coredump.c 25.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
5
#include <linux/freezer.h>
6 7 8 9
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
10
#include <linux/ctype.h>
11 12 13 14 15 16 17 18 19
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
20
#include <linux/coredump.h>
21
#include <linux/sched/coredump.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/task_stack.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>
41 42
#include <linux/fs.h>
#include <linux/path.h>
43
#include <linux/timekeeping.h>
44

45
#include <linux/uaccess.h>
46 47 48 49 50 51 52 53 54 55 56
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/exec.h>

#include <trace/events/task.h>
#include "internal.h"

#include <trace/events/sched.h>

int core_uses_pid;
unsigned int core_pipe_limit;
57 58
char core_pattern[CORENAME_MAX_SIZE] = "core";
static int core_name_size = CORENAME_MAX_SIZE;
59 60 61 62 63 64 65 66

struct core_name {
	char *corename;
	int used, size;
};

/* The maximal length of core_pattern is also specified in sysctl.c */

67
static int expand_corename(struct core_name *cn, int size)
68
{
69
	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70

71
	if (!corename)
72 73
		return -ENOMEM;

74 75 76 77
	if (size > core_name_size) /* racy but harmless */
		core_name_size = size;

	cn->size = ksize(corename);
78
	cn->corename = corename;
79 80 81
	return 0;
}

82 83
static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
				     va_list arg)
84
{
85
	int free, need;
E
Eric Dumazet 已提交
86
	va_list arg_copy;
87

88 89
again:
	free = cn->size - cn->used;
E
Eric Dumazet 已提交
90 91 92 93 94

	va_copy(arg_copy, arg);
	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
	va_end(arg_copy);

95 96 97 98
	if (need < free) {
		cn->used += need;
		return 0;
	}
99

100
	if (!expand_corename(cn, cn->size + need - free + 1))
101
		goto again;
102

103
	return -ENOMEM;
104 105
}

106
static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
O
Oleg Nesterov 已提交
107 108 109 110 111 112 113 114 115 116 117
{
	va_list arg;
	int ret;

	va_start(arg, fmt);
	ret = cn_vprintf(cn, fmt, arg);
	va_end(arg);

	return ret;
}

118 119
static __printf(2, 3)
int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120
{
121 122 123 124 125 126 127 128
	int cur = cn->used;
	va_list arg;
	int ret;

	va_start(arg, fmt);
	ret = cn_vprintf(cn, fmt, arg);
	va_end(arg);

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	if (ret == 0) {
		/*
		 * Ensure that this coredump name component can't cause the
		 * resulting corefile path to consist of a ".." or ".".
		 */
		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
				(cn->used - cur == 2 && cn->corename[cur] == '.'
				&& cn->corename[cur+1] == '.'))
			cn->corename[cur] = '!';

		/*
		 * Empty names are fishy and could be used to create a "//" in a
		 * corefile name, causing the coredump to happen one directory
		 * level too high. Enforce that all components of the core
		 * pattern are at least one character long.
		 */
		if (cn->used == cur)
			ret = cn_printf(cn, "!");
	}

149 150 151 152 153
	for (; cur < cn->used; ++cur) {
		if (cn->corename[cur] == '/')
			cn->corename[cur] = '!';
	}
	return ret;
154 155
}

156
static int cn_print_exe_file(struct core_name *cn, bool name_only)
157 158
{
	struct file *exe_file;
159
	char *pathbuf, *path, *ptr;
160 161 162
	int ret;

	exe_file = get_mm_exe_file(current->mm);
163 164
	if (!exe_file)
		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165

166
	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 168 169 170 171
	if (!pathbuf) {
		ret = -ENOMEM;
		goto put_exe_file;
	}

M
Miklos Szeredi 已提交
172
	path = file_path(exe_file, pathbuf, PATH_MAX);
173 174 175 176 177
	if (IS_ERR(path)) {
		ret = PTR_ERR(path);
		goto free_buf;
	}

178 179 180 181 182
	if (name_only) {
		ptr = strrchr(path, '/');
		if (ptr)
			path = ptr + 1;
	}
183
	ret = cn_esc_printf(cn, "%s", path);
184 185 186 187 188 189 190 191 192 193 194 195

free_buf:
	kfree(pathbuf);
put_exe_file:
	fput(exe_file);
	return ret;
}

/* format_corename will inspect the pattern parameter, and output a
 * name into corename, which must have space for at least
 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 */
196 197
static int format_corename(struct core_name *cn, struct coredump_params *cprm,
			   size_t **argv, int *argc)
198 199 200 201
{
	const struct cred *cred = current_cred();
	const char *pat_ptr = core_pattern;
	int ispipe = (*pat_ptr == '|');
202
	bool was_space = false;
203 204 205
	int pid_in_pattern = 0;
	int err = 0;

206
	cn->used = 0;
207 208
	cn->corename = NULL;
	if (expand_corename(cn, core_name_size))
209
		return -ENOMEM;
210 211
	cn->corename[0] = '\0';

212 213 214 215 216 217
	if (ispipe) {
		int argvs = sizeof(core_pattern) / 2;
		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
		if (!(*argv))
			return -ENOMEM;
		(*argv)[(*argc)++] = 0;
218
		++pat_ptr;
219 220
		if (!(*pat_ptr))
			return -ENOMEM;
221
	}
222 223 224 225

	/* Repeat as long as we have more pattern to process and more output
	   space */
	while (*pat_ptr) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
		/*
		 * Split on spaces before doing template expansion so that
		 * %e and %E don't get split if they have spaces in them
		 */
		if (ispipe) {
			if (isspace(*pat_ptr)) {
				was_space = true;
				pat_ptr++;
				continue;
			} else if (was_space) {
				was_space = false;
				err = cn_printf(cn, "%c", '\0');
				if (err)
					return err;
				(*argv)[(*argc)++] = cn->used;
			}
		}
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		if (*pat_ptr != '%') {
			err = cn_printf(cn, "%c", *pat_ptr++);
		} else {
			switch (*++pat_ptr) {
			/* single % at the end, drop that */
			case 0:
				goto out;
			/* Double percent, output one percent */
			case '%':
				err = cn_printf(cn, "%c", '%');
				break;
			/* pid */
			case 'p':
				pid_in_pattern = 1;
				err = cn_printf(cn, "%d",
					      task_tgid_vnr(current));
				break;
260 261 262 263 264
			/* global pid */
			case 'P':
				err = cn_printf(cn, "%d",
					      task_tgid_nr(current));
				break;
265 266 267 268 269 270 271 272
			case 'i':
				err = cn_printf(cn, "%d",
					      task_pid_vnr(current));
				break;
			case 'I':
				err = cn_printf(cn, "%d",
					      task_pid_nr(current));
				break;
273 274
			/* uid */
			case 'u':
275 276 277
				err = cn_printf(cn, "%u",
						from_kuid(&init_user_ns,
							  cred->uid));
278 279 280
				break;
			/* gid */
			case 'g':
281 282 283
				err = cn_printf(cn, "%u",
						from_kgid(&init_user_ns,
							  cred->gid));
284
				break;
285 286 287 288
			case 'd':
				err = cn_printf(cn, "%d",
					__get_dumpable(cprm->mm_flags));
				break;
289 290
			/* signal that caused the coredump */
			case 's':
291 292
				err = cn_printf(cn, "%d",
						cprm->siginfo->si_signo);
293 294 295
				break;
			/* UNIX time of coredump */
			case 't': {
296 297 298 299
				time64_t time;

				time = ktime_get_real_seconds();
				err = cn_printf(cn, "%lld", time);
300 301 302
				break;
			}
			/* hostname */
303
			case 'h':
304
				down_read(&uts_sem);
305
				err = cn_esc_printf(cn, "%s",
306 307 308
					      utsname()->nodename);
				up_read(&uts_sem);
				break;
309
			/* executable, could be changed by prctl PR_SET_NAME etc */
310 311
			case 'e':
				err = cn_esc_printf(cn, "%s", current->comm);
312
				break;
313 314 315 316
			/* file name of executable */
			case 'f':
				err = cn_print_exe_file(cn, true);
				break;
317
			case 'E':
318
				err = cn_print_exe_file(cn, false);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
				break;
			/* core limit size */
			case 'c':
				err = cn_printf(cn, "%lu",
					      rlimit(RLIMIT_CORE));
				break;
			default:
				break;
			}
			++pat_ptr;
		}

		if (err)
			return err;
	}

335
out:
336 337 338 339 340 341 342 343 344 345 346 347 348
	/* Backward compatibility with core_uses_pid:
	 *
	 * If core_pattern does not include a %p (as is the default)
	 * and core_uses_pid is set, then .%pid will be appended to
	 * the filename. Do not do this for piped commands. */
	if (!ispipe && !pid_in_pattern && core_uses_pid) {
		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
		if (err)
			return err;
	}
	return ispipe;
}

349
static int zap_process(struct task_struct *start, int exit_code, int flags)
350 351 352 353
{
	struct task_struct *t;
	int nr = 0;

354 355
	/* ignore all signals except SIGKILL, see prepare_signal() */
	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
356 357 358
	start->signal->group_exit_code = exit_code;
	start->signal->group_stop_count = 0;

359
	for_each_thread(start, t) {
360 361 362 363 364 365
		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
		if (t != current && t->mm) {
			sigaddset(&t->pending.signal, SIGKILL);
			signal_wake_up(t, 1);
			nr++;
		}
366
	}
367 368 369 370

	return nr;
}

371 372
static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
			struct core_state *core_state, int exit_code)
373 374 375 376 377 378 379 380
{
	struct task_struct *g, *p;
	unsigned long flags;
	int nr = -EAGAIN;

	spin_lock_irq(&tsk->sighand->siglock);
	if (!signal_group_exit(tsk->signal)) {
		mm->core_state = core_state;
381
		tsk->signal->group_exit_task = tsk;
382
		nr = zap_process(tsk, exit_code, 0);
383
		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
384 385 386 387 388
	}
	spin_unlock_irq(&tsk->sighand->siglock);
	if (unlikely(nr < 0))
		return nr;

389
	tsk->flags |= PF_DUMPCORE;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	if (atomic_read(&mm->mm_users) == nr + 1)
		goto done;
	/*
	 * We should find and kill all tasks which use this mm, and we should
	 * count them correctly into ->nr_threads. We don't take tasklist
	 * lock, but this is safe wrt:
	 *
	 * fork:
	 *	None of sub-threads can fork after zap_process(leader). All
	 *	processes which were created before this point should be
	 *	visible to zap_threads() because copy_process() adds the new
	 *	process to the tail of init_task.tasks list, and lock/unlock
	 *	of ->siglock provides a memory barrier.
	 *
	 * do_exit:
405
	 *	The caller holds mm->mmap_lock. This means that the task which
406 407 408 409 410 411 412
	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
	 *	its ->mm.
	 *
	 * de_thread:
	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
	 *	we must see either old or new leader, this does not matter.
	 *	However, it can change p->sighand, so lock_task_sighand(p)
413
	 *	must be used. Since p->mm != NULL and we hold ->mmap_lock
414 415 416 417 418 419 420 421 422 423 424 425 426 427
	 *	it can't fail.
	 *
	 *	Note also that "g" can be the old leader with ->mm == NULL
	 *	and already unhashed and thus removed from ->thread_group.
	 *	This is OK, __unhash_process()->list_del_rcu() does not
	 *	clear the ->next pointer, we will find the new leader via
	 *	next_thread().
	 */
	rcu_read_lock();
	for_each_process(g) {
		if (g == tsk->group_leader)
			continue;
		if (g->flags & PF_KTHREAD)
			continue;
428 429 430 431 432 433 434 435 436

		for_each_thread(g, p) {
			if (unlikely(!p->mm))
				continue;
			if (unlikely(p->mm == mm)) {
				lock_task_sighand(p, &flags);
				nr += zap_process(p, exit_code,
							SIGNAL_GROUP_EXIT);
				unlock_task_sighand(p, &flags);
437
			}
438 439
			break;
		}
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	}
	rcu_read_unlock();
done:
	atomic_set(&core_state->nr_threads, nr);
	return nr;
}

static int coredump_wait(int exit_code, struct core_state *core_state)
{
	struct task_struct *tsk = current;
	struct mm_struct *mm = tsk->mm;
	int core_waiters = -EBUSY;

	init_completion(&core_state->startup);
	core_state->dumper.task = tsk;
	core_state->dumper.next = NULL;

457
	if (mmap_write_lock_killable(mm))
458 459
		return -EINTR;

460 461
	if (!mm->core_state)
		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
462
	mmap_write_unlock(mm);
463 464 465 466

	if (core_waiters > 0) {
		struct core_thread *ptr;

467
		freezer_do_not_count();
468
		wait_for_completion(&core_state->startup);
469
		freezer_count();
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
		/*
		 * Wait for all the threads to become inactive, so that
		 * all the thread context (extended register state, like
		 * fpu etc) gets copied to the memory.
		 */
		ptr = core_state->dumper.next;
		while (ptr != NULL) {
			wait_task_inactive(ptr->task, 0);
			ptr = ptr->next;
		}
	}

	return core_waiters;
}

485
static void coredump_finish(struct mm_struct *mm, bool core_dumped)
486 487 488 489
{
	struct core_thread *curr, *next;
	struct task_struct *task;

490
	spin_lock_irq(&current->sighand->siglock);
491 492
	if (core_dumped && !__fatal_signal_pending(current))
		current->signal->group_exit_code |= 0x80;
493 494 495 496
	current->signal->group_exit_task = NULL;
	current->signal->flags = SIGNAL_GROUP_EXIT;
	spin_unlock_irq(&current->sighand->siglock);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	next = mm->core_state->dumper.next;
	while ((curr = next) != NULL) {
		next = curr->next;
		task = curr->task;
		/*
		 * see exit_mm(), curr->task must not see
		 * ->task == NULL before we read ->next.
		 */
		smp_mb();
		curr->task = NULL;
		wake_up_process(task);
	}

	mm->core_state = NULL;
}

513 514 515 516 517 518 519 520 521 522 523
static bool dump_interrupted(void)
{
	/*
	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
	 * can do try_to_freeze() and check __fatal_signal_pending(),
	 * but then we need to teach dump_write() to restart and clear
	 * TIF_SIGPENDING.
	 */
	return signal_pending(current);
}

524 525
static void wait_for_dump_helpers(struct file *file)
{
526
	struct pipe_inode_info *pipe = file->private_data;
527 528 529 530

	pipe_lock(pipe);
	pipe->readers++;
	pipe->writers--;
531
	wake_up_interruptible_sync(&pipe->rd_wait);
532 533
	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
	pipe_unlock(pipe);
534

535 536 537 538
	/*
	 * We actually want wait_event_freezable() but then we need
	 * to clear TIF_SIGPENDING and improve dump_interrupted().
	 */
539
	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
540

541
	pipe_lock(pipe);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	pipe->readers--;
	pipe->writers++;
	pipe_unlock(pipe);
}

/*
 * umh_pipe_setup
 * helper function to customize the process used
 * to collect the core in userspace.  Specifically
 * it sets up a pipe and installs it as fd 0 (stdin)
 * for the process.  Returns 0 on success, or
 * PTR_ERR on failure.
 * Note that it also sets the core limit to 1.  This
 * is a special value that we use to trap recursive
 * core dumps
 */
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
	struct file *files[2];
	struct coredump_params *cp = (struct coredump_params *)info->data;
	int err = create_pipe_files(files, 0);
	if (err)
		return err;

	cp->file = files[1];

A
Al Viro 已提交
568 569
	err = replace_fd(0, files[0], 0);
	fput(files[0]);
570 571 572
	/* and disallow core files too */
	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};

A
Al Viro 已提交
573
	return err;
574 575
}

576
void do_coredump(const kernel_siginfo_t *siginfo)
577 578 579 580 581 582 583 584 585
{
	struct core_state core_state;
	struct core_name cn;
	struct mm_struct *mm = current->mm;
	struct linux_binfmt * binfmt;
	const struct cred *old_cred;
	struct cred *cred;
	int retval = 0;
	int ispipe;
586 587
	size_t *argv = NULL;
	int argc = 0;
588
	struct files_struct *displaced;
589 590
	/* require nonrelative corefile path and be extra careful */
	bool need_suid_safe = false;
591
	bool core_dumped = false;
592 593
	static atomic_t core_dump_count = ATOMIC_INIT(0);
	struct coredump_params cprm = {
594
		.siginfo = siginfo,
595
		.regs = signal_pt_regs(),
596 597 598 599 600 601 602 603 604
		.limit = rlimit(RLIMIT_CORE),
		/*
		 * We must use the same mm->flags while dumping core to avoid
		 * inconsistency of bit flags, since this flag is not protected
		 * by any locks.
		 */
		.mm_flags = mm->flags,
	};

605
	audit_core_dumps(siginfo->si_signo);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	binfmt = mm->binfmt;
	if (!binfmt || !binfmt->core_dump)
		goto fail;
	if (!__get_dumpable(cprm.mm_flags))
		goto fail;

	cred = prepare_creds();
	if (!cred)
		goto fail;
	/*
	 * We cannot trust fsuid as being the "true" uid of the process
	 * nor do we know its entire history. We only know it was tainted
	 * so we dump it as root in mode 2, and only into a controlled
	 * environment (pipe handler or fully qualified path).
	 */
622
	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
623 624
		/* Setuid core dump mode */
		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
625
		need_suid_safe = true;
626 627
	}

628
	retval = coredump_wait(siginfo->si_signo, &core_state);
629 630 631 632 633
	if (retval < 0)
		goto fail_creds;

	old_cred = override_creds(cred);

634
	ispipe = format_corename(&cn, &cprm, &argv, &argc);
635

636
	if (ispipe) {
637
		int argi;
638 639
		int dump_count;
		char **helper_argv;
640
		struct subprocess_info *sub_info;
641 642 643 644

		if (ispipe < 0) {
			printk(KERN_WARNING "format_corename failed\n");
			printk(KERN_WARNING "Aborting core\n");
645
			goto fail_unlock;
646 647 648 649 650 651 652
		}

		if (cprm.limit == 1) {
			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
			 *
			 * Normally core limits are irrelevant to pipes, since
			 * we're not writing to the file system, but we use
B
Bastien Nocera 已提交
653
			 * cprm.limit of 1 here as a special value, this is a
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
			 * consistent way to catch recursive crashes.
			 * We can still crash if the core_pattern binary sets
			 * RLIM_CORE = !1, but it runs as root, and can do
			 * lots of stupid things.
			 *
			 * Note that we use task_tgid_vnr here to grab the pid
			 * of the process group leader.  That way we get the
			 * right pid if a thread in a multi-threaded
			 * core_pattern process dies.
			 */
			printk(KERN_WARNING
				"Process %d(%s) has RLIMIT_CORE set to 1\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Aborting core\n");
			goto fail_unlock;
		}
		cprm.limit = RLIM_INFINITY;

		dump_count = atomic_inc_return(&core_dump_count);
		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
			       task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_dropcount;
		}

680 681
		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
					    GFP_KERNEL);
682 683 684 685 686
		if (!helper_argv) {
			printk(KERN_WARNING "%s failed to allocate memory\n",
			       __func__);
			goto fail_dropcount;
		}
687 688 689
		for (argi = 0; argi < argc; argi++)
			helper_argv[argi] = cn.corename + argv[argi];
		helper_argv[argi] = NULL;
690

691 692 693 694 695 696 697 698
		retval = -ENOMEM;
		sub_info = call_usermodehelper_setup(helper_argv[0],
						helper_argv, NULL, GFP_KERNEL,
						umh_pipe_setup, NULL, &cprm);
		if (sub_info)
			retval = call_usermodehelper_exec(sub_info,
							  UMH_WAIT_EXEC);

699
		kfree(helper_argv);
700
		if (retval) {
701
			printk(KERN_INFO "Core dump to |%s pipe failed\n",
702 703
			       cn.corename);
			goto close_fail;
704
		}
705 706
	} else {
		struct inode *inode;
707 708
		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
				 O_LARGEFILE | O_EXCL;
709 710 711 712

		if (cprm.limit < binfmt->min_coredump)
			goto fail_unlock;

713
		if (need_suid_safe && cn.corename[0] != '/') {
714 715 716 717 718 719 720
			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
				"to fully qualified path!\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_unlock;
		}

721 722 723 724 725 726 727 728 729 730
		/*
		 * Unlink the file if it exists unless this is a SUID
		 * binary - in that case, we're running around with root
		 * privs and don't want to unlink another user's coredump.
		 */
		if (!need_suid_safe) {
			/*
			 * If it doesn't exist, that's fine. If there's some
			 * other problem, we'll catch it at the filp_open().
			 */
731
			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
732 733 734 735 736 737 738 739 740 741
		}

		/*
		 * There is a race between unlinking and creating the
		 * file, but if that causes an EEXIST here, that's
		 * fine - another process raced with us while creating
		 * the corefile, and the other process won. To userspace,
		 * what matters is that at least one of the two processes
		 * writes its coredump successfully, not which one.
		 */
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		if (need_suid_safe) {
			/*
			 * Using user namespaces, normal user tasks can change
			 * their current->fs->root to point to arbitrary
			 * directories. Since the intention of the "only dump
			 * with a fully qualified path" rule is to control where
			 * coredumps may be placed using root privileges,
			 * current->fs->root must not be used. Instead, use the
			 * root directory of init_task.
			 */
			struct path root;

			task_lock(&init_task);
			get_fs_root(init_task.fs, &root);
			task_unlock(&init_task);
			cprm.file = file_open_root(root.dentry, root.mnt,
				cn.corename, open_flags, 0600);
			path_put(&root);
		} else {
			cprm.file = filp_open(cn.corename, open_flags, 0600);
		}
763 764 765
		if (IS_ERR(cprm.file))
			goto fail_unlock;

A
Al Viro 已提交
766
		inode = file_inode(cprm.file);
767 768 769 770 771 772 773 774 775 776 777
		if (inode->i_nlink > 1)
			goto close_fail;
		if (d_unhashed(cprm.file->f_path.dentry))
			goto close_fail;
		/*
		 * AK: actually i see no reason to not allow this for named
		 * pipes etc, but keep the previous behaviour for now.
		 */
		if (!S_ISREG(inode->i_mode))
			goto close_fail;
		/*
778 779 780 781
		 * Don't dump core if the filesystem changed owner or mode
		 * of the file during file creation. This is an issue when
		 * a process dumps core while its cwd is e.g. on a vfat
		 * filesystem.
782 783 784
		 */
		if (!uid_eq(inode->i_uid, current_fsuid()))
			goto close_fail;
785 786
		if ((inode->i_mode & 0677) != 0600)
			goto close_fail;
A
Al Viro 已提交
787
		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
788 789 790 791 792 793 794 795 796 797 798
			goto close_fail;
		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
			goto close_fail;
	}

	/* get us an unshared descriptor table; almost always a no-op */
	retval = unshare_files(&displaced);
	if (retval)
		goto close_fail;
	if (displaced)
		put_files_struct(displaced);
799
	if (!dump_interrupted()) {
800 801 802 803 804 805 806 807
		/*
		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
		 * have this set to NULL.
		 */
		if (!cprm.file) {
			pr_info("Core dump to |%s disabled\n", cn.corename);
			goto close_fail;
		}
808 809 810 811
		file_start_write(cprm.file);
		core_dumped = binfmt->core_dump(&cprm);
		file_end_write(cprm.file);
	}
812 813 814 815 816 817 818 819 820
	if (ispipe && core_pipe_limit)
		wait_for_dump_helpers(cprm.file);
close_fail:
	if (cprm.file)
		filp_close(cprm.file, NULL);
fail_dropcount:
	if (ispipe)
		atomic_dec(&core_dump_count);
fail_unlock:
821
	kfree(argv);
822
	kfree(cn.corename);
823
	coredump_finish(mm, core_dumped);
824 825 826 827 828 829 830 831 832 833 834 835
	revert_creds(old_cred);
fail_creds:
	put_cred(cred);
fail:
	return;
}

/*
 * Core dumping helper functions.  These are the only things you should
 * do on a core-file: use only these functions to write out all the
 * necessary info.
 */
A
Al Viro 已提交
836 837 838
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
{
	struct file *file = cprm->file;
839 840
	loff_t pos = file->f_pos;
	ssize_t n;
841
	if (cprm->written + nr > cprm->limit)
A
Al Viro 已提交
842
		return 0;
843 844 845 846 847 848 849 850 851 852 853


	if (dump_interrupted())
		return 0;
	n = __kernel_write(file, addr, nr, &pos);
	if (n != nr)
		return 0;
	file->f_pos = pos;
	cprm->written += n;
	cprm->pos += n;

A
Al Viro 已提交
854 855 856 857
	return 1;
}
EXPORT_SYMBOL(dump_emit);

858
int dump_skip(struct coredump_params *cprm, size_t nr)
859
{
860 861
	static char zeroes[PAGE_SIZE];
	struct file *file = cprm->file;
862
	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
863
		if (dump_interrupted() ||
864
		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
865
			return 0;
866
		cprm->pos += nr;
867
		return 1;
868
	} else {
869 870 871 872
		while (nr > PAGE_SIZE) {
			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
				return 0;
			nr -= PAGE_SIZE;
873
		}
874
		return dump_emit(cprm, zeroes, nr);
875 876
	}
}
877
EXPORT_SYMBOL(dump_skip);
A
Al Viro 已提交
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
#ifdef CONFIG_ELF_CORE
int dump_user_range(struct coredump_params *cprm, unsigned long start,
		    unsigned long len)
{
	unsigned long addr;

	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
		struct page *page;
		int stop;

		/*
		 * To avoid having to allocate page tables for virtual address
		 * ranges that have never been used yet, and also to make it
		 * easy to generate sparse core files, use a helper that returns
		 * NULL when encountering an empty page table entry that would
		 * otherwise have been filled with the zero page.
		 */
		page = get_dump_page(addr);
		if (page) {
			void *kaddr = kmap(page);

			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
			kunmap(page);
			put_page(page);
		} else {
			stop = !dump_skip(cprm, PAGE_SIZE);
		}
		if (stop)
			return 0;
	}
	return 1;
}
#endif

A
Al Viro 已提交
913 914
int dump_align(struct coredump_params *cprm, int align)
{
915
	unsigned mod = cprm->pos & (align - 1);
A
Al Viro 已提交
916
	if (align & (align - 1))
A
Al Viro 已提交
917 918
		return 0;
	return mod ? dump_skip(cprm, align - mod) : 1;
A
Al Viro 已提交
919 920
}
EXPORT_SYMBOL(dump_align);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

/*
 * Ensures that file size is big enough to contain the current file
 * postion. This prevents gdb from complaining about a truncated file
 * if the last "write" to the file was dump_skip.
 */
void dump_truncate(struct coredump_params *cprm)
{
	struct file *file = cprm->file;
	loff_t offset;

	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
		offset = file->f_op->llseek(file, 0, SEEK_CUR);
		if (i_size_read(file->f_mapping->host) < offset)
			do_truncate(file->f_path.dentry, offset, 0, file);
	}
}
EXPORT_SYMBOL(dump_truncate);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

/*
 * The purpose of always_dump_vma() is to make sure that special kernel mappings
 * that are useful for post-mortem analysis are included in every core dump.
 * In that way we ensure that the core dump is fully interpretable later
 * without matching up the same kernel and hardware config to see what PC values
 * meant. These special mappings include - vDSO, vsyscall, and other
 * architecture specific mappings
 */
static bool always_dump_vma(struct vm_area_struct *vma)
{
	/* Any vsyscall mappings? */
	if (vma == get_gate_vma(vma->vm_mm))
		return true;

	/*
	 * Assume that all vmas with a .name op should always be dumped.
	 * If this changes, a new vm_ops field can easily be added.
	 */
	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
		return true;

	/*
	 * arch_vma_name() returns non-NULL for special architecture mappings,
	 * such as vDSO sections.
	 */
	if (arch_vma_name(vma))
		return true;

	return false;
}

/*
 * Decide how much of @vma's contents should be included in a core dump.
 */
unsigned long vma_dump_size(struct vm_area_struct *vma, unsigned long mm_flags)
{
#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))

	/* always dump the vdso and vsyscall sections */
	if (always_dump_vma(vma))
		goto whole;

	if (vma->vm_flags & VM_DONTDUMP)
		return 0;

	/* support for DAX */
	if (vma_is_dax(vma)) {
		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
			goto whole;
		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
			goto whole;
		return 0;
	}

	/* Hugetlb memory check */
	if (is_vm_hugetlb_page(vma)) {
		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
			goto whole;
		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
			goto whole;
		return 0;
	}

	/* Do not dump I/O mapped devices or special mappings */
	if (vma->vm_flags & VM_IO)
		return 0;

	/* By default, dump shared memory if mapped from an anonymous file. */
	if (vma->vm_flags & VM_SHARED) {
		if (file_inode(vma->vm_file)->i_nlink == 0 ?
		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
			goto whole;
		return 0;
	}

	/* Dump segments that have been written to.  */
	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
		goto whole;
	if (vma->vm_file == NULL)
		return 0;

	if (FILTER(MAPPED_PRIVATE))
		goto whole;

	/*
	 * If this is the beginning of an executable file mapping,
	 * dump the first page to aid in determining what was mapped here.
	 */
	if (FILTER(ELF_HEADERS) &&
	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ) &&
	    (READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
		return PAGE_SIZE;

#undef	FILTER

	return 0;

whole:
	return vma->vm_end - vma->vm_start;
}