coredump.c 22.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
5
#include <linux/freezer.h>
6 7 8 9
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
10
#include <linux/ctype.h>
11 12 13 14 15 16 17 18 19
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
20
#include <linux/coredump.h>
21
#include <linux/sched/coredump.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/task_stack.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>
41 42
#include <linux/fs.h>
#include <linux/path.h>
43
#include <linux/timekeeping.h>
44

45
#include <linux/uaccess.h>
46 47 48 49 50 51 52 53 54 55 56
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/exec.h>

#include <trace/events/task.h>
#include "internal.h"

#include <trace/events/sched.h>

int core_uses_pid;
unsigned int core_pipe_limit;
57 58
char core_pattern[CORENAME_MAX_SIZE] = "core";
static int core_name_size = CORENAME_MAX_SIZE;
59 60 61 62 63 64 65 66

struct core_name {
	char *corename;
	int used, size;
};

/* The maximal length of core_pattern is also specified in sysctl.c */

67
static int expand_corename(struct core_name *cn, int size)
68
{
69
	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70

71
	if (!corename)
72 73
		return -ENOMEM;

74 75 76 77
	if (size > core_name_size) /* racy but harmless */
		core_name_size = size;

	cn->size = ksize(corename);
78
	cn->corename = corename;
79 80 81
	return 0;
}

82 83
static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
				     va_list arg)
84
{
85
	int free, need;
E
Eric Dumazet 已提交
86
	va_list arg_copy;
87

88 89
again:
	free = cn->size - cn->used;
E
Eric Dumazet 已提交
90 91 92 93 94

	va_copy(arg_copy, arg);
	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
	va_end(arg_copy);

95 96 97 98
	if (need < free) {
		cn->used += need;
		return 0;
	}
99

100
	if (!expand_corename(cn, cn->size + need - free + 1))
101
		goto again;
102

103
	return -ENOMEM;
104 105
}

106
static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
O
Oleg Nesterov 已提交
107 108 109 110 111 112 113 114 115 116 117
{
	va_list arg;
	int ret;

	va_start(arg, fmt);
	ret = cn_vprintf(cn, fmt, arg);
	va_end(arg);

	return ret;
}

118 119
static __printf(2, 3)
int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120
{
121 122 123 124 125 126 127 128
	int cur = cn->used;
	va_list arg;
	int ret;

	va_start(arg, fmt);
	ret = cn_vprintf(cn, fmt, arg);
	va_end(arg);

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	if (ret == 0) {
		/*
		 * Ensure that this coredump name component can't cause the
		 * resulting corefile path to consist of a ".." or ".".
		 */
		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
				(cn->used - cur == 2 && cn->corename[cur] == '.'
				&& cn->corename[cur+1] == '.'))
			cn->corename[cur] = '!';

		/*
		 * Empty names are fishy and could be used to create a "//" in a
		 * corefile name, causing the coredump to happen one directory
		 * level too high. Enforce that all components of the core
		 * pattern are at least one character long.
		 */
		if (cn->used == cur)
			ret = cn_printf(cn, "!");
	}

149 150 151 152 153
	for (; cur < cn->used; ++cur) {
		if (cn->corename[cur] == '/')
			cn->corename[cur] = '!';
	}
	return ret;
154 155 156 157 158 159 160 161 162
}

static int cn_print_exe_file(struct core_name *cn)
{
	struct file *exe_file;
	char *pathbuf, *path;
	int ret;

	exe_file = get_mm_exe_file(current->mm);
163 164
	if (!exe_file)
		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165

166
	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 168 169 170 171
	if (!pathbuf) {
		ret = -ENOMEM;
		goto put_exe_file;
	}

M
Miklos Szeredi 已提交
172
	path = file_path(exe_file, pathbuf, PATH_MAX);
173 174 175 176 177
	if (IS_ERR(path)) {
		ret = PTR_ERR(path);
		goto free_buf;
	}

178
	ret = cn_esc_printf(cn, "%s", path);
179 180 181 182 183 184 185 186 187 188 189 190

free_buf:
	kfree(pathbuf);
put_exe_file:
	fput(exe_file);
	return ret;
}

/* format_corename will inspect the pattern parameter, and output a
 * name into corename, which must have space for at least
 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 */
191 192
static int format_corename(struct core_name *cn, struct coredump_params *cprm,
			   size_t **argv, int *argc)
193 194 195 196
{
	const struct cred *cred = current_cred();
	const char *pat_ptr = core_pattern;
	int ispipe = (*pat_ptr == '|');
197
	bool was_space = false;
198 199 200
	int pid_in_pattern = 0;
	int err = 0;

201
	cn->used = 0;
202 203
	cn->corename = NULL;
	if (expand_corename(cn, core_name_size))
204
		return -ENOMEM;
205 206
	cn->corename[0] = '\0';

207 208 209 210 211 212
	if (ispipe) {
		int argvs = sizeof(core_pattern) / 2;
		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
		if (!(*argv))
			return -ENOMEM;
		(*argv)[(*argc)++] = 0;
213
		++pat_ptr;
214 215
		if (!(*pat_ptr))
			return -ENOMEM;
216
	}
217 218 219 220

	/* Repeat as long as we have more pattern to process and more output
	   space */
	while (*pat_ptr) {
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		/*
		 * Split on spaces before doing template expansion so that
		 * %e and %E don't get split if they have spaces in them
		 */
		if (ispipe) {
			if (isspace(*pat_ptr)) {
				was_space = true;
				pat_ptr++;
				continue;
			} else if (was_space) {
				was_space = false;
				err = cn_printf(cn, "%c", '\0');
				if (err)
					return err;
				(*argv)[(*argc)++] = cn->used;
			}
		}
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (*pat_ptr != '%') {
			err = cn_printf(cn, "%c", *pat_ptr++);
		} else {
			switch (*++pat_ptr) {
			/* single % at the end, drop that */
			case 0:
				goto out;
			/* Double percent, output one percent */
			case '%':
				err = cn_printf(cn, "%c", '%');
				break;
			/* pid */
			case 'p':
				pid_in_pattern = 1;
				err = cn_printf(cn, "%d",
					      task_tgid_vnr(current));
				break;
255 256 257 258 259
			/* global pid */
			case 'P':
				err = cn_printf(cn, "%d",
					      task_tgid_nr(current));
				break;
260 261 262 263 264 265 266 267
			case 'i':
				err = cn_printf(cn, "%d",
					      task_pid_vnr(current));
				break;
			case 'I':
				err = cn_printf(cn, "%d",
					      task_pid_nr(current));
				break;
268 269
			/* uid */
			case 'u':
270 271 272
				err = cn_printf(cn, "%u",
						from_kuid(&init_user_ns,
							  cred->uid));
273 274 275
				break;
			/* gid */
			case 'g':
276 277 278
				err = cn_printf(cn, "%u",
						from_kgid(&init_user_ns,
							  cred->gid));
279
				break;
280 281 282 283
			case 'd':
				err = cn_printf(cn, "%d",
					__get_dumpable(cprm->mm_flags));
				break;
284 285
			/* signal that caused the coredump */
			case 's':
286 287
				err = cn_printf(cn, "%d",
						cprm->siginfo->si_signo);
288 289 290
				break;
			/* UNIX time of coredump */
			case 't': {
291 292 293 294
				time64_t time;

				time = ktime_get_real_seconds();
				err = cn_printf(cn, "%lld", time);
295 296 297
				break;
			}
			/* hostname */
298
			case 'h':
299
				down_read(&uts_sem);
300
				err = cn_esc_printf(cn, "%s",
301 302 303 304
					      utsname()->nodename);
				up_read(&uts_sem);
				break;
			/* executable */
305 306
			case 'e':
				err = cn_esc_printf(cn, "%s", current->comm);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
				break;
			case 'E':
				err = cn_print_exe_file(cn);
				break;
			/* core limit size */
			case 'c':
				err = cn_printf(cn, "%lu",
					      rlimit(RLIMIT_CORE));
				break;
			default:
				break;
			}
			++pat_ptr;
		}

		if (err)
			return err;
	}

326
out:
327 328 329 330 331 332 333 334 335 336 337 338 339
	/* Backward compatibility with core_uses_pid:
	 *
	 * If core_pattern does not include a %p (as is the default)
	 * and core_uses_pid is set, then .%pid will be appended to
	 * the filename. Do not do this for piped commands. */
	if (!ispipe && !pid_in_pattern && core_uses_pid) {
		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
		if (err)
			return err;
	}
	return ispipe;
}

340
static int zap_process(struct task_struct *start, int exit_code, int flags)
341 342 343 344
{
	struct task_struct *t;
	int nr = 0;

345 346
	/* ignore all signals except SIGKILL, see prepare_signal() */
	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
347 348 349
	start->signal->group_exit_code = exit_code;
	start->signal->group_stop_count = 0;

350
	for_each_thread(start, t) {
351 352 353 354 355 356
		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
		if (t != current && t->mm) {
			sigaddset(&t->pending.signal, SIGKILL);
			signal_wake_up(t, 1);
			nr++;
		}
357
	}
358 359 360 361

	return nr;
}

362 363
static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
			struct core_state *core_state, int exit_code)
364 365 366 367 368 369 370 371
{
	struct task_struct *g, *p;
	unsigned long flags;
	int nr = -EAGAIN;

	spin_lock_irq(&tsk->sighand->siglock);
	if (!signal_group_exit(tsk->signal)) {
		mm->core_state = core_state;
372
		tsk->signal->group_exit_task = tsk;
373
		nr = zap_process(tsk, exit_code, 0);
374
		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
375 376 377 378 379
	}
	spin_unlock_irq(&tsk->sighand->siglock);
	if (unlikely(nr < 0))
		return nr;

380
	tsk->flags |= PF_DUMPCORE;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	if (atomic_read(&mm->mm_users) == nr + 1)
		goto done;
	/*
	 * We should find and kill all tasks which use this mm, and we should
	 * count them correctly into ->nr_threads. We don't take tasklist
	 * lock, but this is safe wrt:
	 *
	 * fork:
	 *	None of sub-threads can fork after zap_process(leader). All
	 *	processes which were created before this point should be
	 *	visible to zap_threads() because copy_process() adds the new
	 *	process to the tail of init_task.tasks list, and lock/unlock
	 *	of ->siglock provides a memory barrier.
	 *
	 * do_exit:
	 *	The caller holds mm->mmap_sem. This means that the task which
	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
	 *	its ->mm.
	 *
	 * de_thread:
	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
	 *	we must see either old or new leader, this does not matter.
	 *	However, it can change p->sighand, so lock_task_sighand(p)
	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
	 *	it can't fail.
	 *
	 *	Note also that "g" can be the old leader with ->mm == NULL
	 *	and already unhashed and thus removed from ->thread_group.
	 *	This is OK, __unhash_process()->list_del_rcu() does not
	 *	clear the ->next pointer, we will find the new leader via
	 *	next_thread().
	 */
	rcu_read_lock();
	for_each_process(g) {
		if (g == tsk->group_leader)
			continue;
		if (g->flags & PF_KTHREAD)
			continue;
419 420 421 422 423 424 425 426 427

		for_each_thread(g, p) {
			if (unlikely(!p->mm))
				continue;
			if (unlikely(p->mm == mm)) {
				lock_task_sighand(p, &flags);
				nr += zap_process(p, exit_code,
							SIGNAL_GROUP_EXIT);
				unlock_task_sighand(p, &flags);
428
			}
429 430
			break;
		}
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	}
	rcu_read_unlock();
done:
	atomic_set(&core_state->nr_threads, nr);
	return nr;
}

static int coredump_wait(int exit_code, struct core_state *core_state)
{
	struct task_struct *tsk = current;
	struct mm_struct *mm = tsk->mm;
	int core_waiters = -EBUSY;

	init_completion(&core_state->startup);
	core_state->dumper.task = tsk;
	core_state->dumper.next = NULL;

448
	if (mmap_write_lock_killable(mm))
449 450
		return -EINTR;

451 452
	if (!mm->core_state)
		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
453
	mmap_write_unlock(mm);
454 455 456 457

	if (core_waiters > 0) {
		struct core_thread *ptr;

458
		freezer_do_not_count();
459
		wait_for_completion(&core_state->startup);
460
		freezer_count();
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		/*
		 * Wait for all the threads to become inactive, so that
		 * all the thread context (extended register state, like
		 * fpu etc) gets copied to the memory.
		 */
		ptr = core_state->dumper.next;
		while (ptr != NULL) {
			wait_task_inactive(ptr->task, 0);
			ptr = ptr->next;
		}
	}

	return core_waiters;
}

476
static void coredump_finish(struct mm_struct *mm, bool core_dumped)
477 478 479 480
{
	struct core_thread *curr, *next;
	struct task_struct *task;

481
	spin_lock_irq(&current->sighand->siglock);
482 483
	if (core_dumped && !__fatal_signal_pending(current))
		current->signal->group_exit_code |= 0x80;
484 485 486 487
	current->signal->group_exit_task = NULL;
	current->signal->flags = SIGNAL_GROUP_EXIT;
	spin_unlock_irq(&current->sighand->siglock);

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	next = mm->core_state->dumper.next;
	while ((curr = next) != NULL) {
		next = curr->next;
		task = curr->task;
		/*
		 * see exit_mm(), curr->task must not see
		 * ->task == NULL before we read ->next.
		 */
		smp_mb();
		curr->task = NULL;
		wake_up_process(task);
	}

	mm->core_state = NULL;
}

504 505 506 507 508 509 510 511 512 513 514
static bool dump_interrupted(void)
{
	/*
	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
	 * can do try_to_freeze() and check __fatal_signal_pending(),
	 * but then we need to teach dump_write() to restart and clear
	 * TIF_SIGPENDING.
	 */
	return signal_pending(current);
}

515 516
static void wait_for_dump_helpers(struct file *file)
{
517
	struct pipe_inode_info *pipe = file->private_data;
518 519 520 521

	pipe_lock(pipe);
	pipe->readers++;
	pipe->writers--;
522
	wake_up_interruptible_sync(&pipe->rd_wait);
523 524
	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
	pipe_unlock(pipe);
525

526 527 528 529
	/*
	 * We actually want wait_event_freezable() but then we need
	 * to clear TIF_SIGPENDING and improve dump_interrupted().
	 */
530
	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
531

532
	pipe_lock(pipe);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	pipe->readers--;
	pipe->writers++;
	pipe_unlock(pipe);
}

/*
 * umh_pipe_setup
 * helper function to customize the process used
 * to collect the core in userspace.  Specifically
 * it sets up a pipe and installs it as fd 0 (stdin)
 * for the process.  Returns 0 on success, or
 * PTR_ERR on failure.
 * Note that it also sets the core limit to 1.  This
 * is a special value that we use to trap recursive
 * core dumps
 */
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
	struct file *files[2];
	struct coredump_params *cp = (struct coredump_params *)info->data;
	int err = create_pipe_files(files, 0);
	if (err)
		return err;

	cp->file = files[1];

A
Al Viro 已提交
559 560
	err = replace_fd(0, files[0], 0);
	fput(files[0]);
561 562 563
	/* and disallow core files too */
	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};

A
Al Viro 已提交
564
	return err;
565 566
}

567
void do_coredump(const kernel_siginfo_t *siginfo)
568 569 570 571 572 573 574 575 576
{
	struct core_state core_state;
	struct core_name cn;
	struct mm_struct *mm = current->mm;
	struct linux_binfmt * binfmt;
	const struct cred *old_cred;
	struct cred *cred;
	int retval = 0;
	int ispipe;
577 578
	size_t *argv = NULL;
	int argc = 0;
579
	struct files_struct *displaced;
580 581
	/* require nonrelative corefile path and be extra careful */
	bool need_suid_safe = false;
582
	bool core_dumped = false;
583 584
	static atomic_t core_dump_count = ATOMIC_INIT(0);
	struct coredump_params cprm = {
585
		.siginfo = siginfo,
586
		.regs = signal_pt_regs(),
587 588 589 590 591 592 593 594 595
		.limit = rlimit(RLIMIT_CORE),
		/*
		 * We must use the same mm->flags while dumping core to avoid
		 * inconsistency of bit flags, since this flag is not protected
		 * by any locks.
		 */
		.mm_flags = mm->flags,
	};

596
	audit_core_dumps(siginfo->si_signo);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

	binfmt = mm->binfmt;
	if (!binfmt || !binfmt->core_dump)
		goto fail;
	if (!__get_dumpable(cprm.mm_flags))
		goto fail;

	cred = prepare_creds();
	if (!cred)
		goto fail;
	/*
	 * We cannot trust fsuid as being the "true" uid of the process
	 * nor do we know its entire history. We only know it was tainted
	 * so we dump it as root in mode 2, and only into a controlled
	 * environment (pipe handler or fully qualified path).
	 */
613
	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
614 615
		/* Setuid core dump mode */
		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
616
		need_suid_safe = true;
617 618
	}

619
	retval = coredump_wait(siginfo->si_signo, &core_state);
620 621 622 623 624
	if (retval < 0)
		goto fail_creds;

	old_cred = override_creds(cred);

625
	ispipe = format_corename(&cn, &cprm, &argv, &argc);
626

627
	if (ispipe) {
628
		int argi;
629 630
		int dump_count;
		char **helper_argv;
631
		struct subprocess_info *sub_info;
632 633 634 635

		if (ispipe < 0) {
			printk(KERN_WARNING "format_corename failed\n");
			printk(KERN_WARNING "Aborting core\n");
636
			goto fail_unlock;
637 638 639 640 641 642 643
		}

		if (cprm.limit == 1) {
			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
			 *
			 * Normally core limits are irrelevant to pipes, since
			 * we're not writing to the file system, but we use
B
Bastien Nocera 已提交
644
			 * cprm.limit of 1 here as a special value, this is a
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
			 * consistent way to catch recursive crashes.
			 * We can still crash if the core_pattern binary sets
			 * RLIM_CORE = !1, but it runs as root, and can do
			 * lots of stupid things.
			 *
			 * Note that we use task_tgid_vnr here to grab the pid
			 * of the process group leader.  That way we get the
			 * right pid if a thread in a multi-threaded
			 * core_pattern process dies.
			 */
			printk(KERN_WARNING
				"Process %d(%s) has RLIMIT_CORE set to 1\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Aborting core\n");
			goto fail_unlock;
		}
		cprm.limit = RLIM_INFINITY;

		dump_count = atomic_inc_return(&core_dump_count);
		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
			       task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_dropcount;
		}

671 672
		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
					    GFP_KERNEL);
673 674 675 676 677
		if (!helper_argv) {
			printk(KERN_WARNING "%s failed to allocate memory\n",
			       __func__);
			goto fail_dropcount;
		}
678 679 680
		for (argi = 0; argi < argc; argi++)
			helper_argv[argi] = cn.corename + argv[argi];
		helper_argv[argi] = NULL;
681

682 683 684 685 686 687 688 689
		retval = -ENOMEM;
		sub_info = call_usermodehelper_setup(helper_argv[0],
						helper_argv, NULL, GFP_KERNEL,
						umh_pipe_setup, NULL, &cprm);
		if (sub_info)
			retval = call_usermodehelper_exec(sub_info,
							  UMH_WAIT_EXEC);

690
		kfree(helper_argv);
691
		if (retval) {
692
			printk(KERN_INFO "Core dump to |%s pipe failed\n",
693 694
			       cn.corename);
			goto close_fail;
695
		}
696 697
	} else {
		struct inode *inode;
698 699
		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
				 O_LARGEFILE | O_EXCL;
700 701 702 703

		if (cprm.limit < binfmt->min_coredump)
			goto fail_unlock;

704
		if (need_suid_safe && cn.corename[0] != '/') {
705 706 707 708 709 710 711
			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
				"to fully qualified path!\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_unlock;
		}

712 713 714 715 716 717 718 719 720 721
		/*
		 * Unlink the file if it exists unless this is a SUID
		 * binary - in that case, we're running around with root
		 * privs and don't want to unlink another user's coredump.
		 */
		if (!need_suid_safe) {
			/*
			 * If it doesn't exist, that's fine. If there's some
			 * other problem, we'll catch it at the filp_open().
			 */
722
			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
723 724 725 726 727 728 729 730 731 732
		}

		/*
		 * There is a race between unlinking and creating the
		 * file, but if that causes an EEXIST here, that's
		 * fine - another process raced with us while creating
		 * the corefile, and the other process won. To userspace,
		 * what matters is that at least one of the two processes
		 * writes its coredump successfully, not which one.
		 */
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		if (need_suid_safe) {
			/*
			 * Using user namespaces, normal user tasks can change
			 * their current->fs->root to point to arbitrary
			 * directories. Since the intention of the "only dump
			 * with a fully qualified path" rule is to control where
			 * coredumps may be placed using root privileges,
			 * current->fs->root must not be used. Instead, use the
			 * root directory of init_task.
			 */
			struct path root;

			task_lock(&init_task);
			get_fs_root(init_task.fs, &root);
			task_unlock(&init_task);
			cprm.file = file_open_root(root.dentry, root.mnt,
				cn.corename, open_flags, 0600);
			path_put(&root);
		} else {
			cprm.file = filp_open(cn.corename, open_flags, 0600);
		}
754 755 756
		if (IS_ERR(cprm.file))
			goto fail_unlock;

A
Al Viro 已提交
757
		inode = file_inode(cprm.file);
758 759 760 761 762 763 764 765 766 767 768
		if (inode->i_nlink > 1)
			goto close_fail;
		if (d_unhashed(cprm.file->f_path.dentry))
			goto close_fail;
		/*
		 * AK: actually i see no reason to not allow this for named
		 * pipes etc, but keep the previous behaviour for now.
		 */
		if (!S_ISREG(inode->i_mode))
			goto close_fail;
		/*
769 770 771 772
		 * Don't dump core if the filesystem changed owner or mode
		 * of the file during file creation. This is an issue when
		 * a process dumps core while its cwd is e.g. on a vfat
		 * filesystem.
773 774 775
		 */
		if (!uid_eq(inode->i_uid, current_fsuid()))
			goto close_fail;
776 777
		if ((inode->i_mode & 0677) != 0600)
			goto close_fail;
A
Al Viro 已提交
778
		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
779 780 781 782 783 784 785 786 787 788 789
			goto close_fail;
		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
			goto close_fail;
	}

	/* get us an unshared descriptor table; almost always a no-op */
	retval = unshare_files(&displaced);
	if (retval)
		goto close_fail;
	if (displaced)
		put_files_struct(displaced);
790
	if (!dump_interrupted()) {
791 792 793 794 795 796 797 798
		/*
		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
		 * have this set to NULL.
		 */
		if (!cprm.file) {
			pr_info("Core dump to |%s disabled\n", cn.corename);
			goto close_fail;
		}
799 800 801 802
		file_start_write(cprm.file);
		core_dumped = binfmt->core_dump(&cprm);
		file_end_write(cprm.file);
	}
803 804 805 806 807 808 809 810 811
	if (ispipe && core_pipe_limit)
		wait_for_dump_helpers(cprm.file);
close_fail:
	if (cprm.file)
		filp_close(cprm.file, NULL);
fail_dropcount:
	if (ispipe)
		atomic_dec(&core_dump_count);
fail_unlock:
812
	kfree(argv);
813
	kfree(cn.corename);
814
	coredump_finish(mm, core_dumped);
815 816 817 818 819 820 821 822 823 824 825 826
	revert_creds(old_cred);
fail_creds:
	put_cred(cred);
fail:
	return;
}

/*
 * Core dumping helper functions.  These are the only things you should
 * do on a core-file: use only these functions to write out all the
 * necessary info.
 */
A
Al Viro 已提交
827 828 829
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
{
	struct file *file = cprm->file;
830 831
	loff_t pos = file->f_pos;
	ssize_t n;
832
	if (cprm->written + nr > cprm->limit)
A
Al Viro 已提交
833
		return 0;
834 835 836
	while (nr) {
		if (dump_interrupted())
			return 0;
837
		n = __kernel_write(file, addr, nr, &pos);
838 839 840
		if (n <= 0)
			return 0;
		file->f_pos = pos;
841
		cprm->written += n;
842
		cprm->pos += n;
843 844
		nr -= n;
	}
A
Al Viro 已提交
845 846 847 848
	return 1;
}
EXPORT_SYMBOL(dump_emit);

849
int dump_skip(struct coredump_params *cprm, size_t nr)
850
{
851 852
	static char zeroes[PAGE_SIZE];
	struct file *file = cprm->file;
853
	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
854
		if (dump_interrupted() ||
855
		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
856
			return 0;
857
		cprm->pos += nr;
858
		return 1;
859
	} else {
860 861 862 863
		while (nr > PAGE_SIZE) {
			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
				return 0;
			nr -= PAGE_SIZE;
864
		}
865
		return dump_emit(cprm, zeroes, nr);
866 867
	}
}
868
EXPORT_SYMBOL(dump_skip);
A
Al Viro 已提交
869 870 871

int dump_align(struct coredump_params *cprm, int align)
{
872
	unsigned mod = cprm->pos & (align - 1);
A
Al Viro 已提交
873
	if (align & (align - 1))
A
Al Viro 已提交
874 875
		return 0;
	return mod ? dump_skip(cprm, align - mod) : 1;
A
Al Viro 已提交
876 877
}
EXPORT_SYMBOL(dump_align);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

/*
 * Ensures that file size is big enough to contain the current file
 * postion. This prevents gdb from complaining about a truncated file
 * if the last "write" to the file was dump_skip.
 */
void dump_truncate(struct coredump_params *cprm)
{
	struct file *file = cprm->file;
	loff_t offset;

	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
		offset = file->f_op->llseek(file, 0, SEEK_CUR);
		if (i_size_read(file->f_mapping->host) < offset)
			do_truncate(file->f_path.dentry, offset, 0, file);
	}
}
EXPORT_SYMBOL(dump_truncate);