volumes.c 205.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6
#include <linux/sched.h>
7
#include <linux/sched/mm.h>
8
#include <linux/bio.h>
9
#include <linux/slab.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17
#include "misc.h"
18 19 20 21 22 23
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
24
#include "raid56.h"
25
#include "async-thread.h"
26
#include "check-integrity.h"
27
#include "rcu-string.h"
28
#include "dev-replace.h"
29
#include "sysfs.h"
30
#include "tree-checker.h"
31
#include "space-info.h"
32
#include "block-group.h"
33
#include "discard.h"
34

Z
Zhao Lei 已提交
35 36 37 38 39 40
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
41
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
42 43
		.devs_increment	= 2,
		.ncopies	= 2,
44
		.nparity        = 0,
45
		.raid_name	= "raid10",
46
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
48 49 50 51 52 53
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
54
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
55 56
		.devs_increment	= 2,
		.ncopies	= 2,
57
		.nparity        = 0,
58
		.raid_name	= "raid1",
59
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
61
	},
62 63 64
	[BTRFS_RAID_RAID1C3] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
65
		.devs_max	= 3,
66 67 68 69
		.devs_min	= 3,
		.tolerated_failures = 2,
		.devs_increment	= 3,
		.ncopies	= 3,
70
		.nparity        = 0,
71 72 73 74
		.raid_name	= "raid1c3",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
	},
75 76 77
	[BTRFS_RAID_RAID1C4] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
78
		.devs_max	= 4,
79 80 81 82
		.devs_min	= 4,
		.tolerated_failures = 3,
		.devs_increment	= 4,
		.ncopies	= 4,
83
		.nparity        = 0,
84 85 86 87
		.raid_name	= "raid1c4",
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
	},
Z
Zhao Lei 已提交
88 89 90 91 92
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
93
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
94 95
		.devs_increment	= 1,
		.ncopies	= 2,
96
		.nparity        = 0,
97
		.raid_name	= "dup",
98
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99
		.mindev_error	= 0,
Z
Zhao Lei 已提交
100 101 102 103 104 105
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
106
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
107 108
		.devs_increment	= 1,
		.ncopies	= 1,
109
		.nparity        = 0,
110
		.raid_name	= "raid0",
111
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112
		.mindev_error	= 0,
Z
Zhao Lei 已提交
113 114 115 116 117 118
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
119
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
120 121
		.devs_increment	= 1,
		.ncopies	= 1,
122
		.nparity        = 0,
123
		.raid_name	= "single",
124
		.bg_flag	= 0,
125
		.mindev_error	= 0,
Z
Zhao Lei 已提交
126 127 128 129 130 131
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
132
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
133
		.devs_increment	= 1,
134
		.ncopies	= 1,
135
		.nparity        = 1,
136
		.raid_name	= "raid5",
137
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
139 140 141 142 143 144
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
145
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
146
		.devs_increment	= 1,
147
		.ncopies	= 1,
148
		.nparity        = 2,
149
		.raid_name	= "raid6",
150
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
152 153 154
	},
};

155
const char *btrfs_bg_type_to_raid_name(u64 flags)
156
{
157 158 159
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
160 161
		return NULL;

162
	return btrfs_raid_array[index].raid_name;
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

219
static int init_first_rw_device(struct btrfs_trans_handle *trans);
220
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 224 225 226 227
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
			     struct btrfs_bio **bbio_ret,
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
228

D
David Sterba 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
245
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
246 247 248
 *
 * global::fs_devs - add, remove, updates to the global list
 *
249 250 251
 * does not protect: manipulation of the fs_devices::devices list in general
 * but in mount context it could be used to exclude list modifications by eg.
 * scan ioctl
D
David Sterba 已提交
252 253 254 255 256 257 258 259 260 261 262 263
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
264 265 266
 * Is not required at mount and close times, because our device list is
 * protected by the uuid_mutex at that point.
 *
D
David Sterba 已提交
267 268 269 270 271 272 273 274
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
275 276 277
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
278 279 280 281 282 283 284 285 286 287 288
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
289 290 291
 *   device_list_mutex
 *     chunk_mutex
 *   balance_mutex
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 *
 *
 * Exclusive operations, BTRFS_FS_EXCL_OP
 * ======================================
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
 * completed.
D
David Sterba 已提交
327 328
 */

329
DEFINE_MUTEX(uuid_mutex);
330
static LIST_HEAD(fs_uuids);
D
David Sterba 已提交
331
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 333 334
{
	return &fs_uuids;
}
335

D
David Sterba 已提交
336 337
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 339
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
340 341 342 343 344
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
345 346
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
347 348 349
{
	struct btrfs_fs_devices *fs_devs;

350
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 352 353 354 355 356 357
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
358
	INIT_LIST_HEAD(&fs_devs->fs_list);
359
	INIT_LIST_HEAD(&fs_devs->seed_list);
360 361 362
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

363 364 365 366 367
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

368 369 370
	return fs_devs;
}

371
void btrfs_free_device(struct btrfs_device *device)
372
{
373
	WARN_ON(!list_empty(&device->post_commit_list));
374
	rcu_string_free(device->name);
375
	extent_io_tree_release(&device->alloc_state);
376 377 378 379
	bio_put(device->flush_bio);
	kfree(device);
}

Y
Yan Zheng 已提交
380 381 382 383 384 385 386 387
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
388
		btrfs_free_device(device);
Y
Yan Zheng 已提交
389 390 391 392
	}
	kfree(fs_devices);
}

393
void __exit btrfs_cleanup_fs_uuids(void)
394 395 396
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
397 398
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
399 400
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
401
		free_fs_devices(fs_devices);
402 403 404
	}
}

405 406 407
/*
 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 * Returned struct is not linked onto any lists and must be destroyed using
408
 * btrfs_free_device.
409
 */
410
static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 412 413
{
	struct btrfs_device *dev;

414
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 416 417
	if (!dev)
		return ERR_PTR(-ENOMEM);

418 419 420 421 422 423 424 425 426 427
	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

428 429
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
430
	INIT_LIST_HEAD(&dev->post_commit_list);
431 432

	atomic_set(&dev->reada_in_flight, 0);
433
	atomic_set(&dev->dev_stats_ccnt, 0);
434
	btrfs_device_data_ordered_init(dev);
435
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 438
	extent_io_tree_init(fs_info, &dev->alloc_state,
			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 440 441 442

	return dev;
}

443 444
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
445 446 447
{
	struct btrfs_fs_devices *fs_devices;

448 449
	ASSERT(fsid);

450
	/* Handle non-split brain cases */
451
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 453 454 455 456 457 458 459 460
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
461 462 463 464
	}
	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
				struct btrfs_super_block *disk_super)
{

	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by first scanning
	 * a device which didn't have its fsid/metadata_uuid changed
	 * at all and the CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}
	/*
	 * Handle scanned device having completed its fsid change but
	 * belonging to a fs_devices that was created by a device that
	 * has an outdated pair of fsid/metadata_uuid and
	 * CHANGING_FSID_V2 flag set.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (fs_devices->fsid_change &&
		    memcmp(fs_devices->metadata_uuid,
			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0) {
			return fs_devices;
		}
	}

	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}


506 507 508
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
509
		      struct btrfs_super_block **disk_super)
510 511 512 513 514 515 516 517 518 519 520 521
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 524 525 526 527
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
528 529 530
	*disk_super = btrfs_read_dev_super(*bdev);
	if (IS_ERR(*disk_super)) {
		ret = PTR_ERR(*disk_super);
531 532 533 534 535 536 537 538 539 540 541
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	return ret;
}

542 543 544 545 546 547 548 549 550 551 552
static bool device_path_matched(const char *path, struct btrfs_device *device)
{
	int found;

	rcu_read_lock();
	found = strcmp(rcu_str_deref(device->name), path);
	rcu_read_unlock();

	return found == 0;
}

553 554 555 556 557 558 559
/*
 *  Search and remove all stale (devices which are not mounted) devices.
 *  When both inputs are NULL, it will search and release all stale devices.
 *  path:	Optional. When provided will it release all unmounted devices
 *		matching this path only.
 *  skip_dev:	Optional. Will skip this device when searching for the stale
 *		devices.
560 561 562
 *  Return:	0 for success or if @path is NULL.
 * 		-EBUSY if @path is a mounted device.
 * 		-ENOENT if @path does not match any device in the list.
563
 */
564
static int btrfs_free_stale_devices(const char *path,
565
				     struct btrfs_device *skip_device)
A
Anand Jain 已提交
566
{
567 568
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
569 570 571 572
	int ret = 0;

	if (path)
		ret = -ENOENT;
A
Anand Jain 已提交
573

574
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
575

576
		mutex_lock(&fs_devices->device_list_mutex);
577 578 579
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
580
				continue;
581
			if (path && !device->name)
A
Anand Jain 已提交
582
				continue;
583
			if (path && !device_path_matched(path, device))
584
				continue;
585 586 587 588 589 590
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
				if (path && ret != 0)
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
591 592

			/* delete the stale device */
593 594 595 596
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

597
			ret = 0;
598
			if (fs_devices->num_devices == 0)
599
				break;
600 601
		}
		mutex_unlock(&fs_devices->device_list_mutex);
602

603 604 605 606
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
607 608
		}
	}
609 610

	return ret;
A
Anand Jain 已提交
611 612
}

613 614 615 616 617
/*
 * This is only used on mount, and we are protected from competing things
 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 * fs_devices->device_list_mutex here.
 */
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct request_queue *q;
	struct block_device *bdev;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634
				    &bdev, &disk_super);
635 636 637 638 639
	if (ret)
		return ret;

	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
640
		goto error_free_page;
641 642

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643
		goto error_free_page;
644 645 646 647

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 649 650 651
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
652
			goto error_free_page;
653 654
		}

655
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656
		fs_devices->seeding = true;
657
	} else {
658 659 660 661
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 663 664 665
	}

	q = bdev_get_queue(bdev);
	if (!blk_queue_nonrot(q))
666
		fs_devices->rotating = true;
667 668

	device->bdev = bdev;
669
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 671 672
	device->mode = flags;

	fs_devices->open_devices++;
673 674
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
675
		fs_devices->rw_devices++;
676
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677
	}
678
	btrfs_release_disk_super(disk_super);
679 680 681

	return 0;

682 683
error_free_page:
	btrfs_release_disk_super(disk_super);
684 685 686 687 688
	blkdev_put(bdev, flags);

	return -EINVAL;
}

689 690
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691 692 693
 * being created with a disk that has already completed its fsid change. Such
 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 * Handle both cases here.
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

709
	return find_fsid(disk_super->fsid, NULL);
710 711
}

712 713 714 715 716 717 718 719 720

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
	 * multiple successful changes of FSID but curently device didn't
721 722 723 724 725
	 * observe it. Meaning our fsid will be different than theirs. We need
	 * to handle two subcases :
	 *  1 - The fs still continues to have different METADATA/FSID uuids.
	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
	 *  are equal).
726 727
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728
		/* Changed UUIDs */
729 730 731 732 733
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
734 735 736 737 738 739 740 741
			   BTRFS_FSID_SIZE) != 0)
			return fs_devices;

		/* Unchanged UUIDs */
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0)
742 743 744 745 746
			return fs_devices;
	}

	return NULL;
}
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

static struct btrfs_fs_devices *find_fsid_reverted_metadata(
				struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handle the case where the scanned device is part of an fs whose last
	 * metadata UUID change reverted it to the original FSID. At the same
	 * time * fs_devices was first created by another constitutent device
	 * which didn't fully observe the operation. This results in an
	 * btrfs_fs_devices created with metadata/fsid different AND
	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
	 * fs_devices equal to the FSID of the disk.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 &&
		    fs_devices->fsid_change)
			return fs_devices;
	}

	return NULL;
}
773 774 775 776
/*
 * Add new device to list of registered devices
 *
 * Returns:
777 778
 * device pointer which was just added or updated when successful
 * error pointer when failed
779
 */
780
static noinline struct btrfs_device *device_list_add(const char *path,
781 782
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
783 784
{
	struct btrfs_device *device;
785
	struct btrfs_fs_devices *fs_devices = NULL;
786
	struct rcu_string *name;
787
	u64 found_transid = btrfs_super_generation(disk_super);
788
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789 790
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791 792
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793

794
	if (fsid_change_in_progress) {
795
		if (!has_metadata_uuid)
796
			fs_devices = find_fsid_inprogress(disk_super);
797
		else
798
			fs_devices = find_fsid_changed(disk_super);
799
	} else if (has_metadata_uuid) {
800
		fs_devices = find_fsid_with_metadata_uuid(disk_super);
801
	} else {
802 803 804
		fs_devices = find_fsid_reverted_metadata(disk_super);
		if (!fs_devices)
			fs_devices = find_fsid(disk_super->fsid, NULL);
805 806
	}

807 808

	if (!fs_devices) {
809 810 811 812 813 814
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

815
		if (IS_ERR(fs_devices))
816
			return ERR_CAST(fs_devices);
817

818 819
		fs_devices->fsid_change = fsid_change_in_progress;

820
		mutex_lock(&fs_devices->device_list_mutex);
821
		list_add(&fs_devices->fs_list, &fs_uuids);
822

823 824
		device = NULL;
	} else {
825
		mutex_lock(&fs_devices->device_list_mutex);
826 827
		device = btrfs_find_device(fs_devices, devid,
				disk_super->dev_item.uuid, NULL, false);
828 829 830 831 832 833

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
834
		if (fs_devices->fsid_change &&
835 836 837
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
838 839 840 841 842 843 844 845

			if (has_metadata_uuid)
				memcpy(fs_devices->metadata_uuid,
				       disk_super->metadata_uuid,
				       BTRFS_FSID_SIZE);
			else
				memcpy(fs_devices->metadata_uuid,
				       disk_super->fsid, BTRFS_FSID_SIZE);
846 847 848

			fs_devices->fsid_change = false;
		}
849
	}
850

851
	if (!device) {
852 853
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
854
			return ERR_PTR(-EBUSY);
855
		}
Y
Yan Zheng 已提交
856

857 858 859
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
860
			mutex_unlock(&fs_devices->device_list_mutex);
861
			/* we can safely leave the fs_devices entry around */
862
			return device;
863
		}
864 865 866

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
867
			btrfs_free_device(device);
868
			mutex_unlock(&fs_devices->device_list_mutex);
869
			return ERR_PTR(-ENOMEM);
870
		}
871
		rcu_assign_pointer(device->name, name);
872

873
		list_add_rcu(&device->dev_list, &fs_devices->devices);
874
		fs_devices->num_devices++;
875

Y
Yan Zheng 已提交
876
		device->fs_devices = fs_devices;
877
		*new_device_added = true;
878 879

		if (disk_super->label[0])
880 881 882 883
			pr_info(
	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->label, devid, found_transid, path,
				current->comm, task_pid_nr(current));
884
		else
885 886 887 888
			pr_info(
	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
				disk_super->fsid, devid, found_transid, path,
				current->comm, task_pid_nr(current));
889

890
	} else if (!device->name || strcmp(device->name->str, path)) {
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
912 913 914 915
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
916
		 */
917
		if (!fs_devices->opened && found_transid < device->generation) {
918 919 920 921 922 923 924
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
925
			mutex_unlock(&fs_devices->device_list_mutex);
926
			return ERR_PTR(-EEXIST);
927
		}
928

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
		 */
		if (device->bdev) {
			struct block_device *path_bdev;

			path_bdev = lookup_bdev(path);
			if (IS_ERR(path_bdev)) {
				mutex_unlock(&fs_devices->device_list_mutex);
				return ERR_CAST(path_bdev);
			}

			if (device->bdev != path_bdev) {
				bdput(path_bdev);
				mutex_unlock(&fs_devices->device_list_mutex);
				btrfs_warn_in_rcu(device->fs_info,
			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
					disk_super->fsid, devid,
					rcu_str_deref(device->name), path);
				return ERR_PTR(-EEXIST);
			}
			bdput(path_bdev);
			btrfs_info_in_rcu(device->fs_info,
				"device fsid %pU devid %llu moved old:%s new:%s",
				disk_super->fsid, devid,
				rcu_str_deref(device->name), path);
		}

958
		name = rcu_string_strdup(path, GFP_NOFS);
959 960
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
961
			return ERR_PTR(-ENOMEM);
962
		}
963 964
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
965
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966
			fs_devices->missing_devices--;
967
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968
		}
969 970
	}

971 972 973 974 975 976
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
977
	if (!fs_devices->opened) {
978
		device->generation = found_transid;
979 980 981
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
982

983 984
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

985
	mutex_unlock(&fs_devices->device_list_mutex);
986
	return device;
987 988
}

Y
Yan Zheng 已提交
989 990 991 992 993
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;
994
	int ret = 0;
Y
Yan Zheng 已提交
995

996
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 998
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
999

1000
	mutex_lock(&orig->device_list_mutex);
J
Josef Bacik 已提交
1001
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
1002 1003

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 1005
		struct rcu_string *name;

1006 1007
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
1008 1009
		if (IS_ERR(device)) {
			ret = PTR_ERR(device);
Y
Yan Zheng 已提交
1010
			goto error;
1011
		}
Y
Yan Zheng 已提交
1012

1013 1014 1015 1016
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
1017
		if (orig_dev->name) {
1018 1019
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
1020
			if (!name) {
1021
				btrfs_free_device(device);
1022
				ret = -ENOMEM;
1023 1024 1025
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1026
		}
Y
Yan Zheng 已提交
1027 1028 1029 1030 1031

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
1032
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1033 1034
	return fs_devices;
error:
1035
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1036
	free_fs_devices(fs_devices);
1037
	return ERR_PTR(ret);
Y
Yan Zheng 已提交
1038 1039
}

1040 1041
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
				      int step, struct btrfs_device **latest_dev)
1042
{
Q
Qinghuang Feng 已提交
1043
	struct btrfs_device *device, *next;
1044

1045
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1046
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049
				      &device->dev_state) &&
1050 1051
			    !test_bit(BTRFS_DEV_STATE_MISSING,
				      &device->dev_state) &&
1052 1053 1054
			    (!*latest_dev ||
			     device->generation > (*latest_dev)->generation)) {
				*latest_dev = device;
1055
			}
Y
Yan Zheng 已提交
1056
			continue;
1057
		}
Y
Yan Zheng 已提交
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
			/*
			 * In the first step, keep the device which has
			 * the correct fsid and the devid that is used
			 * for the dev_replace procedure.
			 * In the second step, the dev_replace state is
			 * read from the device tree and it is known
			 * whether the procedure is really active or
			 * not, which means whether this device is
			 * used or whether it should be removed.
			 */
1070 1071
			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
						  &device->dev_state)) {
1072 1073 1074
				continue;
			}
		}
Y
Yan Zheng 已提交
1075
		if (device->bdev) {
1076
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1077 1078 1079
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1080
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1081
			list_del_init(&device->dev_alloc_list);
1082
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1083 1084
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
				      &device->dev_state))
1085
				fs_devices->rw_devices--;
Y
Yan Zheng 已提交
1086
		}
Y
Yan Zheng 已提交
1087 1088
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1089
		btrfs_free_device(device);
1090
	}
Y
Yan Zheng 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100
}

/*
 * After we have read the system tree and know devids belonging to this
 * filesystem, remove the device which does not belong there.
 */
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
{
	struct btrfs_device *latest_dev = NULL;
1101
	struct btrfs_fs_devices *seed_dev;
1102 1103 1104

	mutex_lock(&uuid_mutex);
	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1105 1106 1107

	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
Y
Yan Zheng 已提交
1108

1109
	fs_devices->latest_bdev = latest_dev->bdev;
1110

1111 1112
	mutex_unlock(&uuid_mutex);
}
1113

1114 1115
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1116 1117 1118
	if (!device->bdev)
		return;

1119
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1120 1121 1122 1123
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1124
	blkdev_put(device->bdev, device->mode);
1125 1126
}

1127
static void btrfs_close_one_device(struct btrfs_device *device)
1128 1129 1130
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;

1131
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1132 1133 1134 1135 1136
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1137
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1138 1139
		fs_devices->missing_devices--;

1140
	btrfs_close_bdev(device);
1141
	if (device->bdev) {
1142
		fs_devices->open_devices--;
1143
		device->bdev = NULL;
1144
	}
1145
	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146

1147 1148 1149
	device->fs_info = NULL;
	atomic_set(&device->dev_stats_ccnt, 0);
	extent_io_tree_release(&device->alloc_state);
1150

1151 1152 1153 1154 1155 1156
	/* Verify the device is back in a pristine state  */
	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
	ASSERT(list_empty(&device->dev_alloc_list));
	ASSERT(list_empty(&device->post_commit_list));
	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 1158
}

1159
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160
{
1161
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1162

1163 1164
	lockdep_assert_held(&uuid_mutex);

Y
Yan Zheng 已提交
1165
	if (--fs_devices->opened > 0)
1166
		return;
1167

1168
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169
		btrfs_close_one_device(device);
1170

Y
Yan Zheng 已提交
1171 1172
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1173
	fs_devices->opened = 0;
1174
	fs_devices->seeding = false;
1175
	fs_devices->fs_info = NULL;
1176 1177
}

1178
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
Y
Yan Zheng 已提交
1179
{
1180 1181
	LIST_HEAD(list);
	struct btrfs_fs_devices *tmp;
Y
Yan Zheng 已提交
1182 1183

	mutex_lock(&uuid_mutex);
1184
	close_fs_devices(fs_devices);
1185 1186
	if (!fs_devices->opened)
		list_splice_init(&fs_devices->seed_list, &list);
Y
Yan Zheng 已提交
1187

1188
	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189
		close_fs_devices(fs_devices);
1190
		list_del(&fs_devices->seed_list);
Y
Yan Zheng 已提交
1191 1192
		free_fs_devices(fs_devices);
	}
1193
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1194 1195
}

1196
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1197
				fmode_t flags, void *holder)
1198 1199
{
	struct btrfs_device *device;
1200
	struct btrfs_device *latest_dev = NULL;
1201

1202 1203
	flags |= FMODE_EXCL;

1204
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1205
		/* Just open everything we can; ignore failures here */
1206
		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1207
			continue;
1208

1209 1210 1211
		if (!latest_dev ||
		    device->generation > latest_dev->generation)
			latest_dev = device;
1212
	}
1213 1214 1215
	if (fs_devices->open_devices == 0)
		return -EINVAL;

Y
Yan Zheng 已提交
1216
	fs_devices->opened = 1;
1217
	fs_devices->latest_bdev = latest_dev->bdev;
Y
Yan Zheng 已提交
1218
	fs_devices->total_rw_bytes = 0;
1219
	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1220 1221

	return 0;
Y
Yan Zheng 已提交
1222 1223
}

A
Anand Jain 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_device *dev1, *dev2;

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1238
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1239
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1240 1241 1242
{
	int ret;

1243
	lockdep_assert_held(&uuid_mutex);
1244 1245 1246 1247 1248 1249 1250
	/*
	 * The device_list_mutex cannot be taken here in case opening the
	 * underlying device takes further locks like bd_mutex.
	 *
	 * We also don't need the lock here as this is called during mount and
	 * exclusion is provided by uuid_mutex
	 */
1251

Y
Yan Zheng 已提交
1252
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1253 1254
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1255
	} else {
A
Anand Jain 已提交
1256
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1257
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1258
	}
1259

1260 1261 1262
	return ret;
}

1263
void btrfs_release_disk_super(struct btrfs_super_block *super)
1264
{
1265 1266
	struct page *page = virt_to_page(super);

1267 1268 1269
	put_page(page);
}

1270 1271
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
						       u64 bytenr)
1272
{
1273 1274
	struct btrfs_super_block *disk_super;
	struct page *page;
1275 1276 1277 1278 1279
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1280
		return ERR_PTR(-EINVAL);
1281 1282

	/* make sure our super fits in the page */
1283 1284
	if (sizeof(*disk_super) > PAGE_SIZE)
		return ERR_PTR(-EINVAL);
1285 1286 1287

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
1288 1289
	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
		return ERR_PTR(-EINVAL);
1290 1291

	/* pull in the page with our super */
1292
	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1293

1294 1295
	if (IS_ERR(page))
		return ERR_CAST(page);
1296

1297
	p = page_address(page);
1298 1299

	/* align our pointer to the offset of the super block */
1300
	disk_super = p + offset_in_page(bytenr);
1301

1302 1303
	if (btrfs_super_bytenr(disk_super) != bytenr ||
	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1304
		btrfs_release_disk_super(p);
1305
		return ERR_PTR(-EINVAL);
1306 1307
	}

1308 1309
	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1310

1311
	return disk_super;
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
int btrfs_forget_devices(const char *path)
{
	int ret;

	mutex_lock(&uuid_mutex);
	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
	mutex_unlock(&uuid_mutex);

	return ret;
}

1325 1326 1327 1328 1329
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1330 1331
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1332 1333
{
	struct btrfs_super_block *disk_super;
1334
	bool new_device_added = false;
1335
	struct btrfs_device *device = NULL;
1336
	struct block_device *bdev;
1337
	u64 bytenr;
1338

1339 1340
	lockdep_assert_held(&uuid_mutex);

1341 1342 1343 1344 1345 1346 1347
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1348
	flags |= FMODE_EXCL;
1349 1350

	bdev = blkdev_get_by_path(path, flags, holder);
1351
	if (IS_ERR(bdev))
1352
		return ERR_CAST(bdev);
1353

1354 1355 1356
	disk_super = btrfs_read_disk_super(bdev, bytenr);
	if (IS_ERR(disk_super)) {
		device = ERR_CAST(disk_super);
1357
		goto error_bdev_put;
1358
	}
1359

1360
	device = device_list_add(path, disk_super, &new_device_added);
1361
	if (!IS_ERR(device)) {
1362 1363 1364
		if (new_device_added)
			btrfs_free_stale_devices(path, device);
	}
1365

1366
	btrfs_release_disk_super(disk_super);
1367 1368

error_bdev_put:
1369
	blkdev_put(bdev, flags);
1370

1371
	return device;
1372
}
1373

1374 1375 1376 1377 1378 1379
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1380
{
1381
	u64 physical_start, physical_end;
1382

1383
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1384

1385 1386 1387
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1388

1389 1390 1391 1392 1393
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1394 1395
		}
	}
1396
	return false;
1397 1398
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/*
		 * We don't want to overwrite the superblock on the drive nor
		 * any area used by the boot loader (grub for example), so we
		 * make sure to start at an offset of at least 1MB.
		 */
		return max_t(u64, start, SZ_1M);
	default:
		BUG();
	}
}

/**
 * dev_extent_hole_check - check if specified hole is suitable for allocation
 * @device:	the device which we have the hole
 * @hole_start: starting position of the hole
 * @hole_size:	the size of the hole
 * @num_bytes:	the size of the free space that we need
 *
 * This function may modify @hole_start and @hole_end to reflect the suitable
 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 */
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
				  u64 *hole_size, u64 num_bytes)
{
	bool changed = false;
	u64 hole_end = *hole_start + *hole_size;

	/*
	 * Check before we set max_hole_start, otherwise we could end up
	 * sending back this offset anyway.
	 */
	if (contains_pending_extent(device, hole_start, *hole_size)) {
		if (hole_end >= *hole_start)
			*hole_size = hole_end - *hole_start;
		else
			*hole_size = 0;
		changed = true;
	}

	switch (device->fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		/* No extra check */
		break;
	default:
		BUG();
	}

	return changed;
}
1452

1453
/*
1454 1455 1456 1457 1458 1459 1460
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1461
 *
1462 1463 1464
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1465 1466 1467 1468 1469 1470 1471 1472
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1473 1474 1475 1476 1477 1478
 *
 * NOTE: This function will search *commit* root of device tree, and does extra
 * check to ensure dev extents are not double allocated.
 * This makes the function safe to allocate dev extents but may not report
 * correct usable device space, as device extent freed in current transaction
 * is not reported as avaiable.
1479
 */
1480 1481 1482
static int find_free_dev_extent_start(struct btrfs_device *device,
				u64 num_bytes, u64 search_start, u64 *start,
				u64 *len)
1483
{
1484 1485
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1486
	struct btrfs_key key;
1487
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1488
	struct btrfs_path *path;
1489 1490 1491 1492
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1493 1494
	u64 search_end = device->total_bytes;
	int ret;
1495
	int slot;
1496
	struct extent_buffer *l;
1497

1498
	search_start = dev_extent_search_start(device, search_start);
1499

1500 1501 1502
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1503

1504 1505 1506
	max_hole_start = search_start;
	max_hole_size = 0;

1507
again:
1508 1509
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1510
		ret = -ENOSPC;
1511
		goto out;
1512 1513
	}

1514
	path->reada = READA_FORWARD;
1515 1516
	path->search_commit_root = 1;
	path->skip_locking = 1;
1517

1518 1519 1520
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1521

1522
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1523
	if (ret < 0)
1524
		goto out;
1525 1526 1527
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1528
			goto out;
1529
	}
1530

1531 1532 1533 1534 1535 1536 1537 1538
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1539 1540 1541
				goto out;

			break;
1542 1543 1544 1545 1546 1547 1548
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1549
			break;
1550

1551
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1552
			goto next;
1553

1554 1555
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1556 1557
			dev_extent_hole_check(device, &search_start, &hole_size,
					      num_bytes);
1558

1559 1560 1561 1562
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1576 1577 1578 1579
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1580 1581 1582 1583
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1584 1585 1586 1587 1588
next:
		path->slots[0]++;
		cond_resched();
	}

1589 1590 1591 1592 1593
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1594
	if (search_end > search_start) {
1595
		hole_size = search_end - search_start;
1596 1597
		if (dev_extent_hole_check(device, &search_start, &hole_size,
					  num_bytes)) {
1598 1599 1600
			btrfs_release_path(path);
			goto again;
		}
1601

1602 1603 1604 1605
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1606 1607
	}

1608
	/* See above. */
1609
	if (max_hole_size < num_bytes)
1610 1611 1612 1613 1614
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1615
	btrfs_free_path(path);
1616
	*start = max_hole_start;
1617
	if (len)
1618
		*len = max_hole_size;
1619 1620 1621
	return ret;
}

1622
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1623 1624 1625
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1626
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1627 1628
}

1629
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1630
			  struct btrfs_device *device,
M
Miao Xie 已提交
1631
			  u64 start, u64 *dev_extent_len)
1632
{
1633 1634
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1635 1636 1637
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1638 1639 1640
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1641 1642 1643 1644 1645 1646 1647 1648

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1649
again:
1650
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1651 1652 1653
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1654 1655
		if (ret)
			goto out;
1656 1657 1658 1659 1660 1661
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1662 1663 1664
		key = found_key;
		btrfs_release_path(path);
		goto again;
1665 1666 1667 1668
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1669
	} else {
1670
		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1671
		goto out;
1672
	}
1673

M
Miao Xie 已提交
1674 1675
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1676
	ret = btrfs_del_item(trans, root, path);
1677
	if (ret) {
1678 1679
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to remove dev extent item");
Z
Zhao Lei 已提交
1680
	} else {
1681
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1682
	}
1683
out:
1684 1685 1686 1687
	btrfs_free_path(path);
	return ret;
}

1688 1689 1690
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1691 1692 1693
{
	int ret;
	struct btrfs_path *path;
1694 1695
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1696 1697 1698 1699
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1700
	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1701
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1702 1703 1704 1705 1706
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1707
	key.offset = start;
1708 1709 1710
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1711 1712
	if (ret)
		goto out;
1713 1714 1715 1716

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1717 1718
	btrfs_set_dev_extent_chunk_tree(leaf, extent,
					BTRFS_CHUNK_TREE_OBJECTID);
1719 1720
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1721 1722
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

1723 1724
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1725
out:
1726 1727 1728 1729
	btrfs_free_path(path);
	return ret;
}

1730
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1731
{
1732 1733 1734 1735
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1736

1737
	em_tree = &fs_info->mapping_tree;
1738
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1739
	n = rb_last(&em_tree->map.rb_root);
1740 1741 1742
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1743
	}
1744 1745
	read_unlock(&em_tree->lock);

1746 1747 1748
	return ret;
}

1749 1750
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1751 1752 1753 1754
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1755 1756 1757 1758 1759
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1760 1761 1762 1763 1764

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1765
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1766 1767 1768
	if (ret < 0)
		goto error;

1769 1770 1771 1772 1773 1774
	if (ret == 0) {
		/* Corruption */
		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
		ret = -EUCLEAN;
		goto error;
	}
1775

1776 1777
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1778 1779
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1780
		*devid_ret = 1;
1781 1782 1783
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1784
		*devid_ret = found_key.offset + 1;
1785 1786 1787
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1788
	btrfs_free_path(path);
1789 1790 1791 1792 1793 1794 1795
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1796
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1797
			    struct btrfs_device *device)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1812
	key.offset = device->devid;
1813

1814 1815
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1816 1817 1818 1819 1820 1821 1822
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1823
	btrfs_set_device_generation(leaf, dev_item, 0);
1824 1825 1826 1827
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1828 1829 1830 1831
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1832 1833 1834
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1835
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1836

1837
	ptr = btrfs_device_uuid(dev_item);
1838
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1839
	ptr = btrfs_device_fsid(dev_item);
1840 1841
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1842 1843
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1844
	ret = 0;
1845 1846 1847 1848
out:
	btrfs_free_path(path);
	return ret;
}
1849

1850 1851 1852 1853
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
1854
static void update_dev_time(const char *path_name)
1855 1856 1857 1858
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1859
	if (IS_ERR(filp))
1860 1861 1862 1863 1864
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
}

1865
static int btrfs_rm_dev_item(struct btrfs_device *device)
1866
{
1867
	struct btrfs_root *root = device->fs_info->chunk_root;
1868 1869 1870 1871 1872 1873 1874 1875 1876
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1877
	trans = btrfs_start_transaction(root, 0);
1878 1879 1880 1881
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1882 1883 1884 1885 1886
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1887 1888 1889 1890 1891
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
1892 1893 1894 1895
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
1896 1897 1898 1899 1900
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	}

1901 1902
out:
	btrfs_free_path(path);
1903 1904
	if (!ret)
		ret = btrfs_commit_transaction(trans);
1905 1906 1907
	return ret;
}

1908 1909 1910 1911 1912 1913 1914
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1915 1916
{
	u64 all_avail;
1917
	unsigned seq;
1918
	int i;
1919

1920
	do {
1921
		seq = read_seqbegin(&fs_info->profiles_lock);
1922

1923 1924 1925 1926
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
1927

1928
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1929
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1930
			continue;
1931

1932
		if (num_devices < btrfs_raid_array[i].devs_min) {
1933
			int ret = btrfs_raid_array[i].mindev_error;
1934

1935 1936 1937
			if (ret)
				return ret;
		}
D
David Woodhouse 已提交
1938 1939
	}

1940
	return 0;
1941 1942
}

1943 1944
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1945
{
Y
Yan Zheng 已提交
1946
	struct btrfs_device *next_device;
1947 1948 1949

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
1950 1951
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
			return next_device;
	}

	return NULL;
}

/*
 * Helper function to check if the given device is part of s_bdev / latest_bdev
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
1964
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1965
				     struct btrfs_device *this_dev)
1966
{
1967
	struct btrfs_fs_info *fs_info = device->fs_info;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	struct btrfs_device *next_device;

	if (this_dev)
		next_device = this_dev;
	else
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
								device);
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

	if (fs_info->fs_devices->latest_bdev == device->bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
}

1985 1986 1987 1988 1989 1990 1991 1992
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

1993
	down_read(&fs_info->dev_replace.rwsem);
1994 1995 1996 1997
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
1998
	up_read(&fs_info->dev_replace.rwsem);
1999 2000 2001 2002

	return num_devices;
}

2003 2004 2005
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
			       struct block_device *bdev,
			       const char *device_path)
2006 2007 2008 2009 2010 2011 2012 2013
{
	struct btrfs_super_block *disk_super;
	int copy_num;

	if (!bdev)
		return;

	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2014 2015
		struct page *page;
		int ret;
2016

2017 2018 2019
		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
		if (IS_ERR(disk_super))
			continue;
2020 2021

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

		page = virt_to_page(disk_super);
		set_page_dirty(page);
		lock_page(page);
		/* write_on_page() unlocks the page */
		ret = write_one_page(page);
		if (ret)
			btrfs_warn(fs_info,
				"error clearing superblock number %d (%d)",
				copy_num, ret);
		btrfs_release_disk_super(disk_super);

2034 2035 2036 2037 2038 2039 2040 2041 2042
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
}

2043 2044
int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
		u64 devid)
2045 2046
{
	struct btrfs_device *device;
2047
	struct btrfs_fs_devices *cur_devices;
2048
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2049
	u64 num_devices;
2050 2051 2052 2053
	int ret = 0;

	mutex_lock(&uuid_mutex);

2054
	num_devices = btrfs_num_devices(fs_info);
2055

2056
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2057
	if (ret)
2058 2059
		goto out;

2060 2061 2062 2063 2064 2065 2066 2067
	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);

	if (IS_ERR(device)) {
		if (PTR_ERR(device) == -ENOENT &&
		    strcmp(device_path, "missing") == 0)
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
			ret = PTR_ERR(device);
D
David Woodhouse 已提交
2068
		goto out;
2069
	}
2070

2071 2072 2073 2074 2075 2076 2077 2078
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
		ret = -ETXTBSY;
		goto out;
	}

2079
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2080
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2081
		goto out;
2082 2083
	}

2084 2085
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    fs_info->fs_devices->rw_devices == 1) {
2086
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2087
		goto out;
Y
Yan Zheng 已提交
2088 2089
	}

2090
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2091
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2092
		list_del_init(&device->dev_alloc_list);
2093
		device->fs_devices->rw_devices--;
2094
		mutex_unlock(&fs_info->chunk_mutex);
2095
	}
2096

2097
	mutex_unlock(&uuid_mutex);
2098
	ret = btrfs_shrink_device(device, 0);
2099
	mutex_lock(&uuid_mutex);
2100
	if (ret)
2101
		goto error_undo;
2102

2103 2104 2105 2106 2107
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
2108
	ret = btrfs_rm_dev_item(device);
2109
	if (ret)
2110
		goto error_undo;
2111

2112
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2113
	btrfs_scrub_cancel_dev(device);
2114 2115 2116 2117

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2118 2119 2120 2121 2122
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2123
	 */
2124

2125 2126 2127 2128 2129
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
	 * its own fs_devices listed under the fs_devices->seed.
	 */
2130
	cur_devices = device->fs_devices;
2131
	mutex_lock(&fs_devices->device_list_mutex);
2132
	list_del_rcu(&device->dev_list);
2133

2134 2135
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2136 2137 2138
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2139

2140
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2141
		cur_devices->missing_devices--;
2142

2143
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2144

2145
	if (device->bdev) {
2146
		cur_devices->open_devices--;
2147
		/* remove sysfs entry */
2148
		btrfs_sysfs_remove_devices_dir(fs_devices, device);
2149
	}
2150

2151 2152
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2153
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2154

2155 2156 2157 2158 2159
	/*
	 * at this point, the device is zero sized and detached from
	 * the devices list.  All that's left is to zero out the old
	 * supers and free the device.
	 */
2160
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2161 2162
		btrfs_scratch_superblocks(fs_info, device->bdev,
					  device->name->str);
2163 2164

	btrfs_close_bdev(device);
2165 2166
	synchronize_rcu();
	btrfs_free_device(device);
2167

2168
	if (cur_devices->open_devices == 0) {
2169
		list_del_init(&cur_devices->seed_list);
2170
		close_fs_devices(cur_devices);
2171
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2172 2173
	}

2174 2175 2176
out:
	mutex_unlock(&uuid_mutex);
	return ret;
2177

2178
error_undo:
2179
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2180
		mutex_lock(&fs_info->chunk_mutex);
2181
		list_add(&device->dev_alloc_list,
2182
			 &fs_devices->alloc_list);
2183
		device->fs_devices->rw_devices++;
2184
		mutex_unlock(&fs_info->chunk_mutex);
2185
	}
2186
	goto out;
2187 2188
}

2189
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2190
{
2191 2192
	struct btrfs_fs_devices *fs_devices;

2193
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2194

2195 2196 2197 2198 2199 2200 2201
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2202

2203
	list_del_rcu(&srcdev->dev_list);
2204
	list_del(&srcdev->dev_alloc_list);
2205
	fs_devices->num_devices--;
2206
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2207
		fs_devices->missing_devices--;
2208

2209
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2210
		fs_devices->rw_devices--;
2211

2212
	if (srcdev->bdev)
2213
		fs_devices->open_devices--;
2214 2215
}

2216
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2217 2218
{
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2219

2220 2221
	mutex_lock(&uuid_mutex);

2222
	btrfs_close_bdev(srcdev);
2223 2224
	synchronize_rcu();
	btrfs_free_device(srcdev);
2225 2226 2227

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
2228 2229 2230 2231 2232 2233 2234 2235
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2236
		list_del_init(&fs_devices->seed_list);
2237
		close_fs_devices(fs_devices);
2238
		free_fs_devices(fs_devices);
2239
	}
2240
	mutex_unlock(&uuid_mutex);
2241 2242
}

2243
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2244
{
2245
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2246 2247

	mutex_lock(&fs_devices->device_list_mutex);
2248

2249
	btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2250

2251
	if (tgtdev->bdev)
2252
		fs_devices->open_devices--;
2253

2254
	fs_devices->num_devices--;
2255

2256
	btrfs_assign_next_active_device(tgtdev, NULL);
2257 2258 2259

	list_del_rcu(&tgtdev->dev_list);

2260
	mutex_unlock(&fs_devices->device_list_mutex);
2261 2262 2263 2264 2265 2266 2267 2268

	/*
	 * The update_dev_time() with in btrfs_scratch_superblocks()
	 * may lead to a call to btrfs_show_devname() which will try
	 * to hold device_list_mutex. And here this device
	 * is already out of device list, so we don't have to hold
	 * the device_list_mutex lock.
	 */
2269 2270
	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
				  tgtdev->name->str);
2271 2272

	btrfs_close_bdev(tgtdev);
2273 2274
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2275 2276
}

2277 2278
static struct btrfs_device *btrfs_find_device_by_path(
		struct btrfs_fs_info *fs_info, const char *device_path)
2279 2280 2281 2282 2283 2284
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
2285
	struct btrfs_device *device;
2286 2287

	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2288
				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2289
	if (ret)
2290
		return ERR_PTR(ret);
2291

2292 2293
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2294
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2295
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2296
					   disk_super->metadata_uuid, true);
2297
	else
2298
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2299
					   disk_super->fsid, true);
2300

2301
	btrfs_release_disk_super(disk_super);
2302 2303
	if (!device)
		device = ERR_PTR(-ENOENT);
2304
	blkdev_put(bdev, FMODE_READ);
2305
	return device;
2306 2307
}

2308 2309 2310
/*
 * Lookup a device given by device id, or the path if the id is 0.
 */
2311
struct btrfs_device *btrfs_find_device_by_devspec(
2312 2313
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2314
{
2315
	struct btrfs_device *device;
2316

2317
	if (devid) {
2318
		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2319
					   NULL, true);
2320 2321
		if (!device)
			return ERR_PTR(-ENOENT);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		return device;
	}

	if (!device_path || !device_path[0])
		return ERR_PTR(-EINVAL);

	if (strcmp(device_path, "missing") == 0) {
		/* Find first missing device */
		list_for_each_entry(device, &fs_info->fs_devices->devices,
				    dev_list) {
			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				     &device->dev_state) && !device->bdev)
				return device;
2335
		}
2336
		return ERR_PTR(-ENOENT);
2337
	}
2338 2339

	return btrfs_find_device_by_path(fs_info, device_path);
2340 2341
}

Y
Yan Zheng 已提交
2342 2343 2344
/*
 * does all the dirty work required for changing file system's UUID.
 */
2345
static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2346
{
2347
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2348
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2349
	struct btrfs_fs_devices *seed_devices;
2350
	struct btrfs_super_block *disk_super = fs_info->super_copy;
Y
Yan Zheng 已提交
2351 2352 2353
	struct btrfs_device *device;
	u64 super_flags;

2354
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2355
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
2356 2357
		return -EINVAL;

2358 2359 2360 2361
	/*
	 * Private copy of the seed devices, anchored at
	 * fs_info->fs_devices->seed_list
	 */
2362
	seed_devices = alloc_fs_devices(NULL, NULL);
2363 2364
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Y
Yan Zheng 已提交
2365

2366 2367 2368 2369 2370 2371
	/*
	 * It's necessary to retain a copy of the original seed fs_devices in
	 * fs_uuids so that filesystems which have been seeded can successfully
	 * reference the seed device from open_seed_devices. This also supports
	 * multiple fs seed.
	 */
Y
Yan Zheng 已提交
2372 2373 2374 2375
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
2376
	}
Y
Yan Zheng 已提交
2377

2378
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2379

Y
Yan Zheng 已提交
2380 2381 2382 2383
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2384
	mutex_init(&seed_devices->device_list_mutex);
2385

2386
	mutex_lock(&fs_devices->device_list_mutex);
2387 2388
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2389 2390
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2391

2392
	fs_devices->seeding = false;
Y
Yan Zheng 已提交
2393 2394
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2395
	fs_devices->missing_devices = 0;
2396
	fs_devices->rotating = false;
2397
	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
Y
Yan Zheng 已提交
2398 2399

	generate_random_uuid(fs_devices->fsid);
2400
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2401
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2402
	mutex_unlock(&fs_devices->device_list_mutex);
2403

Y
Yan Zheng 已提交
2404 2405 2406 2407 2408 2409 2410 2411
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
2412
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2413
 */
2414
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2415
{
2416
	struct btrfs_fs_info *fs_info = trans->fs_info;
2417
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2418 2419 2420 2421 2422
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2423
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2451
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2463
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2464
				   BTRFS_UUID_SIZE);
2465
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2466
				   BTRFS_FSID_SIZE);
2467
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2468
					   fs_uuid, true);
2469
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2486
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2487
{
2488
	struct btrfs_root *root = fs_info->dev_root;
2489
	struct request_queue *q;
2490 2491 2492
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2493
	struct super_block *sb = fs_info->sb;
2494
	struct rcu_string *name;
2495
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 2497
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
Y
Yan Zheng 已提交
2498
	int seeding_dev = 0;
2499
	int ret = 0;
2500
	bool unlocked = false;
2501

2502
	if (sb_rdonly(sb) && !fs_devices->seeding)
2503
		return -EROFS;
2504

2505
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2506
				  fs_info->bdev_holder);
2507 2508
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2509

2510
	if (fs_devices->seeding) {
Y
Yan Zheng 已提交
2511 2512 2513 2514 2515
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
	}

2516
	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2517

2518
	mutex_lock(&fs_devices->device_list_mutex);
2519
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2520 2521
		if (device->bdev == bdev) {
			ret = -EEXIST;
2522
			mutex_unlock(
2523
				&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2524
			goto error;
2525 2526
		}
	}
2527
	mutex_unlock(&fs_devices->device_list_mutex);
2528

2529
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2530
	if (IS_ERR(device)) {
2531
		/* we can safely leave the fs_devices entry around */
2532
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2533
		goto error;
2534 2535
	}

2536
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2537
	if (!name) {
Y
Yan Zheng 已提交
2538
		ret = -ENOMEM;
2539
		goto error_free_device;
2540
	}
2541
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2542

2543
	trans = btrfs_start_transaction(root, 0);
2544 2545
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2546
		goto error_free_device;
2547 2548
	}

2549
	q = bdev_get_queue(bdev);
2550
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2551
	device->generation = trans->transid;
2552 2553 2554
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2555 2556
	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
					 fs_info->sectorsize);
2557
	device->disk_total_bytes = device->total_bytes;
2558
	device->commit_total_bytes = device->total_bytes;
2559
	device->fs_info = fs_info;
2560
	device->bdev = bdev;
2561
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2562
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2563
	device->mode = FMODE_EXCL;
2564
	device->dev_stats_valid = 1;
2565
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2566

Y
Yan Zheng 已提交
2567
	if (seeding_dev) {
2568
		sb->s_flags &= ~SB_RDONLY;
2569
		ret = btrfs_prepare_sprout(fs_info);
2570 2571 2572 2573
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
Y
Yan Zheng 已提交
2574
	}
2575

2576
	device->fs_devices = fs_devices;
2577

2578
	mutex_lock(&fs_devices->device_list_mutex);
2579
	mutex_lock(&fs_info->chunk_mutex);
2580 2581 2582 2583 2584 2585 2586
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2587

2588
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2589

2590
	if (!blk_queue_nonrot(q))
2591
		fs_devices->rotating = true;
C
Chris Mason 已提交
2592

2593
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2594
	btrfs_set_super_total_bytes(fs_info->super_copy,
2595 2596
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2597

2598 2599 2600
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2601 2602

	/* add sysfs device entry */
2603
	btrfs_sysfs_add_devices_dir(fs_devices, device);
2604

M
Miao Xie 已提交
2605 2606 2607 2608
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2609
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2610

2611
	mutex_unlock(&fs_info->chunk_mutex);
2612
	mutex_unlock(&fs_devices->device_list_mutex);
2613

Y
Yan Zheng 已提交
2614
	if (seeding_dev) {
2615
		mutex_lock(&fs_info->chunk_mutex);
2616
		ret = init_first_rw_device(trans);
2617
		mutex_unlock(&fs_info->chunk_mutex);
2618
		if (ret) {
2619
			btrfs_abort_transaction(trans, ret);
2620
			goto error_sysfs;
2621
		}
M
Miao Xie 已提交
2622 2623
	}

2624
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2625
	if (ret) {
2626
		btrfs_abort_transaction(trans, ret);
2627
		goto error_sysfs;
M
Miao Xie 已提交
2628 2629 2630
	}

	if (seeding_dev) {
2631
		ret = btrfs_finish_sprout(trans);
2632
		if (ret) {
2633
			btrfs_abort_transaction(trans, ret);
2634
			goto error_sysfs;
2635
		}
2636

2637 2638 2639 2640 2641
		/*
		 * fs_devices now represents the newly sprouted filesystem and
		 * its fsid has been changed by btrfs_prepare_sprout
		 */
		btrfs_sysfs_update_sprout_fsid(fs_devices);
Y
Yan Zheng 已提交
2642 2643
	}

2644
	ret = btrfs_commit_transaction(trans);
2645

Y
Yan Zheng 已提交
2646 2647 2648
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2649
		unlocked = true;
2650

2651 2652 2653
		if (ret) /* transaction commit */
			return ret;

2654
		ret = btrfs_relocate_sys_chunks(fs_info);
2655
		if (ret < 0)
2656
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2657
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2658 2659 2660 2661
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2662 2663 2664
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2665
		}
2666
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2667
	}
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	/*
	 * Now that we have written a new super block to this device, check all
	 * other fs_devices list if device_path alienates any other scanned
	 * device.
	 * We can ignore the return value as it typically returns -EINVAL and
	 * only succeeds if the device was an alien.
	 */
	btrfs_forget_devices(device_path);

	/* Update ctime/mtime for blkid or udev */
2679
	update_dev_time(device_path);
2680

Y
Yan Zheng 已提交
2681
	return ret;
2682

2683
error_sysfs:
2684
	btrfs_sysfs_remove_devices_dir(fs_devices, device);
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2701
error_trans:
2702
	if (seeding_dev)
2703
		sb->s_flags |= SB_RDONLY;
2704 2705
	if (trans)
		btrfs_end_transaction(trans);
2706
error_free_device:
2707
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2708
error:
2709
	blkdev_put(bdev, FMODE_EXCL);
2710
	if (seeding_dev && !unlocked) {
Y
Yan Zheng 已提交
2711 2712 2713
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2714
	return ret;
2715 2716
}

C
Chris Mason 已提交
2717 2718
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2719 2720 2721
{
	int ret;
	struct btrfs_path *path;
2722
	struct btrfs_root *root = device->fs_info->chunk_root;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2752 2753 2754 2755
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2756 2757 2758 2759 2760 2761 2762
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2763
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2764 2765
		      struct btrfs_device *device, u64 new_size)
{
2766 2767
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2768 2769
	u64 old_total;
	u64 diff;
2770

2771
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2772
		return -EACCES;
M
Miao Xie 已提交
2773

2774 2775
	new_size = round_down(new_size, fs_info->sectorsize);

2776
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2777
	old_total = btrfs_super_total_bytes(super_copy);
2778
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2779

2780
	if (new_size <= device->total_bytes ||
2781
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2782
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2783
		return -EINVAL;
M
Miao Xie 已提交
2784
	}
Y
Yan Zheng 已提交
2785

2786 2787
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2788 2789
	device->fs_devices->total_rw_bytes += diff;

2790 2791
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2792
	btrfs_clear_space_info_full(device->fs_info);
2793 2794 2795
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2796
	mutex_unlock(&fs_info->chunk_mutex);
2797

2798 2799 2800
	return btrfs_update_device(trans, device);
}

2801
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2802
{
2803
	struct btrfs_fs_info *fs_info = trans->fs_info;
2804
	struct btrfs_root *root = fs_info->chunk_root;
2805 2806 2807 2808 2809 2810 2811 2812
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2813
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2814 2815 2816 2817
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2818 2819 2820
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2821 2822
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2823 2824 2825
		ret = -ENOENT;
		goto out;
	}
2826 2827

	ret = btrfs_del_item(trans, root, path);
2828
	if (ret < 0)
2829 2830
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2831
out:
2832
	btrfs_free_path(path);
2833
	return ret;
2834 2835
}

2836
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2837
{
2838
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2849
	mutex_lock(&fs_info->chunk_mutex);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2869
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2870 2871 2872 2873 2874 2875 2876 2877 2878
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
2879
	mutex_unlock(&fs_info->chunk_mutex);
2880 2881 2882
	return ret;
}

2883 2884 2885 2886 2887 2888 2889 2890 2891
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
2892 2893 2894 2895
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

2896
	em_tree = &fs_info->mapping_tree;
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

2919
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2920
{
2921
	struct btrfs_fs_info *fs_info = trans->fs_info;
2922 2923
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
2924
	u64 dev_extent_len = 0;
2925
	int i, ret = 0;
2926
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2927

2928
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2929
	if (IS_ERR(em)) {
2930 2931
		/*
		 * This is a logic error, but we don't want to just rely on the
2932
		 * user having built with ASSERT enabled, so if ASSERT doesn't
2933 2934 2935
		 * do anything we still error out.
		 */
		ASSERT(0);
2936
		return PTR_ERR(em);
2937
	}
2938
	map = em->map_lookup;
2939
	mutex_lock(&fs_info->chunk_mutex);
2940
	check_system_chunk(trans, map->type);
2941
	mutex_unlock(&fs_info->chunk_mutex);
2942

2943 2944 2945 2946 2947 2948
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
	mutex_lock(&fs_devices->device_list_mutex);
2949
	for (i = 0; i < map->num_stripes; i++) {
2950
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
2951 2952 2953
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
2954
		if (ret) {
2955
			mutex_unlock(&fs_devices->device_list_mutex);
2956
			btrfs_abort_transaction(trans, ret);
2957 2958
			goto out;
		}
2959

M
Miao Xie 已提交
2960
		if (device->bytes_used > 0) {
2961
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2962 2963
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
2964
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2965
			btrfs_clear_space_info_full(fs_info);
2966
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2967
		}
2968

2969 2970 2971 2972 2973
		ret = btrfs_update_device(trans, device);
		if (ret) {
			mutex_unlock(&fs_devices->device_list_mutex);
			btrfs_abort_transaction(trans, ret);
			goto out;
2974
		}
2975
	}
2976 2977
	mutex_unlock(&fs_devices->device_list_mutex);

2978
	ret = btrfs_free_chunk(trans, chunk_offset);
2979
	if (ret) {
2980
		btrfs_abort_transaction(trans, ret);
2981 2982
		goto out;
	}
2983

2984
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2985

2986
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2987
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2988
		if (ret) {
2989
			btrfs_abort_transaction(trans, ret);
2990 2991
			goto out;
		}
2992 2993
	}

2994
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2995
	if (ret) {
2996
		btrfs_abort_transaction(trans, ret);
2997 2998
		goto out;
	}
Y
Yan Zheng 已提交
2999

3000
out:
Y
Yan Zheng 已提交
3001 3002
	/* once for us */
	free_extent_map(em);
3003 3004
	return ret;
}
Y
Yan Zheng 已提交
3005

3006
static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007
{
3008
	struct btrfs_root *root = fs_info->chunk_root;
3009
	struct btrfs_trans_handle *trans;
3010
	struct btrfs_block_group *block_group;
3011
	int ret;
Y
Yan Zheng 已提交
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3025
	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3026

3027
	/* step one, relocate all the extents inside this chunk */
3028
	btrfs_scrub_pause(fs_info);
3029
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3030
	btrfs_scrub_continue(fs_info);
3031 3032 3033
	if (ret)
		return ret;

3034 3035 3036 3037 3038 3039
	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
	if (!block_group)
		return -ENOENT;
	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
	btrfs_put_block_group(block_group);

3040 3041 3042 3043 3044 3045 3046 3047
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3048
	/*
3049 3050
	 * step two, delete the device extents and the
	 * chunk tree entries
3051
	 */
3052
	ret = btrfs_remove_chunk(trans, chunk_offset);
3053
	btrfs_end_transaction(trans);
3054
	return ret;
Y
Yan Zheng 已提交
3055 3056
}

3057
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3058
{
3059
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3060 3061 3062 3063 3064 3065
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3066 3067
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3068 3069 3070 3071 3072 3073
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3074
again:
Y
Yan Zheng 已提交
3075 3076 3077 3078 3079
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3080
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3081
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3082
		if (ret < 0) {
3083
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3084
			goto error;
3085
		}
3086
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3087 3088 3089

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3090
		if (ret)
3091
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3092 3093 3094 3095
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3096

Y
Yan Zheng 已提交
3097 3098
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3099

Y
Yan Zheng 已提交
3100 3101 3102
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3103
		btrfs_release_path(path);
3104

Y
Yan Zheng 已提交
3105
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3106
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3107 3108
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3109 3110
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3111
		}
3112
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3113

Y
Yan Zheng 已提交
3114 3115 3116 3117 3118
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3119 3120 3121 3122
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3123
	} else if (WARN_ON(failed && retried)) {
3124 3125
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3126 3127 3128
error:
	btrfs_free_path(path);
	return ret;
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
3139
	struct btrfs_block_group *cache;
3140 3141 3142 3143 3144 3145 3146 3147
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	spin_lock(&fs_info->data_sinfo->lock);
	bytes_used = fs_info->data_sinfo->bytes_used;
	spin_unlock(&fs_info->data_sinfo->lock);

	if (!bytes_used) {
		struct btrfs_trans_handle *trans;
		int ret;

		trans =	btrfs_join_transaction(fs_info->tree_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
		btrfs_end_transaction(trans);
		if (ret < 0)
			return ret;
		return 1;
3168
	}
3169

3170 3171 3172
	return 0;
}

3173
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3174 3175
			       struct btrfs_balance_control *bctl)
{
3176
	struct btrfs_root *root = fs_info->tree_root;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3196
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3207
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3221
	err = btrfs_commit_transaction(trans);
3222 3223 3224 3225 3226
	if (err && !ret)
		ret = err;
	return ret;
}

3227
static int del_balance_item(struct btrfs_fs_info *fs_info)
3228
{
3229
	struct btrfs_root *root = fs_info->tree_root;
3230 3231 3232 3233 3234 3235 3236 3237 3238
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3239
	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3240 3241 3242 3243 3244 3245
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3246
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3260
	err = btrfs_commit_transaction(trans);
3261 3262 3263 3264 3265
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3290
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3291 3292 3293 3294 3295
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3296
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3297 3298 3299 3300 3301
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3302
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3303 3304 3305 3306 3307 3308
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3309 3310 3311 3312
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3313 3314
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3315
	int ret;
3316 3317 3318 3319 3320 3321 3322 3323

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3324 3325 3326
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3327 3328
}

I
Ilya Dryomov 已提交
3329 3330 3331 3332
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3333
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3334 3335
				 struct btrfs_balance_args *bargs)
{
3336 3337
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3338

3339
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3340 3341 3342 3343 3344
		return 0;

	return 1;
}

3345
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3346
			      struct btrfs_balance_args *bargs)
3347
{
3348
	struct btrfs_block_group *cache;
3349 3350 3351 3352 3353 3354
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3355
	chunk_used = cache->used;
3356 3357 3358 3359

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
3360 3361
		user_thresh_min = div_factor_fine(cache->length,
						  bargs->usage_min);
3362 3363 3364 3365

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
3366
		user_thresh_max = cache->length;
3367
	else
3368 3369
		user_thresh_max = div_factor_fine(cache->length,
						  bargs->usage_max);
3370 3371 3372 3373 3374 3375 3376 3377

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3378
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3379
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3380
{
3381
	struct btrfs_block_group *cache;
I
Ilya Dryomov 已提交
3382 3383 3384 3385
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3386
	chunk_used = cache->used;
I
Ilya Dryomov 已提交
3387

3388
	if (bargs->usage_min == 0)
3389
		user_thresh = 1;
3390
	else if (bargs->usage > 100)
3391
		user_thresh = cache->length;
3392
	else
3393
		user_thresh = div_factor_fine(cache->length, bargs->usage);
3394

I
Ilya Dryomov 已提交
3395 3396 3397 3398 3399 3400 3401
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

	if (nparity)
		return num_stripes - nparity;
	else
		return num_stripes / ncopies;
}

I
Ilya Dryomov 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3440
	u64 type;
I
Ilya Dryomov 已提交
3441 3442 3443 3444 3445 3446
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3447 3448
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3449 3450 3451 3452 3453 3454 3455 3456

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3457
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3494
static int chunk_soft_convert_filter(u64 chunk_type,
3495 3496 3497 3498 3499
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3500 3501
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3502

3503
	if (bargs->target == chunk_type)
3504 3505 3506 3507 3508
		return 1;

	return 0;
}

3509
static int should_balance_chunk(struct extent_buffer *leaf,
3510 3511
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3512
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3513
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3530 3531 3532 3533
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3534 3535 3536 3537
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3538
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3539
		return 0;
3540
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3541
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3542
		return 0;
I
Ilya Dryomov 已提交
3543 3544 3545 3546 3547 3548
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3549 3550 3551 3552
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3553
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3554
		return 0;
3555 3556 3557 3558 3559 3560
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3561 3562
	}

3563 3564 3565 3566 3567 3568
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3569 3570 3571 3572 3573 3574
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3575 3576 3577 3578 3579 3580 3581 3582
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3583 3584 3585
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3586
		 * determined here because we do not have the global information
3587 3588 3589 3590 3591 3592
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3593 3594
	}

3595 3596 3597
	return 1;
}

3598
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3599
{
3600
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3601
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3602
	u64 chunk_type;
3603
	struct btrfs_chunk *chunk;
3604
	struct btrfs_path *path = NULL;
3605 3606
	struct btrfs_key key;
	struct btrfs_key found_key;
3607 3608
	struct extent_buffer *leaf;
	int slot;
3609 3610
	int ret;
	int enospc_errors = 0;
3611
	bool counting = true;
3612
	/* The single value limit and min/max limits use the same bytes in the */
3613 3614 3615
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3616 3617 3618
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3619
	int chunk_reserved = 0;
3620 3621

	path = btrfs_alloc_path();
3622 3623 3624 3625
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3626 3627 3628 3629 3630 3631

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3632
	if (!counting) {
3633 3634 3635 3636
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3637 3638 3639 3640
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3641 3642 3643 3644
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3645
	while (1) {
3646
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3647
		    atomic_read(&fs_info->balance_cancel_req)) {
3648 3649 3650 3651
			ret = -ECANCELED;
			goto error;
		}

3652
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3653
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3654 3655
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3656
			goto error;
3657
		}
3658 3659 3660 3661 3662 3663

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3664
			BUG(); /* FIXME break ? */
3665 3666 3667

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3668
		if (ret) {
3669
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670
			ret = 0;
3671
			break;
3672
		}
3673

3674 3675 3676
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3677

3678 3679
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680
			break;
3681
		}
3682

3683
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3684
		chunk_type = btrfs_chunk_type(leaf, chunk);
3685

3686 3687 3688 3689 3690 3691
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3692
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3693

3694
		btrfs_release_path(path);
3695 3696
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697
			goto loop;
3698
		}
3699

3700
		if (counting) {
3701
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3702 3703 3704
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727 3728 3729
			goto loop;
		}

3730 3731 3732 3733 3734 3735 3736 3737 3738
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3739 3740 3741
			if (ret < 0) {
				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
				goto error;
3742 3743
			} else if (ret == 1) {
				chunk_reserved = 1;
3744 3745 3746
			}
		}

3747
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3748
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3749
		if (ret == -ENOSPC) {
3750
			enospc_errors++;
3751 3752 3753 3754 3755 3756 3757
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3758 3759 3760 3761 3762
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3763
loop:
3764 3765
		if (found_key.offset == 0)
			break;
3766
		key.offset = found_key.offset - 1;
3767
	}
3768

3769 3770 3771 3772 3773
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3774 3775
error:
	btrfs_free_path(path);
3776
	if (enospc_errors) {
3777
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
3778
			   enospc_errors);
3779 3780 3781 3782
		if (!ret)
			ret = -ENOSPC;
	}

3783 3784 3785
	return ret;
}

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

3806
	return has_single_bit_set(flags);
3807 3808
}

3809 3810
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3811 3812 3813 3814
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3815 3816
}

3817 3818 3819 3820 3821 3822 3823
/*
 * Validate target profile against allowed profiles and return true if it's OK.
 * Otherwise print the error message and return false.
 */
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
		const struct btrfs_balance_args *bargs,
		u64 allowed, const char *type)
3824
{
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return true;

	/* Profile is valid and does not have bits outside of the allowed set */
	if (alloc_profile_is_valid(bargs->target, 1) &&
	    (bargs->target & ~allowed) == 0)
		return true;

	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
			type, btrfs_bg_type_to_raid_name(bargs->target));
	return false;
3836 3837
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

3882 3883 3884
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

3992
/*
3993
 * Should be called with balance mutexe held
3994
 */
3995 3996
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
3997 3998
		  struct btrfs_ioctl_balance_args *bargs)
{
3999
	u64 meta_target, data_target;
4000
	u64 allowed;
4001
	int mixed = 0;
4002
	int ret;
4003
	u64 num_devices;
4004
	unsigned seq;
4005
	bool reducing_redundancy;
4006
	int i;
4007

4008
	if (btrfs_fs_closing(fs_info) ||
4009
	    atomic_read(&fs_info->balance_pause_req) ||
4010
	    btrfs_should_cancel_balance(fs_info)) {
4011 4012 4013 4014
		ret = -EINVAL;
		goto out;
	}

4015 4016 4017 4018
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4019 4020 4021 4022
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4023 4024
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4025 4026 4027
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4028
			btrfs_err(fs_info,
4029
	  "balance: mixed groups data and metadata options must be the same");
4030 4031 4032 4033 4034
			ret = -EINVAL;
			goto out;
		}
	}

4035 4036 4037 4038 4039
	/*
	 * rw_devices will not change at the moment, device add/delete/replace
	 * are excluded by EXCL_OP
	 */
	num_devices = fs_info->fs_devices->rw_devices;
4040 4041 4042 4043 4044 4045 4046

	/*
	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
	 * special bit for it, to make it easier to distinguish.  Thus we need
	 * to set it manually, or balance would refuse the profile.
	 */
	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4047 4048 4049
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4050

4051 4052 4053
	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4054 4055 4056 4057
		ret = -EINVAL;
		goto out;
	}

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4068 4069 4070 4071 4072 4073 4074 4075
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4076
		     !(bctl->meta.target & allowed)))
4077
			reducing_redundancy = true;
4078
		else
4079
			reducing_redundancy = false;
4080 4081 4082 4083 4084 4085

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4086
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4087

4088
	if (reducing_redundancy) {
4089 4090
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
4091
			   "balance: force reducing metadata redundancy");
4092 4093
		} else {
			btrfs_err(fs_info,
4094
	"balance: reduces metadata redundancy, use --force if you want this");
4095 4096 4097 4098 4099
			ret = -EINVAL;
			goto out;
		}
	}

4100 4101
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4102
		btrfs_warn(fs_info,
4103
	"balance: metadata profile %s has lower redundancy than data profile %s",
4104 4105
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4106 4107
	}

4108 4109 4110 4111 4112 4113 4114 4115
	if (fs_info->send_in_progress) {
		btrfs_warn_rl(fs_info,
"cannot run balance while send operations are in progress (%d in progress)",
			      fs_info->send_in_progress);
		ret = -EAGAIN;
		goto out;
	}

4116
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4117
	if (ret && ret != -EEXIST)
4118 4119
		goto out;

I
Ilya Dryomov 已提交
4120 4121
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4122 4123 4124 4125
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4126 4127 4128 4129 4130 4131
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4132

4133 4134
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4135
	describe_balance_start_or_resume(fs_info);
4136 4137 4138 4139 4140
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4141 4142
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
		btrfs_info(fs_info, "balance: paused");
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
	/*
	 * Balance can be canceled by:
	 *
	 * - Regular cancel request
	 *   Then ret == -ECANCELED and balance_cancel_req > 0
	 *
	 * - Fatal signal to "btrfs" process
	 *   Either the signal caught by wait_reserve_ticket() and callers
	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
	 *   got -ECANCELED.
	 *   Either way, in this case balance_cancel_req = 0, and
	 *   ret == -EINTR or ret == -ECANCELED.
	 *
	 * So here we only check the return value to catch canceled balance.
	 */
	else if (ret == -ECANCELED || ret == -EINTR)
4159 4160 4161 4162
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4163
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4164 4165 4166

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4167
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4168 4169
	}

4170 4171
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4172
		reset_balance_state(fs_info);
4173
		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4174 4175
	}

4176
	wake_up(&fs_info->balance_wait_q);
4177 4178 4179

	return ret;
out:
I
Ilya Dryomov 已提交
4180
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4181
		reset_balance_state(fs_info);
4182
	else
I
Ilya Dryomov 已提交
4183
		kfree(bctl);
4184 4185
	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);

I
Ilya Dryomov 已提交
4186 4187 4188 4189 4190
	return ret;
}

static int balance_kthread(void *data)
{
4191
	struct btrfs_fs_info *fs_info = data;
4192
	int ret = 0;
I
Ilya Dryomov 已提交
4193 4194

	mutex_lock(&fs_info->balance_mutex);
4195
	if (fs_info->balance_ctl)
4196
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4197
	mutex_unlock(&fs_info->balance_mutex);
4198

I
Ilya Dryomov 已提交
4199 4200 4201
	return ret;
}

4202 4203 4204 4205
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4206
	mutex_lock(&fs_info->balance_mutex);
4207
	if (!fs_info->balance_ctl) {
4208
		mutex_unlock(&fs_info->balance_mutex);
4209 4210
		return 0;
	}
4211
	mutex_unlock(&fs_info->balance_mutex);
4212

4213
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4214
		btrfs_info(fs_info, "balance: resume skipped");
4215 4216 4217
		return 0;
	}

4218 4219 4220 4221 4222 4223 4224 4225 4226
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4227
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4228
	return PTR_ERR_OR_ZERO(tsk);
4229 4230
}

4231
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4246
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4247 4248
	key.offset = 0;

4249
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4250
	if (ret < 0)
4251
		goto out;
I
Ilya Dryomov 已提交
4252 4253
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4254 4255 4256 4257 4258 4259 4260
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4261 4262 4263 4264 4265
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4266 4267
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4268 4269 4270 4271 4272 4273 4274 4275

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
		btrfs_warn(fs_info,
4288
	"balance: cannot set exclusive op status, resume manually");
4289

4290
	mutex_lock(&fs_info->balance_mutex);
4291 4292 4293 4294
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4295
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4296 4297
out:
	btrfs_free_path(path);
4298 4299 4300
	return ret;
}

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4311
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4312 4313 4314 4315
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4316
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4317 4318 4319

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4320
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4321 4322 4323 4324 4325 4326 4327 4328 4329
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4330 4331 4332 4333 4334 4335 4336 4337
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4348 4349 4350 4351 4352
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4353
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4354 4355
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4356
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4357 4358 4359
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4360 4361 4362 4363
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4364 4365
		mutex_lock(&fs_info->balance_mutex);

4366
		if (fs_info->balance_ctl) {
4367
			reset_balance_state(fs_info);
4368
			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4369
			btrfs_info(fs_info, "balance: canceled");
4370
		}
4371 4372
	}

4373 4374
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 4376 4377 4378 4379
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

4380
int btrfs_uuid_scan_kthread(void *data)
S
Stefan Behrens 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4391
	struct btrfs_trans_handle *trans = NULL;
4392
	bool closing = false;
S
Stefan Behrens 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4405 4406 4407 4408
		if (btrfs_fs_closing(fs_info)) {
			closing = true;
			break;
		}
4409 4410
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4434 4435 4436 4437 4438 4439 4440

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4450 4451 4452 4453 4454
			continue;
		} else {
			goto skip;
		}
update_tree:
4455
		btrfs_release_path(path);
4456
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4457
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4458 4459 4460
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4461
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4462 4463 4464 4465 4466 4467
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4468
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4469 4470 4471 4472
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4473
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4474 4475 4476 4477 4478
					ret);
				break;
			}
		}

4479
skip:
4480
		btrfs_release_path(path);
S
Stefan Behrens 已提交
4481
		if (trans) {
4482
			ret = btrfs_end_transaction(trans);
4483
			trans = NULL;
S
Stefan Behrens 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
			if (ret)
				break;
		}

		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4505
	if (trans && !IS_ERR(trans))
4506
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4507
	if (ret)
4508
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4509
	else if (!closing)
4510
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4511 4512 4513 4514
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4515 4516 4517 4518 4519
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4520 4521
	struct task_struct *task;
	int ret;
4522 4523 4524 4525 4526 4527 4528 4529 4530

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4531
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4532
	if (IS_ERR(uuid_root)) {
4533
		ret = PTR_ERR(uuid_root);
4534
		btrfs_abort_transaction(trans, ret);
4535
		btrfs_end_transaction(trans);
4536
		return ret;
4537 4538 4539 4540
	}

	fs_info->uuid_root = uuid_root;

4541
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4542 4543 4544 4545 4546 4547
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4548
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4549
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4550 4551 4552 4553 4554
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4555
}
S
Stefan Behrens 已提交
4556

4557 4558 4559 4560 4561 4562 4563
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4564 4565
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4566 4567 4568 4569 4570 4571 4572
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4573 4574
	int failed = 0;
	bool retried = false;
4575 4576
	struct extent_buffer *l;
	struct btrfs_key key;
4577
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4578
	u64 old_total = btrfs_super_total_bytes(super_copy);
4579
	u64 old_size = btrfs_device_get_total_bytes(device);
4580
	u64 diff;
4581
	u64 start;
4582 4583

	new_size = round_down(new_size, fs_info->sectorsize);
4584
	start = new_size;
4585
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4586

4587
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4588 4589
		return -EINVAL;

4590 4591 4592 4593
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4594
	path->reada = READA_BACK;
4595

4596 4597 4598 4599 4600 4601
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4602
	mutex_lock(&fs_info->chunk_mutex);
4603

4604
	btrfs_device_set_total_bytes(device, new_size);
4605
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4606
		device->fs_devices->total_rw_bytes -= diff;
4607
		atomic64_sub(diff, &fs_info->free_chunk_space);
4608
	}
4609 4610 4611 4612 4613 4614

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4615
	if (contains_pending_extent(device, &start, diff)) {
4616 4617 4618 4619 4620 4621 4622 4623
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4624

4625
again:
4626 4627 4628 4629
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4630
	do {
4631
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4632
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4633
		if (ret < 0) {
4634
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4635
			goto done;
4636
		}
4637 4638

		ret = btrfs_previous_item(root, path, 0, key.type);
4639
		if (ret)
4640
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4641 4642 4643 4644
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4645
			btrfs_release_path(path);
4646
			break;
4647 4648 4649 4650 4651 4652
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4653
		if (key.objectid != device->devid) {
4654
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4655
			btrfs_release_path(path);
4656
			break;
4657
		}
4658 4659 4660 4661

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4662
		if (key.offset + length <= new_size) {
4663
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4664
			btrfs_release_path(path);
4665
			break;
4666
		}
4667 4668

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4669
		btrfs_release_path(path);
4670

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
			goto done;
		}

4683 4684
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4685
		if (ret == -ENOSPC) {
4686
			failed++;
4687 4688 4689 4690 4691 4692 4693 4694
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4695
	} while (key.offset-- > 0);
4696 4697 4698 4699 4700 4701 4702 4703

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4704 4705
	}

4706
	/* Shrinking succeeded, else we would be at "done". */
4707
	trans = btrfs_start_transaction(root, 0);
4708 4709 4710 4711 4712
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4713
	mutex_lock(&fs_info->chunk_mutex);
4714 4715 4716 4717
	/* Clear all state bits beyond the shrunk device size */
	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
			  CHUNK_STATE_MASK);

4718
	btrfs_device_set_disk_total_bytes(device, new_size);
4719 4720 4721
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4722 4723

	WARN_ON(diff > old_total);
4724 4725
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4726
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4727 4728 4729

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4730 4731 4732 4733 4734 4735
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4736 4737
done:
	btrfs_free_path(path);
4738
	if (ret) {
4739
		mutex_lock(&fs_info->chunk_mutex);
4740
		btrfs_device_set_total_bytes(device, old_size);
4741
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4742
			device->fs_devices->total_rw_bytes += diff;
4743
		atomic64_add(diff, &fs_info->free_chunk_space);
4744
		mutex_unlock(&fs_info->chunk_mutex);
4745
	}
4746 4747 4748
	return ret;
}

4749
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4750 4751 4752
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4753
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4754 4755 4756 4757
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4758
	mutex_lock(&fs_info->chunk_mutex);
4759
	array_size = btrfs_super_sys_array_size(super_copy);
4760
	if (array_size + item_size + sizeof(disk_key)
4761
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4762
		mutex_unlock(&fs_info->chunk_mutex);
4763
		return -EFBIG;
4764
	}
4765 4766 4767 4768 4769 4770 4771 4772

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4773
	mutex_unlock(&fs_info->chunk_mutex);
4774

4775 4776 4777
	return 0;
}

4778 4779 4780 4781
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4782
{
4783 4784
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4785

4786
	if (di_a->max_avail > di_b->max_avail)
4787
		return -1;
4788
	if (di_a->max_avail < di_b->max_avail)
4789
		return 1;
4790 4791 4792 4793 4794
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4795
}
4796

D
David Woodhouse 已提交
4797 4798
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4799
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
4800 4801
		return;

4802
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
4803 4804
}

4805 4806 4807 4808 4809 4810 4811 4812
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
		return;

	btrfs_set_fs_incompat(info, RAID1C34);
}

N
Naohiro Aota 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
/*
 * Structure used internally for __btrfs_alloc_chunk() function.
 * Wraps needed parameters.
 */
struct alloc_chunk_ctl {
	u64 start;
	u64 type;
	/* Total number of stripes to allocate */
	int num_stripes;
	/* sub_stripes info for map */
	int sub_stripes;
	/* Stripes per device */
	int dev_stripes;
	/* Maximum number of devices to use */
	int devs_max;
	/* Minimum number of devices to use */
	int devs_min;
	/* ndevs has to be a multiple of this */
	int devs_increment;
	/* Number of copies */
	int ncopies;
	/* Number of stripes worth of bytes to store parity information */
	int nparity;
	u64 max_stripe_size;
	u64 max_chunk_size;
4838
	u64 dev_extent_min;
N
Naohiro Aota 已提交
4839 4840 4841 4842 4843
	u64 stripe_size;
	u64 chunk_size;
	int ndevs;
};

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
static void init_alloc_chunk_ctl_policy_regular(
				struct btrfs_fs_devices *fs_devices,
				struct alloc_chunk_ctl *ctl)
{
	u64 type = ctl->type;

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		ctl->max_stripe_size = SZ_1G;
		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		/* For larger filesystems, use larger metadata chunks */
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			ctl->max_stripe_size = SZ_1G;
		else
			ctl->max_stripe_size = SZ_256M;
		ctl->max_chunk_size = ctl->max_stripe_size;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ctl->max_stripe_size = SZ_32M;
		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
		ctl->devs_max = min_t(int, ctl->devs_max,
				      BTRFS_MAX_DEVS_SYS_CHUNK);
	} else {
		BUG();
	}

	/* We don't want a chunk larger than 10% of writable space */
	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
				  ctl->max_chunk_size);
4872
	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
}

static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
				 struct alloc_chunk_ctl *ctl)
{
	int index = btrfs_bg_flags_to_raid_index(ctl->type);

	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
	ctl->devs_max = btrfs_raid_array[index].devs_max;
	if (!ctl->devs_max)
		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
	ctl->devs_min = btrfs_raid_array[index].devs_min;
	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
	ctl->ncopies = btrfs_raid_array[index].ncopies;
	ctl->nparity = btrfs_raid_array[index].nparity;
	ctl->ndevs = 0;

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
		break;
	default:
		BUG();
	}
}

4900 4901 4902
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
4903
{
4904
	struct btrfs_fs_info *info = fs_devices->fs_info;
4905
	struct btrfs_device *device;
4906
	u64 total_avail;
4907
	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4908
	int ret;
4909 4910 4911
	int ndevs = 0;
	u64 max_avail;
	u64 dev_offset;
4912

4913
	/*
4914 4915
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
4916
	 */
4917
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4918
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
4919
			WARN(1, KERN_ERR
4920
			       "BTRFS: read-only device in alloc_list\n");
4921 4922
			continue;
		}
4923

4924 4925
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
4926
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4927
			continue;
4928

4929 4930 4931 4932
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
4933 4934

		/* If there is no space on this device, skip it. */
4935
		if (total_avail < ctl->dev_extent_min)
4936
			continue;
4937

4938 4939
		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
					   &max_avail);
4940
		if (ret && ret != -ENOSPC)
4941
			return ret;
4942

4943
		if (ret == 0)
4944
			max_avail = dev_extent_want;
4945

4946
		if (max_avail < ctl->dev_extent_min) {
4947 4948
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
4949
			"%s: devid %llu has no free space, have=%llu want=%llu",
4950
					    __func__, device->devid, max_avail,
4951
					    ctl->dev_extent_min);
4952
			continue;
4953
		}
4954

4955 4956 4957 4958 4959
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
4960 4961 4962 4963 4964 4965
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
4966
	ctl->ndevs = ndevs;
4967

4968 4969 4970
	/*
	 * now sort the devices by hole size / available space
	 */
4971
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4972
	     btrfs_cmp_device_info, NULL);
4973

4974 4975 4976
	return 0;
}

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
				      struct btrfs_device_info *devices_info)
{
	/* Number of stripes that count for block group size */
	int data_stripes;

	/*
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
	 */
	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
				   ctl->dev_stripes);
	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;

	/* This will have to be fixed for RAID1 and RAID10 over more drives */
	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;

	/*
	 * Use the number of data stripes to figure out how big this chunk is
	 * really going to be in terms of logical address space, and compare
	 * that answer with the max chunk size. If it's higher, we try to
	 * reduce stripe_size.
	 */
	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
		/*
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
		 */
		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
							data_stripes), SZ_16M),
				       ctl->stripe_size);
	}

	/* Align to BTRFS_STRIPE_LEN */
	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
	ctl->chunk_size = ctl->stripe_size * data_stripes;

	return 0;
}

static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
			      struct alloc_chunk_ctl *ctl,
			      struct btrfs_device_info *devices_info)
{
	struct btrfs_fs_info *info = fs_devices->fs_info;

	/*
	 * Round down to number of usable stripes, devs_increment can be any
	 * number so we can't use round_down() that requires power of 2, while
	 * rounddown is safe.
	 */
	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);

	if (ctl->ndevs < ctl->devs_min) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
				    __func__, ctl->ndevs, ctl->devs_min);
		}
		return -ENOSPC;
	}

	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);

	switch (fs_devices->chunk_alloc_policy) {
	case BTRFS_CHUNK_ALLOC_REGULAR:
		return decide_stripe_size_regular(ctl, devices_info);
	default:
		BUG();
	}
}

N
Naohiro Aota 已提交
5053 5054 5055
static int create_chunk(struct btrfs_trans_handle *trans,
			struct alloc_chunk_ctl *ctl,
			struct btrfs_device_info *devices_info)
5056 5057 5058 5059 5060
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
N
Naohiro Aota 已提交
5061 5062
	u64 start = ctl->start;
	u64 type = ctl->type;
5063 5064 5065 5066
	int ret;
	int i;
	int j;

N
Naohiro Aota 已提交
5067 5068
	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
	if (!map)
5069
		return -ENOMEM;
N
Naohiro Aota 已提交
5070
	map->num_stripes = ctl->num_stripes;
5071

N
Naohiro Aota 已提交
5072 5073 5074
	for (i = 0; i < ctl->ndevs; ++i) {
		for (j = 0; j < ctl->dev_stripes; ++j) {
			int s = i * ctl->dev_stripes + j;
5075 5076
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
N
Naohiro Aota 已提交
5077
						   j * ctl->stripe_size;
5078 5079
		}
	}
5080 5081 5082
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5083
	map->type = type;
N
Naohiro Aota 已提交
5084
	map->sub_stripes = ctl->sub_stripes;
5085

N
Naohiro Aota 已提交
5086
	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5087

5088
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5089
	if (!em) {
5090
		kfree(map);
N
Naohiro Aota 已提交
5091
		return -ENOMEM;
5092
	}
5093
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5094
	em->map_lookup = map;
Y
Yan Zheng 已提交
5095
	em->start = start;
N
Naohiro Aota 已提交
5096
	em->len = ctl->chunk_size;
Y
Yan Zheng 已提交
5097 5098
	em->block_start = 0;
	em->block_len = em->len;
N
Naohiro Aota 已提交
5099
	em->orig_block_len = ctl->stripe_size;
5100

5101
	em_tree = &info->mapping_tree;
5102
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5103
	ret = add_extent_mapping(em_tree, em, 0);
5104
	if (ret) {
5105
		write_unlock(&em_tree->lock);
5106
		free_extent_map(em);
N
Naohiro Aota 已提交
5107
		return ret;
5108
	}
5109 5110
	write_unlock(&em_tree->lock);

N
Naohiro Aota 已提交
5111
	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5112 5113
	if (ret)
		goto error_del_extent;
Y
Yan Zheng 已提交
5114

5115 5116 5117
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

N
Naohiro Aota 已提交
5118
		btrfs_device_set_bytes_used(dev,
N
Naohiro Aota 已提交
5119
					    dev->bytes_used + ctl->stripe_size);
5120 5121 5122 5123
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5124

N
Naohiro Aota 已提交
5125
	atomic64_sub(ctl->stripe_size * map->num_stripes,
N
Naohiro Aota 已提交
5126
		     &info->free_chunk_space);
5127

5128
	free_extent_map(em);
5129
	check_raid56_incompat_flag(info, type);
5130
	check_raid1c34_incompat_flag(info, type);
D
David Woodhouse 已提交
5131

Y
Yan Zheng 已提交
5132
	return 0;
5133

5134
error_del_extent:
5135 5136 5137 5138 5139 5140 5141 5142
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
N
Naohiro Aota 已提交
5143 5144 5145 5146

	return ret;
}

5147
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
N
Naohiro Aota 已提交
5148 5149 5150 5151 5152 5153 5154
{
	struct btrfs_fs_info *info = trans->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct btrfs_device_info *devices_info = NULL;
	struct alloc_chunk_ctl ctl;
	int ret;

5155 5156
	lockdep_assert_held(&info->chunk_mutex);

N
Naohiro Aota 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	if (!alloc_profile_is_valid(type, 0)) {
		ASSERT(0);
		return -EINVAL;
	}

	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
		return -ENOSPC;
	}

	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
		ASSERT(0);
		return -EINVAL;
	}

5174
	ctl.start = find_next_chunk(info);
N
Naohiro Aota 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	ctl.type = type;
	init_alloc_chunk_ctl(fs_devices, &ctl);

	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;

	ret = gather_device_info(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
	if (ret < 0)
		goto out;

	ret = create_chunk(trans, &ctl, devices_info);

out:
5194 5195
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
5196 5197
}

5198 5199 5200 5201 5202 5203 5204
/*
 * Chunk allocation falls into two parts. The first part does work
 * that makes the new allocated chunk usable, but does not do any operation
 * that modifies the chunk tree. The second part does the work that
 * requires modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
5205
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5206
			     u64 chunk_offset, u64 chunk_size)
Y
Yan Zheng 已提交
5207
{
5208
	struct btrfs_fs_info *fs_info = trans->fs_info;
5209 5210
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
5211 5212 5213 5214
	struct btrfs_key key;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
5215 5216 5217 5218 5219 5220
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
5221
	int ret = 0;
Y
Yan Zheng 已提交
5222

5223
	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5224 5225
	if (IS_ERR(em))
		return PTR_ERR(em);
5226

5227
	map = em->map_lookup;
5228 5229 5230
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Y
Yan Zheng 已提交
5231
	chunk = kzalloc(item_size, GFP_NOFS);
5232 5233 5234 5235 5236
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

5237 5238 5239 5240 5241 5242 5243
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
5244
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5245 5246 5247
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Y
Yan Zheng 已提交
5248

5249
		ret = btrfs_update_device(trans, device);
5250
		if (ret)
5251
			break;
5252 5253
		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
					     dev_offset, stripe_size);
5254
		if (ret)
5255 5256 5257
			break;
	}
	if (ret) {
5258
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5259
		goto out;
Y
Yan Zheng 已提交
5260 5261 5262
	}

	stripe = &chunk->stripe;
5263 5264 5265
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
5266

5267 5268 5269
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5270
		stripe++;
5271
	}
5272
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5273

Y
Yan Zheng 已提交
5274
	btrfs_set_stack_chunk_length(chunk, chunk_size);
5275
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
5276 5277 5278 5279 5280
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5281
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5282
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5283

Y
Yan Zheng 已提交
5284 5285 5286
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
5287

Y
Yan Zheng 已提交
5288
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5289 5290 5291 5292 5293
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
5294
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5295
	}
5296

5297
out:
5298
	kfree(chunk);
5299
	free_extent_map(em);
5300
	return ret;
Y
Yan Zheng 已提交
5301
}
5302

5303
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5304
{
5305
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5306 5307 5308
	u64 alloc_profile;
	int ret;

5309
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5310
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5311 5312
	if (ret)
		return ret;
Y
Yan Zheng 已提交
5313

5314
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5315
	ret = btrfs_alloc_chunk(trans, alloc_profile);
5316
	return ret;
Y
Yan Zheng 已提交
5317 5318
}

5319 5320
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5321
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5322

5323
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5324 5325
}

5326
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5327 5328 5329 5330
{
	struct extent_map *em;
	struct map_lookup *map;
	int readonly = 0;
5331
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5332 5333
	int i;

5334
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5335
	if (IS_ERR(em))
Y
Yan Zheng 已提交
5336 5337
		return 1;

5338
	map = em->map_lookup;
Y
Yan Zheng 已提交
5339
	for (i = 0; i < map->num_stripes; i++) {
5340 5341
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5342 5343 5344
			miss_ndevs++;
			continue;
		}
5345 5346
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
Y
Yan Zheng 已提交
5347
			readonly = 1;
5348
			goto end;
Y
Yan Zheng 已提交
5349 5350
		}
	}
5351 5352 5353 5354 5355 5356 5357 5358 5359

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
5360
	free_extent_map(em);
Y
Yan Zheng 已提交
5361
	return readonly;
5362 5363
}

5364
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5365 5366 5367
{
	struct extent_map *em;

C
Chris Mason 已提交
5368
	while (1) {
5369 5370
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5371
		if (em)
5372 5373
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5374 5375 5376 5377 5378 5379 5380 5381 5382
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5383
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5384 5385 5386 5387 5388
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5389
	em = btrfs_get_chunk_map(fs_info, logical, len);
5390 5391 5392 5393 5394 5395 5396
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5397 5398
		return 1;

5399
	map = em->map_lookup;
5400
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5401
		ret = map->num_stripes;
C
Chris Mason 已提交
5402 5403
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5404 5405 5406
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5407 5408 5409
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5410
		 *
L
Liu Bo 已提交
5411 5412 5413 5414
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5415 5416 5417
	else
		ret = 1;
	free_extent_map(em);
5418

5419
	down_read(&fs_info->dev_replace.rwsem);
5420 5421
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5422
		ret++;
5423
	up_read(&fs_info->dev_replace.rwsem);
5424

5425 5426 5427
	return ret;
}

5428
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5429 5430 5431 5432
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5433
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5434

5435
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5436

5437 5438 5439 5440 5441 5442
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5443 5444 5445
	return len;
}

5446
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5447 5448 5449 5450 5451
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5452
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5453

5454 5455 5456 5457 5458 5459
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5460 5461 5462
	return ret;
}

5463
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5464
			    struct map_lookup *map, int first,
5465
			    int dev_replace_is_ongoing)
5466 5467
{
	int i;
5468
	int num_stripes;
5469
	int preferred_mirror;
5470 5471 5472
	int tolerance;
	struct btrfs_device *srcdev;

5473
	ASSERT((map->type &
5474
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5475 5476 5477 5478 5479 5480

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

5481 5482
	preferred_mirror = first + current->pid % num_stripes;

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5496 5497 5498
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5499
		for (i = first; i < first + num_stripes; i++) {
5500 5501 5502 5503
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5504
	}
5505

5506 5507 5508
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5509
	return preferred_mirror;
5510 5511
}

D
David Woodhouse 已提交
5512
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5513
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
D
David Woodhouse 已提交
5514 5515 5516 5517 5518 5519
{
	int i;
	int again = 1;

	while (again) {
		again = 0;
5520
		for (i = 0; i < num_stripes - 1; i++) {
5521 5522 5523 5524
			/* Swap if parity is on a smaller index */
			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
				swap(bbio->stripes[i], bbio->stripes[i + 1]);
				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
D
David Woodhouse 已提交
5525 5526 5527 5528 5529 5530
				again = 1;
			}
		}
	}
}

5531 5532 5533
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5534
		 /* the size of the btrfs_bio */
5535
		sizeof(struct btrfs_bio) +
5536
		/* plus the variable array for the stripes */
5537
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5538
		/* plus the variable array for the tgt dev */
5539
		sizeof(int) * (real_stripes) +
5540 5541 5542 5543 5544
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5545
		GFP_NOFS|__GFP_NOFAIL);
5546 5547

	atomic_set(&bbio->error, 0);
5548
	refcount_set(&bbio->refs, 1);
5549

5550 5551 5552
	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);

5553 5554 5555 5556 5557
	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
5558 5559
	WARN_ON(!refcount_read(&bbio->refs));
	refcount_inc(&bbio->refs);
5560 5561 5562 5563 5564 5565
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
5566
	if (refcount_dec_and_test(&bbio->refs))
5567 5568 5569
		kfree(bbio);
}

5570 5571 5572 5573 5574 5575
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5576
					 u64 logical, u64 *length_ret,
5577 5578 5579 5580 5581
					 struct btrfs_bio **bbio_ret)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_bio *bbio;
5582
	u64 length = *length_ret;
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

	/* discard always return a bbio */
	ASSERT(bbio_ret);

5603
	em = btrfs_get_chunk_map(fs_info, logical, length);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
5615
	length = min_t(u64, em->start + em->len - logical, length);
5616
	*length_ret = length;
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5629
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
5656
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

	bbio = alloc_btrfs_bio(num_stripes, 0);
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			bbio->stripes[i].length = stripes_per_dev *
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
				bbio->stripes[i].length +=
					map->stripe_len;

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
				bbio->stripes[i].length -=
					stripe_offset;

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
				bbio->stripes[i].length -=
					stripe_end_offset;

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
			bbio->stripes[i].length = length;
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

	*bbio_ret = bbio;
	bbio->map_type = map->type;
	bbio->num_stripes = num_stripes;
out:
	free_extent_map(em);
	return ret;
}

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
	struct btrfs_bio *bbio = NULL;
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &length, &bbio, 0, 0);
	if (ret) {
		ASSERT(bbio == NULL);
		return ret;
	}

	num_stripes = bbio->num_stripes;
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
		if (bbio->stripes[i].dev->devid != srcdev_devid)
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
		    physical_of_found <= bbio->stripes[i].physical)
			continue;

		index_srcdev = i;
		found = 1;
		physical_of_found = bbio->stripes[i].physical;
	}

	btrfs_put_bbio(bbio);

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
				      struct btrfs_bio **bbio_ret,
				      struct btrfs_dev_replace *dev_replace,
				      int *num_stripes_ret, int *max_errors_ret)
{
	struct btrfs_bio *bbio = *bbio_ret;
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
				bbio->tgtdev_map[i] = index_where_to_add;
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
			struct btrfs_bio_stripe *tgtdev_stripe =
				bbio->stripes + num_stripes;

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
				bbio->stripes[index_srcdev].length;
			tgtdev_stripe->dev = dev_replace->tgtdev;
			bbio->tgtdev_map[index_srcdev] = num_stripes;

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
	bbio->num_tgtdevs = tgtdev_indexes;
	*bbio_ret = bbio;
}

5895 5896 5897 5898 5899
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
/*
 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
 *		       tuple. This information is used to calculate how big a
 *		       particular bio can get before it straddles a stripe.
 *
 * @fs_info - the filesystem
 * @logical - address that we want to figure out the geometry of
 * @len	    - the length of IO we are going to perform, starting at @logical
 * @op      - type of operation - write or read
 * @io_geom - pointer used to return values
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5915
			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5916 5917 5918 5919 5920 5921 5922 5923 5924
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
	u64 stripe_len;
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;
5925
	int ret = 0;
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945

	ASSERT(op != BTRFS_MAP_DISCARD);

	em = btrfs_get_chunk_map(fs_info, logical, len);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
	/* Stripe wher this block falls in */
	stripe_nr = div64_u64(offset, stripe_len);
	/* Offset of stripe in the chunk */
	stripe_offset = stripe_nr * stripe_len;
	if (offset < stripe_offset) {
		btrfs_crit(fs_info,
"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
			stripe_offset, offset, em->start, logical, stripe_len);
5946 5947
		ret = -EINVAL;
		goto out;
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
	}

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_offset;
	data_stripes = nr_data_stripes(map);

	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

5994 5995 5996 5997
out:
	/* once for us */
	free_extent_map(em);
	return ret;
5998 5999
}

6000 6001
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
6002
			     u64 logical, u64 *length,
6003
			     struct btrfs_bio **bbio_ret,
6004
			     int mirror_num, int need_raid_map)
6005 6006 6007
{
	struct extent_map *em;
	struct map_lookup *map;
6008 6009
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6010
	u64 stripe_len;
6011
	u32 stripe_index;
6012
	int data_stripes;
6013
	int i;
L
Li Zefan 已提交
6014
	int ret = 0;
6015
	int num_stripes;
6016
	int max_errors = 0;
6017
	int tgtdev_indexes = 0;
6018
	struct btrfs_bio *bbio = NULL;
6019 6020 6021
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6022 6023
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6024
	u64 raid56_full_stripe_start = (u64)-1;
6025 6026 6027
	struct btrfs_io_geometry geom;

	ASSERT(bbio_ret);
6028
	ASSERT(op != BTRFS_MAP_DISCARD);
6029

6030 6031 6032
	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
	if (ret < 0)
		return ret;
6033

6034
	em = btrfs_get_chunk_map(fs_info, logical, *length);
6035
	ASSERT(!IS_ERR(em));
6036
	map = em->map_lookup;
6037

6038 6039 6040 6041 6042
	*length = geom.len;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6043
	data_stripes = nr_data_stripes(map);
6044

6045
	down_read(&dev_replace->rwsem);
6046
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6047 6048 6049 6050
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6051
	if (!dev_replace_is_ongoing)
6052
		up_read(&dev_replace->rwsem);
6053

6054
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6055
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6056 6057 6058 6059 6060
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6061
			goto out;
6062 6063
		else
			patch_the_first_stripe_for_dev_replace = 1;
6064 6065 6066 6067
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6068
	num_stripes = 1;
6069
	stripe_index = 0;
6070
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6071 6072
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6073
		if (!need_full_stripe(op))
6074
			mirror_num = 1;
6075
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6076
		if (need_full_stripe(op))
6077
			num_stripes = map->num_stripes;
6078
		else if (mirror_num)
6079
			stripe_index = mirror_num - 1;
6080
		else {
6081 6082
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6083
			mirror_num = stripe_index + 1;
6084
		}
6085

6086
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6087
		if (need_full_stripe(op)) {
6088
			num_stripes = map->num_stripes;
6089
		} else if (mirror_num) {
6090
			stripe_index = mirror_num - 1;
6091 6092 6093
		} else {
			mirror_num = 1;
		}
6094

C
Chris Mason 已提交
6095
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6096
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6097

6098
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6099 6100
		stripe_index *= map->sub_stripes;

6101
		if (need_full_stripe(op))
6102
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6103 6104
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6105
		else {
J
Jan Schmidt 已提交
6106
			int old_stripe_index = stripe_index;
6107 6108 6109
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6110
			mirror_num = stripe_index - old_stripe_index + 1;
6111
		}
D
David Woodhouse 已提交
6112

6113
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6114
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6115
			/* push stripe_nr back to the start of the full stripe */
6116
			stripe_nr = div64_u64(raid56_full_stripe_start,
6117
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6132
			stripe_nr = div_u64_rem(stripe_nr,
6133
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6134
			if (mirror_num > 1)
6135
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6136 6137

			/* We distribute the parity blocks across stripes */
6138 6139
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6140
			if (!need_full_stripe(op) && mirror_num <= 1)
6141
				mirror_num = 1;
D
David Woodhouse 已提交
6142
		}
6143 6144
	} else {
		/*
6145 6146 6147
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6148
		 */
6149 6150
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6151
		mirror_num = stripe_index + 1;
6152
	}
6153
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6154 6155
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6156 6157 6158 6159
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6160

6161
	num_alloc_stripes = num_stripes;
6162
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6163
		if (op == BTRFS_MAP_WRITE)
6164
			num_alloc_stripes <<= 1;
6165
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6166
			num_alloc_stripes++;
6167
		tgtdev_indexes = num_stripes;
6168
	}
6169

6170
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
L
Li Zefan 已提交
6171 6172 6173 6174
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
6175 6176 6177 6178 6179 6180 6181

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
		stripe_index++;
	}
L
Li Zefan 已提交
6182

6183
	/* build raid_map */
6184 6185
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6186
		u64 tmp;
6187
		unsigned rot;
6188 6189

		/* Work out the disk rotation on this stripe-set */
6190
		div_u64_rem(stripe_nr, num_stripes, &rot);
6191 6192

		/* Fill in the logical address of each stripe */
6193 6194
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6195 6196 6197 6198 6199 6200 6201 6202
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;

6203
		sort_parity_stripes(bbio, num_stripes);
6204
	}
L
Li Zefan 已提交
6205

6206
	if (need_full_stripe(op))
6207
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6208

6209
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6210
	    need_full_stripe(op)) {
6211 6212
		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
					  &max_errors);
6213 6214
	}

L
Li Zefan 已提交
6215
	*bbio_ret = bbio;
Z
Zhao Lei 已提交
6216
	bbio->map_type = map->type;
L
Li Zefan 已提交
6217 6218 6219
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
6232
out:
6233
	if (dev_replace_is_ongoing) {
6234 6235
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6236
		up_read(&dev_replace->rwsem);
6237
	}
6238
	free_extent_map(em);
L
Li Zefan 已提交
6239
	return ret;
6240 6241
}

6242
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6243
		      u64 logical, u64 *length,
6244
		      struct btrfs_bio **bbio_ret, int mirror_num)
6245
{
6246 6247 6248 6249
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
						     length, bbio_ret);

6250
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6251
				 mirror_num, 0);
6252 6253
}

6254
/* For Scrub/replace */
6255
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6256
		     u64 logical, u64 *length,
6257
		     struct btrfs_bio **bbio_ret)
6258
{
6259
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6260 6261
}

6262
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6263
{
6264 6265
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
6266
	bio_endio(bio);
6267

6268
	btrfs_put_bbio(bbio);
6269 6270
}

6271
static void btrfs_end_bio(struct bio *bio)
6272
{
6273
	struct btrfs_bio *bbio = bio->bi_private;
6274
	int is_orig_bio = 0;
6275

6276
	if (bio->bi_status) {
6277
		atomic_inc(&bbio->error);
6278 6279
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6280
			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6281

6282 6283 6284
			ASSERT(dev->bdev);
			if (bio_op(bio) == REQ_OP_WRITE)
				btrfs_dev_stat_inc_and_print(dev,
6285
						BTRFS_DEV_STAT_WRITE_ERRS);
6286 6287
			else if (!(bio->bi_opf & REQ_RAHEAD))
				btrfs_dev_stat_inc_and_print(dev,
6288
						BTRFS_DEV_STAT_READ_ERRS);
6289 6290
			if (bio->bi_opf & REQ_PREFLUSH)
				btrfs_dev_stat_inc_and_print(dev,
6291
						BTRFS_DEV_STAT_FLUSH_ERRS);
6292 6293
		}
	}
6294

6295
	if (bio == bbio->orig_bio)
6296 6297
		is_orig_bio = 1;

6298 6299
	btrfs_bio_counter_dec(bbio->fs_info);

6300
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6301 6302
		if (!is_orig_bio) {
			bio_put(bio);
6303
			bio = bbio->orig_bio;
6304
		}
6305

6306
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6307
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6308
		 * beyond the tolerance of the btrfs bio
6309
		 */
6310
		if (atomic_read(&bbio->error) > bbio->max_errors) {
6311
			bio->bi_status = BLK_STS_IOERR;
6312
		} else {
6313 6314 6315 6316
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6317
			bio->bi_status = BLK_STS_OK;
6318
		}
6319

6320
		btrfs_end_bbio(bbio, bio);
6321
	} else if (!is_orig_bio) {
6322 6323 6324 6325
		bio_put(bio);
	}
}

6326
static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6327
			      u64 physical, struct btrfs_device *dev)
6328
{
6329
	struct btrfs_fs_info *fs_info = bbio->fs_info;
6330 6331

	bio->bi_private = bbio;
6332
	btrfs_io_bio(bio)->device = dev;
6333
	bio->bi_end_io = btrfs_end_bio;
6334
	bio->bi_iter.bi_sector = physical >> 9;
6335 6336 6337
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6338 6339
		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
		dev->devid, bio->bi_iter.bi_size);
6340
	bio_set_dev(bio, dev->bdev);
6341

6342
	btrfs_bio_counter_inc_noblocked(fs_info);
6343

6344
	btrfsic_submit_bio(bio);
6345 6346 6347 6348 6349 6350
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6351
		/* Should be the original bio. */
6352 6353
		WARN_ON(bio != bbio->orig_bio);

6354
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6355
		bio->bi_iter.bi_sector = logical >> 9;
6356 6357 6358 6359
		if (atomic_read(&bbio->error) > bbio->max_errors)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6360
		btrfs_end_bbio(bbio, bio);
6361 6362 6363
	}
}

6364
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6365
			   int mirror_num)
6366 6367
{
	struct btrfs_device *dev;
6368
	struct bio *first_bio = bio;
6369
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6370 6371 6372
	u64 length = 0;
	u64 map_length;
	int ret;
6373 6374
	int dev_nr;
	int total_devs;
6375
	struct btrfs_bio *bbio = NULL;
6376

6377
	length = bio->bi_iter.bi_size;
6378
	map_length = length;
6379

6380
	btrfs_bio_counter_inc_blocked(fs_info);
6381
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
M
Mike Christie 已提交
6382
				&map_length, &bbio, mirror_num, 1);
6383
	if (ret) {
6384
		btrfs_bio_counter_dec(fs_info);
6385
		return errno_to_blk_status(ret);
6386
	}
6387

6388
	total_devs = bbio->num_stripes;
D
David Woodhouse 已提交
6389 6390 6391
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
6392
	bbio->fs_info = fs_info;
D
David Woodhouse 已提交
6393 6394
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

6395
	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
M
Mike Christie 已提交
6396
	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6397 6398
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
M
Mike Christie 已提交
6399
		if (bio_op(bio) == REQ_OP_WRITE) {
6400 6401
			ret = raid56_parity_write(fs_info, bio, bbio,
						  map_length);
D
David Woodhouse 已提交
6402
		} else {
6403 6404
			ret = raid56_parity_recover(fs_info, bio, bbio,
						    map_length, mirror_num, 1);
D
David Woodhouse 已提交
6405
		}
6406

6407
		btrfs_bio_counter_dec(fs_info);
6408
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6409 6410
	}

6411
	if (map_length < length) {
6412
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6413 6414
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6415 6416
		BUG();
	}
6417

6418
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6419
		dev = bbio->stripes[dev_nr].dev;
6420 6421
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6422 6423
		    (bio_op(first_bio) == REQ_OP_WRITE &&
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6424 6425 6426 6427
			bbio_error(bbio, first_bio, logical);
			continue;
		}

6428
		if (dev_nr < total_devs - 1)
6429
			bio = btrfs_bio_clone(first_bio);
6430
		else
6431
			bio = first_bio;
6432

6433
		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6434
	}
6435
	btrfs_bio_counter_dec(fs_info);
6436
	return BLK_STS_OK;
6437 6438
}

6439 6440 6441 6442 6443 6444 6445 6446 6447
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 *
 * If @seed is true, traverse through the seed devices.
 */
6448
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6449 6450
				       u64 devid, u8 *uuid, u8 *fsid,
				       bool seed)
6451
{
Y
Yan Zheng 已提交
6452
	struct btrfs_device *device;
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
	struct btrfs_fs_devices *seed_devs;

	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
		list_for_each_entry(device, &fs_devices->devices, dev_list) {
			if (device->devid == devid &&
			    (!uuid || memcmp(device->uuid, uuid,
					     BTRFS_UUID_SIZE) == 0))
				return device;
		}
	}
Y
Yan Zheng 已提交
6463

6464
	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
Y
Yan Zheng 已提交
6465
		if (!fsid ||
6466 6467
		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
			list_for_each_entry(device, &seed_devs->devices,
6468 6469 6470 6471 6472 6473
					    dev_list) {
				if (device->devid == devid &&
				    (!uuid || memcmp(device->uuid, uuid,
						     BTRFS_UUID_SIZE) == 0))
					return device;
			}
Y
Yan Zheng 已提交
6474 6475
		}
	}
6476

Y
Yan Zheng 已提交
6477
	return NULL;
6478 6479
}

6480
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6481 6482 6483
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
6484
	unsigned int nofs_flag;
6485

6486 6487 6488 6489 6490 6491 6492
	/*
	 * We call this under the chunk_mutex, so we want to use NOFS for this
	 * allocation, however we don't want to change btrfs_alloc_device() to
	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
	 * places.
	 */
	nofs_flag = memalloc_nofs_save();
6493
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6494
	memalloc_nofs_restore(nofs_flag);
6495
	if (IS_ERR(device))
6496
		return device;
6497 6498

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6499
	device->fs_devices = fs_devices;
6500
	fs_devices->num_devices++;
6501

6502
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6503
	fs_devices->missing_devices++;
6504

6505 6506 6507
	return device;
}

6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6518
 * on error.  Returned struct is not linked onto any lists and must be
6519
 * destroyed with btrfs_free_device.
6520 6521 6522 6523 6524 6525 6526 6527
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6528
	if (WARN_ON(!devid && !fs_info))
6529 6530
		return ERR_PTR(-EINVAL);

6531
	dev = __alloc_device(fs_info);
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6542
			btrfs_free_device(dev);
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

	return dev;
}

6556
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6557
					u64 devid, u8 *uuid, bool error)
6558
{
6559 6560 6561 6562 6563 6564
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6565 6566
}

6567 6568 6569 6570
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
	int index = btrfs_bg_flags_to_raid_index(type);
	int ncopies = btrfs_raid_array[index].ncopies;
6571
	const int nparity = btrfs_raid_array[index].nparity;
6572 6573
	int data_stripes;

6574 6575 6576
	if (nparity)
		data_stripes = num_stripes - nparity;
	else
6577
		data_stripes = num_stripes / ncopies;
6578

6579 6580 6581
	return div_u64(chunk_len, data_stripes);
}

6582
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6583 6584
			  struct btrfs_chunk *chunk)
{
6585
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6586
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

6601 6602 6603 6604 6605
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6606
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6607 6608 6609
		if (ret)
			return ret;
	}
6610

6611 6612 6613
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
6614 6615 6616 6617 6618 6619 6620 6621 6622

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6623
	em = alloc_extent_map();
6624 6625
	if (!em)
		return -ENOMEM;
6626
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6627 6628 6629 6630 6631
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6632
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6633
	em->map_lookup = map;
6634 6635
	em->start = logical;
	em->len = length;
6636
	em->orig_start = 0;
6637
	em->block_start = 0;
C
Chris Mason 已提交
6638
	em->block_len = em->len;
6639

6640 6641 6642 6643 6644
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
6645
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6646
	map->verified_stripes = 0;
6647 6648
	em->orig_block_len = calc_stripe_length(map->type, em->len,
						map->num_stripes);
6649 6650 6651 6652
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6653 6654 6655
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6656
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6657
							devid, uuid, NULL, true);
6658
		if (!map->stripes[i].dev &&
6659
		    !btrfs_test_opt(fs_info, DEGRADED)) {
6660
			free_extent_map(em);
6661
			btrfs_report_missing_device(fs_info, devid, uuid, true);
6662
			return -ENOENT;
6663
		}
6664 6665
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6666 6667
				add_missing_dev(fs_info->fs_devices, devid,
						uuid);
6668
			if (IS_ERR(map->stripes[i].dev)) {
6669
				free_extent_map(em);
6670 6671 6672 6673
				btrfs_err(fs_info,
					"failed to init missing dev %llu: %ld",
					devid, PTR_ERR(map->stripes[i].dev));
				return PTR_ERR(map->stripes[i].dev);
6674
			}
6675
			btrfs_report_missing_device(fs_info, devid, uuid, false);
6676
		}
6677 6678 6679
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));

6680 6681
	}

6682 6683 6684
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
6685 6686 6687 6688 6689
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
6690 6691
	free_extent_map(em);

6692
	return ret;
6693 6694
}

6695
static void fill_device_from_item(struct extent_buffer *leaf,
6696 6697 6698 6699 6700 6701
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6702 6703
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6704
	device->commit_total_bytes = device->disk_total_bytes;
6705
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6706
	device->commit_bytes_used = device->bytes_used;
6707 6708 6709 6710
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6711
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6712
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6713

6714
	ptr = btrfs_device_uuid(dev_item);
6715
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6716 6717
}

6718
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6719
						  u8 *fsid)
Y
Yan Zheng 已提交
6720 6721 6722 6723
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6724
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
6725
	ASSERT(fsid);
Y
Yan Zheng 已提交
6726

6727
	/* This will match only for multi-device seed fs */
6728
	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6729
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6730 6731
			return fs_devices;

Y
Yan Zheng 已提交
6732

6733
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
6734
	if (!fs_devices) {
6735
		if (!btrfs_test_opt(fs_info, DEGRADED))
6736 6737
			return ERR_PTR(-ENOENT);

6738
		fs_devices = alloc_fs_devices(fsid, NULL);
6739 6740 6741
		if (IS_ERR(fs_devices))
			return fs_devices;

6742
		fs_devices->seeding = true;
6743 6744
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
6745
	}
Y
Yan Zheng 已提交
6746

6747 6748 6749 6750
	/*
	 * Upon first call for a seed fs fsid, just create a private copy of the
	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
	 */
Y
Yan Zheng 已提交
6751
	fs_devices = clone_fs_devices(fs_devices);
6752 6753
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
6754

6755
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6756 6757
	if (ret) {
		free_fs_devices(fs_devices);
6758
		fs_devices = ERR_PTR(ret);
Y
Yan Zheng 已提交
6759
		goto out;
6760
	}
Y
Yan Zheng 已提交
6761 6762

	if (!fs_devices->seeding) {
6763
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
6764
		free_fs_devices(fs_devices);
6765
		fs_devices = ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
6766 6767 6768
		goto out;
	}

6769
	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
Y
Yan Zheng 已提交
6770
out:
6771
	return fs_devices;
Y
Yan Zheng 已提交
6772 6773
}

6774
static int read_one_dev(struct extent_buffer *leaf,
6775 6776
			struct btrfs_dev_item *dev_item)
{
6777
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6778
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6779 6780 6781
	struct btrfs_device *device;
	u64 devid;
	int ret;
6782
	u8 fs_uuid[BTRFS_FSID_SIZE];
6783 6784
	u8 dev_uuid[BTRFS_UUID_SIZE];

6785
	devid = btrfs_device_id(leaf, dev_item);
6786
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6787
			   BTRFS_UUID_SIZE);
6788
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6789
			   BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
6790

6791
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6792
		fs_devices = open_seed_devices(fs_info, fs_uuid);
6793 6794
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
6795 6796
	}

6797
	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6798
				   fs_uuid, true);
6799
	if (!device) {
6800
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6801 6802
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
6803
			return -ENOENT;
6804
		}
Y
Yan Zheng 已提交
6805

6806
		device = add_missing_dev(fs_devices, devid, dev_uuid);
6807 6808 6809 6810 6811 6812
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
6813
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6814
	} else {
6815
		if (!device->bdev) {
6816 6817 6818
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
6819
				return -ENOENT;
6820 6821 6822
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
6823
		}
6824

6825 6826
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6827 6828 6829 6830 6831 6832
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6833
			device->fs_devices->missing_devices++;
6834
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
6835
		}
6836 6837 6838

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
6839 6840
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
6851 6852
	}

6853
	if (device->fs_devices != fs_info->fs_devices) {
6854
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
6855 6856 6857
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
6858
	}
6859 6860

	fill_device_from_item(leaf, dev_item, device);
6861
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6862
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6863
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
6864
		device->fs_devices->total_rw_bytes += device->total_bytes;
6865 6866
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
6867
	}
6868 6869 6870 6871
	ret = 0;
	return ret;
}

6872
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6873
{
6874
	struct btrfs_root *root = fs_info->tree_root;
6875
	struct btrfs_super_block *super_copy = fs_info->super_copy;
6876
	struct extent_buffer *sb;
6877 6878
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
6879 6880
	u8 *array_ptr;
	unsigned long sb_array_offset;
6881
	int ret = 0;
6882 6883 6884
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
6885
	u32 cur_offset;
6886
	u64 type;
6887
	struct btrfs_key key;
6888

6889
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6890 6891 6892 6893 6894
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
6895
	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6896 6897
	if (IS_ERR(sb))
		return PTR_ERR(sb);
6898
	set_extent_buffer_uptodate(sb);
6899
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6900
	/*
6901
	 * The sb extent buffer is artificial and just used to read the system array.
6902
	 * set_extent_buffer_uptodate() call does not properly mark all it's
6903 6904 6905 6906 6907 6908 6909 6910 6911
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
6912
	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6913
		SetPageUptodate(sb->pages[0]);
6914

6915
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6916 6917
	array_size = btrfs_super_sys_array_size(super_copy);

6918 6919 6920
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
6921

6922 6923
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
6924 6925 6926 6927
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

6928 6929
		btrfs_disk_key_to_cpu(&key, disk_key);

6930 6931 6932
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6933

6934 6935 6936 6937 6938 6939 6940
		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
			ret = -EIO;
			break;
		}
6941

6942 6943 6944 6945 6946 6947 6948 6949
		chunk = (struct btrfs_chunk *)sb_array_offset;
		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
6950

6951 6952 6953 6954 6955 6956 6957 6958
		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
		if (!num_stripes) {
			btrfs_err(fs_info,
			"invalid number of stripes %u in sys_array at offset %u",
				  num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
6959

6960 6961
		type = btrfs_chunk_type(sb, chunk);
		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6962
			btrfs_err(fs_info,
6963 6964
			"invalid chunk type %llu in sys_array at offset %u",
				  type, cur_offset);
6965 6966
			ret = -EIO;
			break;
6967
		}
6968 6969 6970 6971 6972 6973 6974 6975 6976

		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;

		ret = read_one_chunk(&key, sb, chunk);
		if (ret)
			break;

6977 6978 6979
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
6980
	}
6981
	clear_extent_buffer_uptodate(sb);
6982
	free_extent_buffer_stale(sb);
6983
	return ret;
6984 6985

out_short_read:
6986
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6987
			len, cur_offset);
6988
	clear_extent_buffer_uptodate(sb);
6989
	free_extent_buffer_stale(sb);
6990
	return -EIO;
6991 6992
}

6993 6994 6995
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
6996 6997
 * If the @failing_dev is specified, it's accounted as missing.
 *
6998 6999 7000
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
7001 7002
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
7003
{
7004
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7005 7006 7007 7008
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7009 7010 7011
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7030 7031
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7032 7033
			    dev->last_flush_error)
				missing++;
7034 7035
			else if (failing_dev && failing_dev == dev)
				missing++;
7036 7037
		}
		if (missing > max_tolerated) {
7038 7039
			if (!failing_dev)
				btrfs_warn(fs_info,
7040
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7041 7042 7043 7044 7045 7046 7047 7048
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7049 7050
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7051
					   (u64)(-1) - next_start);
7052
		read_unlock(&map_tree->lock);
7053 7054 7055 7056 7057
	}
out:
	return ret;
}

7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
static void readahead_tree_node_children(struct extent_buffer *node)
{
	int i;
	const int nr_items = btrfs_header_nritems(node);

	for (i = 0; i < nr_items; i++) {
		u64 start;

		start = btrfs_node_blockptr(node, i);
		readahead_tree_block(node->fs_info, start);
	}
}

7071
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7072
{
7073
	struct btrfs_root *root = fs_info->chunk_root;
7074 7075 7076 7077 7078 7079
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7080
	u64 total_dev = 0;
7081
	u64 last_ra_node = 0;
7082 7083 7084 7085 7086

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7087 7088 7089 7090
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7091 7092
	mutex_lock(&uuid_mutex);

7093 7094 7095 7096 7097 7098 7099 7100
	/*
	 * It is possible for mount and umount to race in such a way that
	 * we execute this code path, but open_fs_devices failed to clear
	 * total_rw_bytes. We certainly want it cleared before reading the
	 * device items, so clear it here.
	 */
	fs_info->fs_devices->total_rw_bytes = 0;

7101 7102 7103 7104 7105
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7106 7107 7108 7109 7110
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7111 7112
	if (ret < 0)
		goto error;
C
Chris Mason 已提交
7113
	while (1) {
7114 7115
		struct extent_buffer *node;

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
		/*
		 * The nodes on level 1 are not locked but we don't need to do
		 * that during mount time as nothing else can access the tree
		 */
		node = path->nodes[1];
		if (node) {
			if (last_ra_node != node->start) {
				readahead_tree_node_children(node);
				last_ra_node = node->start;
			}
		}
7137
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7138 7139 7140
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7141
						  struct btrfs_dev_item);
7142
			ret = read_one_dev(leaf, dev_item);
7143 7144
			if (ret)
				goto error;
7145
			total_dev++;
7146 7147 7148
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7149
			mutex_lock(&fs_info->chunk_mutex);
7150
			ret = read_one_chunk(&found_key, leaf, chunk);
7151
			mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
7152 7153
			if (ret)
				goto error;
7154 7155 7156
		}
		path->slots[0]++;
	}
7157 7158 7159 7160 7161

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7162 7163
	if (total_dev != fs_info->fs_devices->total_devices) {
		btrfs_err(fs_info,
7164
	   "super_num_devices %llu mismatch with num_devices %llu found here",
7165
			  btrfs_super_num_devices(fs_info->super_copy),
7166 7167 7168 7169
			  total_dev);
		ret = -EINVAL;
		goto error;
	}
7170 7171 7172
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7173
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7174 7175
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7176 7177 7178
		ret = -EINVAL;
		goto error;
	}
7179 7180
	ret = 0;
error:
7181 7182
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7183
	btrfs_free_path(path);
7184 7185
	return ret;
}
7186

7187 7188
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
7189
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7190 7191
	struct btrfs_device *device;

7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
	fs_devices->fs_info = fs_info;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list)
		device->fs_info = fs_info;
	mutex_unlock(&fs_devices->device_list_mutex);

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
		mutex_lock(&seed_devs->device_list_mutex);
		list_for_each_entry(device, &seed_devs->devices, dev_list)
7202
			device->fs_info = fs_info;
7203
		mutex_unlock(&seed_devs->device_list_mutex);
7204

7205
		seed_devs->fs_info = fs_info;
7206
	}
7207 7208
}

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
				 const struct btrfs_dev_stats_item *ptr,
				 int index)
{
	u64 val;

	read_extent_buffer(eb, &val,
			   offsetof(struct btrfs_dev_stats_item, values) +
			    ((unsigned long)ptr) + (index * sizeof(u64)),
			   sizeof(val));
	return val;
}

static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
				      struct btrfs_dev_stats_item *ptr,
				      int index, u64 val)
{
	write_extent_buffer(eb, &val,
			    offsetof(struct btrfs_dev_stats_item, values) +
			     ((unsigned long)ptr) + (index * sizeof(u64)),
			    sizeof(val));
}

7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_key key;
	struct btrfs_root *dev_root = fs_info->dev_root;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct extent_buffer *eb;
	int slot;
	int ret = 0;
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
	int i;

	path = btrfs_alloc_path();
A
Anand Jain 已提交
7245 7246
	if (!path)
		return -ENOMEM;
7247 7248 7249 7250 7251 7252

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		int item_size;
		struct btrfs_dev_stats_item *ptr;

7253 7254
		key.objectid = BTRFS_DEV_STATS_OBJECTID;
		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7255 7256 7257
		key.offset = device->devid;
		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
		if (ret) {
7258 7259
			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
				btrfs_dev_stat_set(device, i, 0);
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
			device->dev_stats_valid = 1;
			btrfs_release_path(path);
			continue;
		}
		slot = path->slots[0];
		eb = path->nodes[0];
		item_size = btrfs_item_size_nr(eb, slot);

		ptr = btrfs_item_ptr(eb, slot,
				     struct btrfs_dev_stats_item);

		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (item_size >= (1 + i) * sizeof(__le64))
				btrfs_dev_stat_set(device, i,
					btrfs_dev_stats_value(eb, ptr, i));
			else
7276
				btrfs_dev_stat_set(device, i, 0);
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
		}

		device->dev_stats_valid = 1;
		btrfs_dev_stat_print_on_load(device);
		btrfs_release_path(path);
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7292
	struct btrfs_fs_info *fs_info = trans->fs_info;
7293
	struct btrfs_root *dev_root = fs_info->dev_root;
7294 7295 7296 7297 7298 7299 7300
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7301 7302
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7303 7304 7305
	key.offset = device->devid;

	path = btrfs_alloc_path();
7306 7307
	if (!path)
		return -ENOMEM;
7308 7309
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7310
		btrfs_warn_in_rcu(fs_info,
7311
			"error %d while searching for dev_stats item for device %s",
7312
			      ret, rcu_str_deref(device->name));
7313 7314 7315 7316 7317 7318 7319 7320
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7321
			btrfs_warn_in_rcu(fs_info,
7322
				"delete too small dev_stats item for device %s failed %d",
7323
				      rcu_str_deref(device->name), ret);
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7335
			btrfs_warn_in_rcu(fs_info,
7336 7337
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7357
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7358
{
7359
	struct btrfs_fs_info *fs_info = trans->fs_info;
7360 7361
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7362
	int stats_cnt;
7363 7364 7365 7366
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7367 7368
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7369 7370
			continue;

7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7385
		ret = update_dev_stat_item(trans, device);
7386
		if (!ret)
7387
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7388 7389 7390 7391 7392 7393
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7394 7395 7396 7397 7398 7399
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7400
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7401
{
7402 7403
	if (!dev->dev_stats_valid)
		return;
7404
	btrfs_err_rl_in_rcu(dev->fs_info,
7405
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7406
			   rcu_str_deref(dev->name),
7407 7408 7409
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7410 7411
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7412
}
7413

7414 7415
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7416 7417 7418 7419 7420 7421 7422 7423
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7424
	btrfs_info_in_rcu(dev->fs_info,
7425
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7426
	       rcu_str_deref(dev->name),
7427 7428 7429 7430 7431 7432 7433
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7434
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7435
			struct btrfs_ioctl_get_dev_stats *stats)
7436 7437
{
	struct btrfs_device *dev;
7438
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7439 7440 7441
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7442 7443
	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
				true);
7444 7445 7446
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7447
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7448
		return -ENODEV;
7449
	} else if (!dev->dev_stats_valid) {
7450
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7451
		return -ENODEV;
7452
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7453 7454 7455 7456 7457
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
7458
				btrfs_dev_stat_set(dev, i, 0);
7459
		}
7460 7461
		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
			   current->comm, task_pid_nr(current));
7462 7463 7464 7465 7466 7467 7468 7469 7470
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7471

7472
/*
7473 7474 7475 7476 7477
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7478
 */
7479
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7480 7481 7482
{
	struct btrfs_device *curr, *next;

7483
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7484

7485
	if (list_empty(&trans->dev_update_list))
7486 7487
		return;

7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7499
	}
7500
	mutex_unlock(&trans->fs_info->chunk_mutex);
7501
}
7502

7503 7504 7505 7506 7507
/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7508 7509 7510
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7511
}
7512 7513 7514 7515 7516 7517 7518



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
7519
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7520 7521
	struct extent_map *em;
	struct map_lookup *map;
7522
	struct btrfs_device *dev;
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
7572 7573

	/* Make sure no dev extent is beyond device bondary */
7574
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7575 7576 7577 7578 7579
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
7580 7581 7582

	/* It's possible this device is a dummy for seed device */
	if (dev->disk_total_bytes == 0) {
7583 7584 7585 7586 7587
		struct btrfs_fs_devices *devs;

		devs = list_first_entry(&fs_info->fs_devices->seed_list,
					struct btrfs_fs_devices, seed_list);
		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7588 7589 7590 7591 7592 7593 7594 7595
		if (!dev) {
			btrfs_err(fs_info, "failed to find seed devid %llu",
				  devid);
			ret = -EUCLEAN;
			goto out;
		}
	}

7596 7597 7598 7599 7600 7601 7602 7603
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
7604 7605 7606 7607 7608 7609 7610
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
7611
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7612 7613 7614 7615 7616
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
7617
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
7646 7647
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

7692 7693 7694 7695 7696 7697 7698 7699 7700
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

7701 7702 7703 7704
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
7705 7706 7707
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}