zl10353.c 16.1 KB
Newer Older
1 2 3
/*
 * Driver for Zarlink DVB-T ZL10353 demodulator
 *
4
 * Copyright (C) 2006, 2007 Christopher Pascoe <c.pascoe@itee.uq.edu.au>
5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
19
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 21 22 23 24 25 26 27
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
28
#include <asm/div64.h>
29 30 31 32 33 34 35 36 37 38

#include "dvb_frontend.h"
#include "zl10353_priv.h"
#include "zl10353.h"

struct zl10353_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend frontend;

	struct zl10353_config config;
39 40

	enum fe_bandwidth bandwidth;
41 42
};

43 44 45 46 47 48
static int debug;
#define dprintk(args...) \
	do { \
		if (debug) printk(KERN_DEBUG "zl10353: " args); \
	} while (0)

49
static int debug_regs;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

static int zl10353_single_write(struct dvb_frontend *fe, u8 reg, u8 val)
{
	struct zl10353_state *state = fe->demodulator_priv;
	u8 buf[2] = { reg, val };
	struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0,
			       .buf = buf, .len = 2 };
	int err = i2c_transfer(state->i2c, &msg, 1);
	if (err != 1) {
		printk("zl10353: write to reg %x failed (err = %d)!\n", reg, err);
		return err;
	}
	return 0;
}

65
static int zl10353_write(struct dvb_frontend *fe, u8 *ibuf, int ilen)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	int err, i;
	for (i = 0; i < ilen - 1; i++)
		if ((err = zl10353_single_write(fe, ibuf[0] + i, ibuf[i + 1])))
			return err;

	return 0;
}

static int zl10353_read_register(struct zl10353_state *state, u8 reg)
{
	int ret;
	u8 b0[1] = { reg };
	u8 b1[1] = { 0 };
	struct i2c_msg msg[2] = { { .addr = state->config.demod_address,
				    .flags = 0,
				    .buf = b0, .len = 1 },
				  { .addr = state->config.demod_address,
				    .flags = I2C_M_RD,
				    .buf = b1, .len = 1 } };

	ret = i2c_transfer(state->i2c, msg, 2);

	if (ret != 2) {
		printk("%s: readreg error (reg=%d, ret==%i)\n",
91
		       __func__, reg, ret);
92 93 94 95 96 97
		return ret;
	}

	return b1[0];
}

98
static void zl10353_dump_regs(struct dvb_frontend *fe)
99 100 101 102 103 104 105 106 107
{
	struct zl10353_state *state = fe->demodulator_priv;
	int ret;
	u8 reg;

	/* Dump all registers. */
	for (reg = 0; ; reg++) {
		if (reg % 16 == 0) {
			if (reg)
108 109
				printk(KERN_CONT "\n");
			printk(KERN_DEBUG "%02x:", reg);
110 111 112
		}
		ret = zl10353_read_register(state, reg);
		if (ret >= 0)
113
			printk(KERN_CONT " %02x", (u8)ret);
114
		else
115
			printk(KERN_CONT " --");
116 117 118
		if (reg == 0xff)
			break;
	}
119
	printk(KERN_CONT "\n");
120 121
}

122 123 124 125 126
static void zl10353_calc_nominal_rate(struct dvb_frontend *fe,
				      enum fe_bandwidth bandwidth,
				      u16 *nominal_rate)
{
	struct zl10353_state *state = fe->demodulator_priv;
127 128 129
	u32 adc_clock = 450560; /* 45.056 MHz */
	u64 value;
	u8 bw;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

	if (state->config.adc_clock)
		adc_clock = state->config.adc_clock;

	switch (bandwidth) {
	case BANDWIDTH_6_MHZ:
		bw = 6;
		break;
	case BANDWIDTH_7_MHZ:
		bw = 7;
		break;
	case BANDWIDTH_8_MHZ:
	default:
		bw = 8;
		break;
	}

147 148
	value = (u64)10 * (1 << 23) / 7 * 125;
	value = (bw * value) + adc_clock / 2;
149 150
	do_div(value, adc_clock);
	*nominal_rate = value;
151 152

	dprintk("%s: bw %d, adc_clock %d => 0x%x\n",
153
		__func__, bw, adc_clock, *nominal_rate);
154 155
}

156 157 158 159
static void zl10353_calc_input_freq(struct dvb_frontend *fe,
				    u16 *input_freq)
{
	struct zl10353_state *state = fe->demodulator_priv;
160 161
	u32 adc_clock = 450560;	/* 45.056  MHz */
	int if2 = 361667;	/* 36.1667 MHz */
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	int ife;
	u64 value;

	if (state->config.adc_clock)
		adc_clock = state->config.adc_clock;
	if (state->config.if2)
		if2 = state->config.if2;

	if (adc_clock >= if2 * 2)
		ife = if2;
	else {
		ife = adc_clock - (if2 % adc_clock);
		if (ife > adc_clock / 2)
			ife = adc_clock - ife;
	}
177
	value = (u64)65536 * ife + adc_clock / 2;
178 179 180 181
	do_div(value, adc_clock);
	*input_freq = -value;

	dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n",
182
		__func__, if2, ife, adc_clock, -(int)value, *input_freq);
183 184
}

185 186 187 188 189 190 191 192 193 194 195
static int zl10353_sleep(struct dvb_frontend *fe)
{
	static u8 zl10353_softdown[] = { 0x50, 0x0C, 0x44 };

	zl10353_write(fe, zl10353_softdown, sizeof(zl10353_softdown));
	return 0;
}

static int zl10353_set_parameters(struct dvb_frontend *fe,
				  struct dvb_frontend_parameters *param)
{
196
	struct zl10353_state *state = fe->demodulator_priv;
197
	u16 nominal_rate, input_freq;
198 199 200
	u8 pllbuf[6] = { 0x67 }, acq_ctl = 0;
	u16 tps = 0;
	struct dvb_ofdm_parameters *op = &param->u.ofdm;
201

202
	zl10353_single_write(fe, RESET, 0x80);
203 204 205 206 207
	udelay(200);
	zl10353_single_write(fe, 0xEA, 0x01);
	udelay(200);
	zl10353_single_write(fe, 0xEA, 0x00);

208 209 210 211 212 213 214
	zl10353_single_write(fe, AGC_TARGET, 0x28);

	if (op->transmission_mode != TRANSMISSION_MODE_AUTO)
		acq_ctl |= (1 << 0);
	if (op->guard_interval != GUARD_INTERVAL_AUTO)
		acq_ctl |= (1 << 1);
	zl10353_single_write(fe, ACQ_CTL, acq_ctl);
215

216 217 218 219 220
	switch (op->bandwidth) {
	case BANDWIDTH_6_MHZ:
		/* These are extrapolated from the 7 and 8MHz values */
		zl10353_single_write(fe, MCLK_RATIO, 0x97);
		zl10353_single_write(fe, 0x64, 0x34);
221
		zl10353_single_write(fe, 0xcc, 0xdd);
222 223 224 225
		break;
	case BANDWIDTH_7_MHZ:
		zl10353_single_write(fe, MCLK_RATIO, 0x86);
		zl10353_single_write(fe, 0x64, 0x35);
226
		zl10353_single_write(fe, 0xcc, 0x73);
227 228 229 230 231
		break;
	case BANDWIDTH_8_MHZ:
	default:
		zl10353_single_write(fe, MCLK_RATIO, 0x75);
		zl10353_single_write(fe, 0x64, 0x36);
232
		zl10353_single_write(fe, 0xcc, 0x73);
233 234 235
	}

	zl10353_calc_nominal_rate(fe, op->bandwidth, &nominal_rate);
236 237
	zl10353_single_write(fe, TRL_NOMINAL_RATE_1, msb(nominal_rate));
	zl10353_single_write(fe, TRL_NOMINAL_RATE_0, lsb(nominal_rate));
238
	state->bandwidth = op->bandwidth;
239

240 241 242 243
	zl10353_calc_input_freq(fe, &input_freq);
	zl10353_single_write(fe, INPUT_FREQ_1, msb(input_freq));
	zl10353_single_write(fe, INPUT_FREQ_0, lsb(input_freq));

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	/* Hint at TPS settings */
	switch (op->code_rate_HP) {
	case FEC_2_3:
		tps |= (1 << 7);
		break;
	case FEC_3_4:
		tps |= (2 << 7);
		break;
	case FEC_5_6:
		tps |= (3 << 7);
		break;
	case FEC_7_8:
		tps |= (4 << 7);
		break;
	case FEC_1_2:
	case FEC_AUTO:
		break;
	default:
		return -EINVAL;
	}

	switch (op->code_rate_LP) {
	case FEC_2_3:
		tps |= (1 << 4);
		break;
	case FEC_3_4:
		tps |= (2 << 4);
		break;
	case FEC_5_6:
		tps |= (3 << 4);
		break;
	case FEC_7_8:
		tps |= (4 << 4);
		break;
	case FEC_1_2:
	case FEC_AUTO:
		break;
	case FEC_NONE:
		if (op->hierarchy_information == HIERARCHY_AUTO ||
		    op->hierarchy_information == HIERARCHY_NONE)
			break;
	default:
		return -EINVAL;
	}

	switch (op->constellation) {
	case QPSK:
		break;
	case QAM_AUTO:
	case QAM_16:
		tps |= (1 << 13);
		break;
	case QAM_64:
		tps |= (2 << 13);
		break;
	default:
		return -EINVAL;
	}

	switch (op->transmission_mode) {
	case TRANSMISSION_MODE_2K:
	case TRANSMISSION_MODE_AUTO:
		break;
	case TRANSMISSION_MODE_8K:
		tps |= (1 << 0);
		break;
	default:
		return -EINVAL;
	}

	switch (op->guard_interval) {
	case GUARD_INTERVAL_1_32:
	case GUARD_INTERVAL_AUTO:
		break;
	case GUARD_INTERVAL_1_16:
		tps |= (1 << 2);
		break;
	case GUARD_INTERVAL_1_8:
		tps |= (2 << 2);
		break;
	case GUARD_INTERVAL_1_4:
		tps |= (3 << 2);
		break;
	default:
		return -EINVAL;
	}

	switch (op->hierarchy_information) {
	case HIERARCHY_AUTO:
	case HIERARCHY_NONE:
		break;
	case HIERARCHY_1:
		tps |= (1 << 10);
		break;
	case HIERARCHY_2:
		tps |= (2 << 10);
		break;
	case HIERARCHY_4:
		tps |= (3 << 10);
		break;
	default:
		return -EINVAL;
	}

	zl10353_single_write(fe, TPS_GIVEN_1, msb(tps));
	zl10353_single_write(fe, TPS_GIVEN_0, lsb(tps));

351 352
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
353

354 355 356 357 358
	/*
	 * If there is no tuner attached to the secondary I2C bus, we call
	 * set_params to program a potential tuner attached somewhere else.
	 * Otherwise, we update the PLL registers via calc_regs.
	 */
359
	if (state->config.no_tuner) {
360 361
		if (fe->ops.tuner_ops.set_params) {
			fe->ops.tuner_ops.set_params(fe, param);
362 363
			if (fe->ops.i2c_gate_ctrl)
				fe->ops.i2c_gate_ctrl(fe, 0);
364
		}
365 366
	} else if (fe->ops.tuner_ops.calc_regs) {
		fe->ops.tuner_ops.calc_regs(fe, param, pllbuf + 1, 5);
367
		pllbuf[1] <<= 1;
368
		zl10353_write(fe, pllbuf, sizeof(pllbuf));
369
	}
370

371
	zl10353_single_write(fe, 0x5F, 0x13);
372 373 374 375 376 377 378

	/* If no attached tuner or invalid PLL registers, just start the FSM. */
	if (state->config.no_tuner || fe->ops.tuner_ops.calc_regs == NULL)
		zl10353_single_write(fe, FSM_GO, 0x01);
	else
		zl10353_single_write(fe, TUNER_GO, 0x01);

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	return 0;
}

static int zl10353_get_parameters(struct dvb_frontend *fe,
				  struct dvb_frontend_parameters *param)
{
	struct zl10353_state *state = fe->demodulator_priv;
	struct dvb_ofdm_parameters *op = &param->u.ofdm;
	int s6, s9;
	u16 tps;
	static const u8 tps_fec_to_api[8] = {
		FEC_1_2,
		FEC_2_3,
		FEC_3_4,
		FEC_5_6,
		FEC_7_8,
		FEC_AUTO,
		FEC_AUTO,
		FEC_AUTO
	};

	s6 = zl10353_read_register(state, STATUS_6);
	s9 = zl10353_read_register(state, STATUS_9);
	if (s6 < 0 || s9 < 0)
		return -EREMOTEIO;
	if ((s6 & (1 << 5)) == 0 || (s9 & (1 << 4)) == 0)
		return -EINVAL;	/* no FE or TPS lock */

	tps = zl10353_read_register(state, TPS_RECEIVED_1) << 8 |
	      zl10353_read_register(state, TPS_RECEIVED_0);

	op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
	op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];

	switch ((tps >> 13) & 3) {
	case 0:
		op->constellation = QPSK;
		break;
	case 1:
		op->constellation = QAM_16;
		break;
	case 2:
		op->constellation = QAM_64;
		break;
	default:
		op->constellation = QAM_AUTO;
		break;
	}

	op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K :
					       TRANSMISSION_MODE_2K;

	switch ((tps >> 2) & 3) {
	case 0:
		op->guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		op->guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		op->guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		op->guard_interval = GUARD_INTERVAL_1_4;
		break;
	default:
		op->guard_interval = GUARD_INTERVAL_AUTO;
		break;
	}

	switch ((tps >> 10) & 7) {
	case 0:
		op->hierarchy_information = HIERARCHY_NONE;
		break;
	case 1:
		op->hierarchy_information = HIERARCHY_1;
		break;
	case 2:
		op->hierarchy_information = HIERARCHY_2;
		break;
	case 3:
		op->hierarchy_information = HIERARCHY_4;
		break;
	default:
		op->hierarchy_information = HIERARCHY_AUTO;
		break;
	}

	param->frequency = 0;
	op->bandwidth = state->bandwidth;
	param->inversion = INVERSION_AUTO;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	return 0;
}

static int zl10353_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct zl10353_state *state = fe->demodulator_priv;
	int s6, s7, s8;

	if ((s6 = zl10353_read_register(state, STATUS_6)) < 0)
		return -EREMOTEIO;
	if ((s7 = zl10353_read_register(state, STATUS_7)) < 0)
		return -EREMOTEIO;
	if ((s8 = zl10353_read_register(state, STATUS_8)) < 0)
		return -EREMOTEIO;

	*status = 0;
	if (s6 & (1 << 2))
		*status |= FE_HAS_CARRIER;
	if (s6 & (1 << 1))
		*status |= FE_HAS_VITERBI;
	if (s6 & (1 << 5))
		*status |= FE_HAS_LOCK;
	if (s7 & (1 << 4))
		*status |= FE_HAS_SYNC;
	if (s8 & (1 << 6))
		*status |= FE_HAS_SIGNAL;

	if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) !=
	    (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))
		*status &= ~FE_HAS_LOCK;

	return 0;
}

505 506 507 508
static int zl10353_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	struct zl10353_state *state = fe->demodulator_priv;

509 510 511
	*ber = zl10353_read_register(state, RS_ERR_CNT_2) << 16 |
	       zl10353_read_register(state, RS_ERR_CNT_1) << 8 |
	       zl10353_read_register(state, RS_ERR_CNT_0);
512 513 514 515 516 517 518 519

	return 0;
}

static int zl10353_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct zl10353_state *state = fe->demodulator_priv;

520 521
	u16 signal = zl10353_read_register(state, AGC_GAIN_1) << 10 |
		     zl10353_read_register(state, AGC_GAIN_0) << 2 | 3;
522 523 524 525 526 527

	*strength = ~signal;

	return 0;
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541
static int zl10353_read_snr(struct dvb_frontend *fe, u16 *snr)
{
	struct zl10353_state *state = fe->demodulator_priv;
	u8 _snr;

	if (debug_regs)
		zl10353_dump_regs(fe);

	_snr = zl10353_read_register(state, SNR);
	*snr = (_snr << 8) | _snr;

	return 0;
}

542 543 544 545
static int zl10353_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
	struct zl10353_state *state = fe->demodulator_priv;

546 547
	*ucblocks = zl10353_read_register(state, RS_UBC_1) << 8 |
		    zl10353_read_register(state, RS_UBC_0);
548 549 550 551

	return 0;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static int zl10353_get_tune_settings(struct dvb_frontend *fe,
				     struct dvb_frontend_tune_settings
					 *fe_tune_settings)
{
	fe_tune_settings->min_delay_ms = 1000;
	fe_tune_settings->step_size = 0;
	fe_tune_settings->max_drift = 0;

	return 0;
}

static int zl10353_init(struct dvb_frontend *fe)
{
	struct zl10353_state *state = fe->demodulator_priv;
	u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F };
	int rc = 0;

	if (debug_regs)
		zl10353_dump_regs(fe);
571 572
	if (state->config.parallel_ts)
		zl10353_reset_attach[2] &= ~0x20;
573 574 575 576
	if (state->config.clock_ctl_1)
		zl10353_reset_attach[3] = state->config.clock_ctl_1;
	if (state->config.pll_0)
		zl10353_reset_attach[4] = state->config.pll_0;
577 578

	/* Do a "hard" reset if not already done */
579 580
	if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] ||
	    zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) {
581 582 583 584 585 586 587 588 589
		rc = zl10353_write(fe, zl10353_reset_attach,
				   sizeof(zl10353_reset_attach));
		if (debug_regs)
			zl10353_dump_regs(fe);
	}

	return 0;
}

590 591
static int zl10353_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
592
	struct zl10353_state *state = fe->demodulator_priv;
593 594
	u8 val = 0x0a;

595
	if (state->config.disable_i2c_gate_ctrl) {
596 597 598 599 600
		/* No tuner attached to the internal I2C bus */
		/* If set enable I2C bridge, the main I2C bus stopped hardly */
		return 0;
	}

601 602 603 604 605 606
	if (enable)
		val |= 0x10;

	return zl10353_single_write(fe, 0x62, val);
}

607 608 609 610 611 612 613 614 615 616 617 618
static void zl10353_release(struct dvb_frontend *fe)
{
	struct zl10353_state *state = fe->demodulator_priv;
	kfree(state);
}

static struct dvb_frontend_ops zl10353_ops;

struct dvb_frontend *zl10353_attach(const struct zl10353_config *config,
				    struct i2c_adapter *i2c)
{
	struct zl10353_state *state = NULL;
619
	int id;
620 621 622 623 624 625 626 627 628 629 630

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct zl10353_state), GFP_KERNEL);
	if (state == NULL)
		goto error;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->config, config, sizeof(struct zl10353_config));

	/* check if the demod is there */
631 632
	id = zl10353_read_register(state, CHIP_ID);
	if ((id != ID_ZL10353) && (id != ID_CE6230) && (id != ID_CE6231))
633 634 635
		goto error;

	/* create dvb_frontend */
636
	memcpy(&state->frontend.ops, &zl10353_ops, sizeof(struct dvb_frontend_ops));
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	state->frontend.demodulator_priv = state;

	return &state->frontend;
error:
	kfree(state);
	return NULL;
}

static struct dvb_frontend_ops zl10353_ops = {

	.info = {
		.name			= "Zarlink ZL10353 DVB-T",
		.type			= FE_OFDM,
		.frequency_min		= 174000000,
		.frequency_max		= 862000000,
		.frequency_stepsize	= 166667,
		.frequency_tolerance	= 0,
		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = zl10353_release,

	.init = zl10353_init,
	.sleep = zl10353_sleep,
667
	.i2c_gate_ctrl = zl10353_i2c_gate_ctrl,
668
	.write = zl10353_write,
669 670

	.set_frontend = zl10353_set_parameters,
671
	.get_frontend = zl10353_get_parameters,
672 673 674
	.get_tune_settings = zl10353_get_tune_settings,

	.read_status = zl10353_read_status,
675 676
	.read_ber = zl10353_read_ber,
	.read_signal_strength = zl10353_read_signal_strength,
677
	.read_snr = zl10353_read_snr,
678
	.read_ucblocks = zl10353_read_ucblocks,
679 680
};

681 682 683
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

684 685 686 687 688 689 690 691
module_param(debug_regs, int, 0644);
MODULE_PARM_DESC(debug_regs, "Turn on/off frontend register dumps (default:off).");

MODULE_DESCRIPTION("Zarlink ZL10353 DVB-T demodulator driver");
MODULE_AUTHOR("Chris Pascoe");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(zl10353_attach);