mcdi = efx_mcdi(efx);

940 941
	/* We must be in poll or fail mode so no more requests can be queued */
	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

	del_timer_sync(&mcdi->async_timer);

	/* If a request is still running, make sure we give the MC
	 * time to complete it so that the response won't overwrite our
	 * next request.
	 */
	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
		efx_mcdi_poll(efx);
		mcdi->state = MCDI_STATE_QUIESCENT;
	}

	/* Nothing else will access the async list now, so it is safe
	 * to walk it without holding async_lock.  If we hold it while
	 * calling a completer then lockdep may warn that we have
	 * acquired locks in the wrong order.
	 */
	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
		list_del(&async->list);
		kfree(async);
	}
964 965 966 967 968 969
}

void efx_mcdi_mode_event(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi;

970
	if (!efx->mcdi)
971 972 973
		return;

	mcdi = efx_mcdi(efx);
974 975 976 977 978
	/* If already in event completion mode, nothing to do.
	 * If in fail-fast state, don't switch to event completion.  FLR
	 * recovery will do that later.
	 */
	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
979 980 981 982 983 984 985 986 987
		return;

	/* We can't switch from polled to event completion in the middle of a
	 * request, because the completion method is specified in the request.
	 * So acquire the interface to serialise the requestors. We don't need
	 * to acquire the iface_lock to change the mode here, but we do need a
	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
	 * efx_mcdi_acquire() provides.
	 */
988
	efx_mcdi_acquire_sync(mcdi);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	mcdi->mode = MCDI_MODE_EVENTS;
	efx_mcdi_release(mcdi);
}

static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	/* If there is an outstanding MCDI request, it has been terminated
	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
	 * in polled mode, then do nothing because the MC reboot handler will
	 * set the header correctly. However, if the mcdi interface is waiting
	 * for a CMDDONE event it won't receive it [and since all MCDI events
	 * are sent to the same queue, we can't be racing with
	 * efx_mcdi_ev_cpl()]
	 *
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	 * If there is an outstanding asynchronous request, we can't
	 * complete it now (efx_mcdi_complete() would deadlock).  The
	 * reset process will take care of this.
	 *
	 * There's a race here with efx_mcdi_send_request(), because
	 * we might receive a REBOOT event *before* the request has
	 * been copied out. In polled mode (during startup) this is
	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
	 * event mode, this condition is just an edge-case of
	 * receiving a REBOOT event after posting the MCDI
	 * request. Did the mc reboot before or after the copyout? The
	 * best we can do always is just return failure.
1017 1018
	 */
	spin_lock(&mcdi->iface_lock);
1019
	if (efx_mcdi_complete_sync(mcdi)) {
1020 1021
		if (mcdi->mode == MCDI_MODE_EVENTS) {
			mcdi->resprc = rc;
1022 1023
			mcdi->resp_hdr_len = 0;
			mcdi->resp_data_len = 0;
1024
			++mcdi->credits;
1025
		}
1026 1027 1028 1029 1030 1031 1032 1033 1034
	} else {
		int count;

		/* Consume the status word since efx_mcdi_rpc_finish() won't */
		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
			if (efx_mcdi_poll_reboot(efx))
				break;
			udelay(MCDI_STATUS_DELAY_US);
		}
1035
		mcdi->new_epoch = true;
1036 1037 1038

		/* Nobody was waiting for an MCDI request, so trigger a reset */
		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1039 1040
	}

1041 1042 1043
	spin_unlock(&mcdi->iface_lock);
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/* The MC is going down in to BIST mode. set the BIST flag to block
 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
 * (which doesn't actually execute a reset, it waits for the controlling
 * function to reset it).
 */
static void efx_mcdi_ev_bist(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	spin_lock(&mcdi->iface_lock);
	efx->mc_bist_for_other_fn = true;
	if (efx_mcdi_complete_sync(mcdi)) {
		if (mcdi->mode == MCDI_MODE_EVENTS) {
			mcdi->resprc = -EIO;
			mcdi->resp_hdr_len = 0;
			mcdi->resp_data_len = 0;
			++mcdi->credits;
		}
	}
	mcdi->new_epoch = true;
	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
	spin_unlock(&mcdi->iface_lock);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
 * to recover.
 */
static void efx_mcdi_abandon(struct efx_nic *efx)
{
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
		return; /* it had already been done */
	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/* Called from  falcon_process_eventq for MCDI events */
void efx_mcdi_process_event(struct efx_channel *channel,
			    efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);

	switch (code) {
	case MCDI_EVENT_CODE_BADSSERT:
1091 1092
		netif_err(efx, hw, efx->net_dev,
			  "MC watchdog or assertion failure at 0x%x\n", data);
1093
		efx_mcdi_ev_death(efx, -EINTR);
1094 1095 1096
		break;

	case MCDI_EVENT_CODE_PMNOTICE:
1097
		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		break;

	case MCDI_EVENT_CODE_CMDDONE:
		efx_mcdi_ev_cpl(efx,
				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
		break;

	case MCDI_EVENT_CODE_LINKCHANGE:
		efx_mcdi_process_link_change(efx, event);
		break;
	case MCDI_EVENT_CODE_SENSOREVT:
		efx_mcdi_sensor_event(efx, event);
		break;
	case MCDI_EVENT_CODE_SCHEDERR:
1114 1115
		netif_dbg(efx, hw, efx->net_dev,
			  "MC Scheduler alert (0x%x)\n", data);
1116 1117
		break;
	case MCDI_EVENT_CODE_REBOOT:
1118
	case MCDI_EVENT_CODE_MC_REBOOT:
1119
		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1120
		efx_mcdi_ev_death(efx, -EIO);
1121
		break;
1122 1123 1124 1125
	case MCDI_EVENT_CODE_MC_BIST:
		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
		efx_mcdi_ev_bist(efx);
		break;
1126 1127 1128
	case MCDI_EVENT_CODE_MAC_STATS_DMA:
		/* MAC stats are gather lazily.  We can ignore this. */
		break;
1129
	case MCDI_EVENT_CODE_FLR:
1130 1131 1132
		if (efx->type->sriov_flr)
			efx->type->sriov_flr(efx,
					     MCDI_EVENT_FIELD(*event, FLR_VF));
1133
		break;
1134 1135 1136 1137 1138
	case MCDI_EVENT_CODE_PTP_RX:
	case MCDI_EVENT_CODE_PTP_FAULT:
	case MCDI_EVENT_CODE_PTP_PPS:
		efx_ptp_event(efx, event);
		break;
1139 1140 1141
	case MCDI_EVENT_CODE_PTP_TIME:
		efx_time_sync_event(channel, event);
		break;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	case MCDI_EVENT_CODE_TX_FLUSH:
	case MCDI_EVENT_CODE_RX_FLUSH:
		/* Two flush events will be sent: one to the same event
		 * queue as completions, and one to event queue 0.
		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
		 * flag will be set, and we should ignore the event
		 * because we want to wait for all completions.
		 */
		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
			efx_ef10_handle_drain_event(efx);
		break;
1155 1156 1157 1158 1159 1160 1161 1162
	case MCDI_EVENT_CODE_TX_ERR:
	case MCDI_EVENT_CODE_RX_ERR:
		netif_err(efx, hw, efx->net_dev,
			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
			  EFX_QWORD_VAL(*event));
		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
		break;
1163
	default:
1164 1165
		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
			  code);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	}
}

/**************************************************************************
 *
 * Specific request functions
 *
 **************************************************************************
 */

1176
void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1177
{
1178
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1179 1180
	size_t outlength;
	const __le16 *ver_words;
1181
	size_t offset;
1182 1183 1184 1185 1186 1187 1188
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
			  outbuf, sizeof(outbuf), &outlength);
	if (rc)
		goto fail;
1189
	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1190
		rc = -EIO;
1191 1192 1193 1194
		goto fail;
	}

	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1195 1196 1197 1198 1199 1200 1201 1202
	offset = snprintf(buf, len, "%u.%u.%u.%u",
			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));

	/* EF10 may have multiple datapath firmware variants within a
	 * single version.  Report which variants are running.
	 */
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1203 1204 1205 1206 1207
		struct efx_ef10_nic_data *nic_data = efx->nic_data;

		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
				   nic_data->rx_dpcpu_fw_id,
				   nic_data->tx_dpcpu_fw_id);
1208 1209 1210 1211 1212 1213 1214 1215 1216

		/* It's theoretically possible for the string to exceed 31
		 * characters, though in practice the first three version
		 * components are short enough that this doesn't happen.
		 */
		if (WARN_ON(offset >= len))
			buf[0] = 0;
	}

1217
	return;
1218 1219

fail:
1220
	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1221
	buf[0] = 0;
1222 1223
}

1224 1225
static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
			       bool *was_attached)
1226
{
1227
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1228
	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1229 1230 1231 1232 1233 1234
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
		       driver_operating ? 1 : 0);
	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1235
	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), &outlen);
	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
	 * specified will fail with EPERM, and we have to tell the MC we don't
	 * care what firmware we get.
	 */
	if (rc == -EPERM) {
		netif_dbg(efx, probe, efx->net_dev,
			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
			       MC_CMD_FW_DONT_CARE);
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
					sizeof(inbuf), outbuf, sizeof(outbuf),
					&outlen);
	}
	if (rc) {
		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
				       outbuf, outlen, rc);
1255
		goto fail;
1256
	}
1257 1258
	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
		rc = -EIO;
1259
		goto fail;
1260
	}
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (driver_operating) {
		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
			efx->mcdi->fn_flags =
				MCDI_DWORD(outbuf,
					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
		} else {
			/* Synthesise flags for Siena */
			efx->mcdi->fn_flags =
				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
				(efx_port_num(efx) == 0) <<
				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
		}
	}

1277 1278 1279 1280 1281
	/* We currently assume we have control of the external link
	 * and are completely trusted by firmware.  Abort probing
	 * if that's not true for this function.
	 */

1282 1283 1284 1285 1286
	if (was_attached != NULL)
		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
	return 0;

fail:
1287
	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1288 1289 1290 1291
	return rc;
}

int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1292
			   u16 *fw_subtype_list, u32 *capabilities)
1293
{
1294
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1295
	size_t outlen, i;
1296 1297 1298 1299
	int port_num = efx_port_num(efx);
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1300 1301 1302
	/* we need __aligned(2) for ether_addr_copy */
	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1303 1304 1305 1306 1307 1308

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		goto fail;

1309
	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1310
		rc = -EIO;
1311 1312 1313 1314
		goto fail;
	}

	if (mac_address)
1315 1316 1317 1318
		ether_addr_copy(mac_address,
				port_num ?
				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1319 1320
	if (fw_subtype_list) {
		for (i = 0;
1321 1322 1323 1324 1325 1326 1327
		     i < MCDI_VAR_ARRAY_LEN(outlen,
					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
		     i++)
			fw_subtype_list[i] = MCDI_ARRAY_WORD(
				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
			fw_subtype_list[i] = 0;
1328
	}
1329 1330 1331 1332 1333 1334 1335 1336
	if (capabilities) {
		if (port_num)
			*capabilities = MCDI_DWORD(outbuf,
					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
		else
			*capabilities = MCDI_DWORD(outbuf,
					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
	}
1337 1338 1339 1340

	return 0;

fail:
1341 1342
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
		  __func__, rc, (int)outlen);
1343 1344 1345 1346 1347 1348

	return rc;
}

int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
{
1349
	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	u32 dest = 0;
	int rc;

	if (uart)
		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
	if (evq)
		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;

	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);

	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	return rc;
}

int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
{
1370
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1371 1372 1373 1374 1375 1376 1377 1378 1379
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		goto fail;
1380 1381
	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
		rc = -EIO;
1382
		goto fail;
1383
	}
1384 1385 1386 1387 1388

	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
	return 0;

fail:
1389 1390
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
		  __func__, rc);
1391 1392 1393 1394 1395 1396 1397
	return rc;
}

int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
			size_t *size_out, size_t *erase_size_out,
			bool *protected_out)
{
1398 1399
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1400 1401 1402 1403 1404 1405 1406 1407 1408
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		goto fail;
1409 1410
	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
		rc = -EIO;
1411
		goto fail;
1412
	}
1413 1414 1415 1416

	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1417
				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1418 1419 1420
	return 0;

fail:
1421
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1422 1423 1424
	return rc;
}

1425 1426
static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
{
1427 1428
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc)
		return rc;

	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
	case MC_CMD_NVRAM_TEST_PASS:
	case MC_CMD_NVRAM_TEST_NOTSUPP:
		return 0;
	default:
		return -EIO;
	}
}

int efx_mcdi_nvram_test_all(struct efx_nic *efx)
{
	u32 nvram_types;
	unsigned int type;
	int rc;

	rc = efx_mcdi_nvram_types(efx, &nvram_types);
	if (rc)
1455
		goto fail1;
1456 1457 1458 1459 1460 1461

	type = 0;
	while (nvram_types != 0) {
		if (nvram_types & 1) {
			rc = efx_mcdi_nvram_test(efx, type);
			if (rc)
1462
				goto fail2;
1463 1464 1465 1466 1467 1468
		}
		type++;
		nvram_types >>= 1;
	}

	return 0;
1469 1470

fail2:
1471 1472
	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
		  __func__, type);
1473
fail1:
1474
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1475
	return rc;
1476 1477
}

1478 1479 1480
/* Returns 1 if an assertion was read, 0 if no assertion had fired,
 * negative on error.
 */
1481
static int efx_mcdi_read_assertion(struct efx_nic *efx)
1482
{
1483
	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1484
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1485
	unsigned int flags, index;
1486 1487 1488 1489 1490
	const char *reason;
	size_t outlen;
	int retry;
	int rc;

1491 1492
	/* Attempt to read any stored assertion state before we reboot
	 * the mcfw out of the assertion handler. Retry twice, once
1493 1494 1495 1496 1497
	 * because a boot-time assertion might cause this command to fail
	 * with EINTR. And once again because GET_ASSERTS can race with
	 * MC_CMD_REBOOT running on the other port. */
	retry = 2;
	do {
1498
		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1499 1500 1501
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
					outbuf, sizeof(outbuf), &outlen);
1502 1503
		if (rc == -EPERM)
			return 0;
1504 1505
	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);

1506 1507 1508 1509
	if (rc) {
		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
				       outlen, rc);
1510
		return rc;
1511
	}
1512
	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1513
		return -EIO;
1514

1515 1516
	/* Print out any recorded assertion state */
	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
		return 0;

	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
		? "system-level assertion"
		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
		? "thread-level assertion"
		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
		? "watchdog reset"
		: "unknown assertion";
1527 1528 1529 1530
	netif_err(efx, hw, efx->net_dev,
		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1531 1532

	/* Print out the registers */
1533 1534 1535 1536 1537 1538 1539
	for (index = 0;
	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
	     index++)
		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
			  1 + index,
			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
					   index));
1540

1541
	return 1;
1542 1543
}

1544
static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1545
{
1546
	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1547
	int rc;
1548

1549 1550 1551
	/* If the MC is running debug firmware, it might now be
	 * waiting for a debugger to attach, but we just want it to
	 * reboot.  We set a flag that makes the command a no-op if it
1552 1553
	 * has already done so.
	 * The MCDI will thus return either 0 or -EIO.
1554
	 */
1555 1556 1557
	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1558 1559 1560 1561 1562 1563 1564 1565
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
				NULL, 0, NULL);
	if (rc == -EIO)
		rc = 0;
	if (rc)
		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
				       NULL, 0, rc);
	return rc;
1566 1567 1568 1569 1570 1571 1572
}

int efx_mcdi_handle_assertion(struct efx_nic *efx)
{
	int rc;

	rc = efx_mcdi_read_assertion(efx);
1573
	if (rc <= 0)
1574 1575
		return rc;

1576
	return efx_mcdi_exit_assertion(efx);
1577 1578
}

1579 1580
void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
1581
	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	int rc;

	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);

	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);

	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);

	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
}

1596
static int efx_mcdi_reset_func(struct efx_nic *efx)
1597
{
1598 1599 1600 1601 1602 1603 1604 1605 1606
	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
	int rc;

	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	return rc;
1607 1608
}

1609
static int efx_mcdi_reset_mc(struct efx_nic *efx)
1610
{
1611
	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	int rc;

	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	/* White is black, and up is down */
	if (rc == -EIO)
		return 0;
	if (rc == 0)
		rc = -EIO;
	return rc;
}

1626 1627 1628 1629 1630 1631 1632 1633 1634
enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
{
	return RESET_TYPE_RECOVER_OR_ALL;
}

int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
{
	int rc;

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	/* If MCDI is down, we can't handle_assertion */
	if (method == RESET_TYPE_MCDI_TIMEOUT) {
		rc = pci_reset_function(efx->pci_dev);
		if (rc)
			return rc;
		/* Re-enable polled MCDI completion */
		if (efx->mcdi) {
			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
			mcdi->mode = MCDI_MODE_POLL;
		}
		return 0;
	}

1648 1649 1650 1651 1652
	/* Recover from a failed assertion pre-reset */
	rc = efx_mcdi_handle_assertion(efx);
	if (rc)
		return rc;

1653 1654 1655
	if (method == RESET_TYPE_DATAPATH)
		return 0;
	else if (method == RESET_TYPE_WORLD)
1656 1657
		return efx_mcdi_reset_mc(efx);
	else
1658
		return efx_mcdi_reset_func(efx);
1659 1660
}

1661 1662
static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
				   const u8 *mac, int *id_out)
1663
{
1664 1665
	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1666 1667 1668 1669 1670 1671
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
		       MC_CMD_FILTER_MODE_SIMPLE);
1672
	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1673 1674 1675 1676 1677 1678 1679

	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		goto fail;

	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1680
		rc = -EIO;
1681 1682 1683 1684 1685 1686 1687 1688 1689
		goto fail;
	}

	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);

	return 0;

fail:
	*id_out = -1;
1690
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	return rc;

}


int
efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
{
	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
}


int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
{
1705
	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1706 1707 1708 1709 1710 1711 1712 1713 1714
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		goto fail;

	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1715
		rc = -EIO;
1716 1717 1718 1719 1720 1721 1722 1723 1724
		goto fail;
	}

	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);

	return 0;

fail:
	*id_out = -1;
1725
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1726 1727 1728 1729 1730 1731
	return rc;
}


int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
{
1732
	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1733 1734 1735 1736 1737 1738 1739 1740 1741
	int rc;

	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);

	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	return rc;
}

1742 1743 1744 1745
int efx_mcdi_flush_rxqs(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
1746 1747
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1748 1749
	int rc, count;

1750 1751 1752
	BUILD_BUG_ON(EFX_MAX_CHANNELS >
		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);

1753 1754 1755 1756 1757 1758
	count = 0;
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel) {
			if (rx_queue->flush_pending) {
				rx_queue->flush_pending = false;
				atomic_dec(&efx->rxq_flush_pending);
1759 1760 1761 1762
				MCDI_SET_ARRAY_DWORD(
					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
					count, efx_rx_queue_index(rx_queue));
				count++;
1763 1764 1765 1766
			}
		}
	}

1767 1768
	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1769
	WARN_ON(rc < 0);
1770 1771 1772

	return rc;
}
1773 1774 1775 1776 1777 1778 1779 1780 1781

int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
{
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
	return rc;
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);

	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
	return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

1793 1794 1795
int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
			     unsigned int *enabled_out)
{
1796
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		goto fail;

	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
		rc = -EIO;
		goto fail;
	}

	if (impl_out)
		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);

	if (enabled_out)
		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);

	return 0;

fail:
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
	return rc;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
#ifdef CONFIG_SFC_MTD

#define EFX_MCDI_NVRAM_LEN_MAX 128

static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);

	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	return rc;
}

static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
			       loff_t offset, u8 *buffer, size_t length)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
	MCDI_DECLARE_BUF(outbuf,
			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
1857
		return rc;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
	return 0;
}

static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
				loff_t offset, const u8 *buffer, size_t length)
{
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);

	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
			  NULL, 0, NULL);
	return rc;
}

static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
				loff_t offset, size_t length)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);

	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	return rc;
}

static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
	int rc;

	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);

	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	return rc;
}

int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
		      size_t len, size_t *retlen, u8 *buffer)
{
	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
	struct efx_nic *efx = mtd->priv;
	loff_t offset = start;
	loff_t end = min_t(loff_t, start + len, mtd->size);
	size_t chunk;
	int rc = 0;

	while (offset < end) {
		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
					 buffer, chunk);
		if (rc)
			goto out;
		offset += chunk;
		buffer += chunk;
	}
out:
	*retlen = offset - start;
	return rc;
}

int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
{
	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
	struct efx_nic *efx = mtd->priv;
	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
	loff_t end = min_t(loff_t, start + len, mtd->size);
	size_t chunk = part->common.mtd.erasesize;
	int rc = 0;

	if (!part->updating) {
		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
		if (rc)
			goto out;
		part->updating = true;
	}

	/* The MCDI interface can in fact do multiple erase blocks at once;
	 * but erasing may be slow, so we make multiple calls here to avoid
	 * tripping the MCDI RPC timeout. */
	while (offset < end) {
		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
					  chunk);
		if (rc)
			goto out;
		offset += chunk;
	}
out:
	return rc;
}

int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
		       size_t len, size_t *retlen, const u8 *buffer)
{
	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
	struct efx_nic *efx = mtd->priv;
	loff_t offset = start;
	loff_t end = min_t(loff_t, start + len, mtd->size);
	size_t chunk;
	int rc = 0;

	if (!part->updating) {
		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
		if (rc)
			goto out;
		part->updating = true;
	}

	while (offset < end) {
		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
					  buffer, chunk);
		if (rc)
			goto out;
		offset += chunk;
		buffer += chunk;
	}
out:
	*retlen = offset - start;
	return rc;
}

int efx_mcdi_mtd_sync(struct mtd_info *mtd)
{
	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
	struct efx_nic *efx = mtd->priv;
	int rc = 0;

	if (part->updating) {
		part->updating = false;
		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
	}

	return rc;
}

void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
{
	struct efx_mcdi_mtd_partition *mcdi_part =
		container_of(part, struct efx_mcdi_mtd_partition, common);
	struct efx_nic *efx = part->mtd.priv;

	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
		 efx->name, part->type_name, mcdi_part->fw_subtype);
}

#endif /* CONFIG_SFC_MTD */
新手
引导
客服 返回
顶部