gfp.h 22.5 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef __LINUX_GFP_H
#define __LINUX_GFP_H

5
#include <linux/mmdebug.h>
L
Linus Torvalds 已提交
6 7 8
#include <linux/mmzone.h>
#include <linux/stddef.h>
#include <linux/linkage.h>
9
#include <linux/topology.h>
L
Linus Torvalds 已提交
10 11 12

struct vm_area_struct;

13 14
/*
 * In case of changes, please don't forget to update
15
 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
16 17
 */

18 19 20 21 22
/* Plain integer GFP bitmasks. Do not use this directly. */
#define ___GFP_DMA		0x01u
#define ___GFP_HIGHMEM		0x02u
#define ___GFP_DMA32		0x04u
#define ___GFP_MOVABLE		0x08u
23
#define ___GFP_RECLAIMABLE	0x10u
24 25 26
#define ___GFP_HIGH		0x20u
#define ___GFP_IO		0x40u
#define ___GFP_FS		0x80u
27
#define ___GFP_WRITE		0x100u
28
#define ___GFP_NOWARN		0x200u
29
#define ___GFP_RETRY_MAYFAIL	0x400u
30 31
#define ___GFP_NOFAIL		0x800u
#define ___GFP_NORETRY		0x1000u
32
#define ___GFP_MEMALLOC		0x2000u
33 34 35 36 37
#define ___GFP_COMP		0x4000u
#define ___GFP_ZERO		0x8000u
#define ___GFP_NOMEMALLOC	0x10000u
#define ___GFP_HARDWALL		0x20000u
#define ___GFP_THISNODE		0x40000u
38
#define ___GFP_ATOMIC		0x80000u
39
#define ___GFP_ACCOUNT		0x100000u
40 41
#define ___GFP_DIRECT_RECLAIM	0x200000u
#define ___GFP_KSWAPD_RECLAIM	0x400000u
42
#ifdef CONFIG_LOCKDEP
43
#define ___GFP_NOLOCKDEP	0x800000u
44 45 46
#else
#define ___GFP_NOLOCKDEP	0
#endif
47
/* If the above are modified, __GFP_BITS_SHIFT may need updating */
48

L
Linus Torvalds 已提交
49
/*
50
 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
51 52
 *
 * Do not put any conditional on these. If necessary modify the definitions
53
 * without the underscores and use them consistently. The definitions here may
54
 * be used in bit comparisons.
L
Linus Torvalds 已提交
55
 */
56 57 58
#define __GFP_DMA	((__force gfp_t)___GFP_DMA)
#define __GFP_HIGHMEM	((__force gfp_t)___GFP_HIGHMEM)
#define __GFP_DMA32	((__force gfp_t)___GFP_DMA32)
59
#define __GFP_MOVABLE	((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
60
#define GFP_ZONEMASK	(__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
61

L
Linus Torvalds 已提交
62
/*
63
 * Page mobility and placement hints
L
Linus Torvalds 已提交
64
 *
65 66 67
 * These flags provide hints about how mobile the page is. Pages with similar
 * mobility are placed within the same pageblocks to minimise problems due
 * to external fragmentation.
L
Linus Torvalds 已提交
68
 *
69 70
 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
 *   moved by page migration during memory compaction or can be reclaimed.
L
Linus Torvalds 已提交
71
 *
72 73 74 75 76 77
 * __GFP_RECLAIMABLE is used for slab allocations that specify
 *   SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
 *
 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
 *   these pages will be spread between local zones to avoid all the dirty
 *   pages being in one zone (fair zone allocation policy).
78
 *
79 80 81 82
 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
 *
 * __GFP_THISNODE forces the allocation to be satisified from the requested
 *   node with no fallbacks or placement policy enforcements.
83
 *
84
 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
L
Linus Torvalds 已提交
85
 */
86 87 88 89
#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
#define __GFP_WRITE	((__force gfp_t)___GFP_WRITE)
#define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
#define __GFP_THISNODE	((__force gfp_t)___GFP_THISNODE)
90
#define __GFP_ACCOUNT	((__force gfp_t)___GFP_ACCOUNT)
A
Andrea Arcangeli 已提交
91

92
/*
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 * Watermark modifiers -- controls access to emergency reserves
 *
 * __GFP_HIGH indicates that the caller is high-priority and that granting
 *   the request is necessary before the system can make forward progress.
 *   For example, creating an IO context to clean pages.
 *
 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
 *   high priority. Users are typically interrupt handlers. This may be
 *   used in conjunction with __GFP_HIGH
 *
 * __GFP_MEMALLOC allows access to all memory. This should only be used when
 *   the caller guarantees the allocation will allow more memory to be freed
 *   very shortly e.g. process exiting or swapping. Users either should
 *   be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 *
 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 *   This takes precedence over the __GFP_MEMALLOC flag if both are set.
110
 */
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#define __GFP_ATOMIC	((__force gfp_t)___GFP_ATOMIC)
#define __GFP_HIGH	((__force gfp_t)___GFP_HIGH)
#define __GFP_MEMALLOC	((__force gfp_t)___GFP_MEMALLOC)
#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)

/*
 * Reclaim modifiers
 *
 * __GFP_IO can start physical IO.
 *
 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 *   allocator recursing into the filesystem which might already be holding
 *   locks.
 *
 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 *   This flag can be cleared to avoid unnecessary delays when a fallback
 *   option is available.
 *
 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 *   the low watermark is reached and have it reclaim pages until the high
 *   watermark is reached. A caller may wish to clear this flag when fallback
 *   options are available and the reclaim is likely to disrupt the system. The
 *   canonical example is THP allocation where a fallback is cheap but
 *   reclaim/compaction may cause indirect stalls.
 *
 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 *
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
 * The default allocator behavior depends on the request size. We have a concept
 * of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER).
 * !costly allocations are too essential to fail so they are implicitly
 * non-failing by default (with some exceptions like OOM victims might fail so
 * the caller still has to check for failures) while costly requests try to be
 * not disruptive and back off even without invoking the OOM killer.
 * The following three modifiers might be used to override some of these
 * implicit rules
 *
 * __GFP_NORETRY: The VM implementation will try only very lightweight
 *   memory direct reclaim to get some memory under memory pressure (thus
 *   it can sleep). It will avoid disruptive actions like OOM killer. The
 *   caller must handle the failure which is quite likely to happen under
 *   heavy memory pressure. The flag is suitable when failure can easily be
 *   handled at small cost, such as reduced throughput
 *
 * __GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
 *   procedures that have previously failed if there is some indication
 *   that progress has been made else where.  It can wait for other
 *   tasks to attempt high level approaches to freeing memory such as
 *   compaction (which removes fragmentation) and page-out.
 *   There is still a definite limit to the number of retries, but it is
 *   a larger limit than with __GFP_NORETRY.
 *   Allocations with this flag may fail, but only when there is
 *   genuinely little unused memory. While these allocations do not
 *   directly trigger the OOM killer, their failure indicates that
 *   the system is likely to need to use the OOM killer soon.  The
 *   caller must handle failure, but can reasonably do so by failing
 *   a higher-level request, or completing it only in a much less
 *   efficient manner.
 *   If the allocation does fail, and the caller is in a position to
 *   free some non-essential memory, doing so could benefit the system
 *   as a whole.
171 172
 *
 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
173 174 175 176 177 178 179 180
 *   cannot handle allocation failures. The allocation could block
 *   indefinitely but will never return with failure. Testing for
 *   failure is pointless.
 *   New users should be evaluated carefully (and the flag should be
 *   used only when there is no reasonable failure policy) but it is
 *   definitely preferable to use the flag rather than opencode endless
 *   loop around allocator.
 *   Using this flag for costly allocations is _highly_ discouraged.
181 182 183
 */
#define __GFP_IO	((__force gfp_t)___GFP_IO)
#define __GFP_FS	((__force gfp_t)___GFP_FS)
184 185
#define __GFP_DIRECT_RECLAIM	((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
#define __GFP_KSWAPD_RECLAIM	((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
186
#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
187
#define __GFP_RETRY_MAYFAIL	((__force gfp_t)___GFP_RETRY_MAYFAIL)
188 189
#define __GFP_NOFAIL	((__force gfp_t)___GFP_NOFAIL)
#define __GFP_NORETRY	((__force gfp_t)___GFP_NORETRY)
190

V
Vegard Nossum 已提交
191
/*
192 193 194 195 196 197 198
 * Action modifiers
 *
 * __GFP_NOWARN suppresses allocation failure reports.
 *
 * __GFP_COMP address compound page metadata.
 *
 * __GFP_ZERO returns a zeroed page on success.
V
Vegard Nossum 已提交
199
 */
200 201 202
#define __GFP_NOWARN	((__force gfp_t)___GFP_NOWARN)
#define __GFP_COMP	((__force gfp_t)___GFP_COMP)
#define __GFP_ZERO	((__force gfp_t)___GFP_ZERO)
V
Vegard Nossum 已提交
203

204 205 206
/* Disable lockdep for GFP context tracking */
#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)

207
/* Room for N __GFP_FOO bits */
208
#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP))
A
Al Viro 已提交
209
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
L
Linus Torvalds 已提交
210

211
/*
212 213 214 215 216 217 218 219 220 221
 * Useful GFP flag combinations that are commonly used. It is recommended
 * that subsystems start with one of these combinations and then set/clear
 * __GFP_FOO flags as necessary.
 *
 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
 *   watermark is applied to allow access to "atomic reserves"
 *
 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
 *   ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
 *
222 223 224
 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
 *   accounted to kmemcg.
 *
225 226 227 228 229
 * GFP_NOWAIT is for kernel allocations that should not stall for direct
 *   reclaim, start physical IO or use any filesystem callback.
 *
 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
 *   that do not require the starting of any physical IO.
230 231 232 233
 *   Please try to avoid using this flag directly and instead use
 *   memalloc_noio_{save,restore} to mark the whole scope which cannot
 *   perform any IO with a short explanation why. All allocation requests
 *   will inherit GFP_NOIO implicitly.
234 235
 *
 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
236 237 238 239
 *   Please try to avoid using this flag directly and instead use
 *   memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
 *   recurse into the FS layer with a short explanation why. All allocation
 *   requests will inherit GFP_NOFS implicitly.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
 *
 * GFP_USER is for userspace allocations that also need to be directly
 *   accessibly by the kernel or hardware. It is typically used by hardware
 *   for buffers that are mapped to userspace (e.g. graphics) that hardware
 *   still must DMA to. cpuset limits are enforced for these allocations.
 *
 * GFP_DMA exists for historical reasons and should be avoided where possible.
 *   The flags indicates that the caller requires that the lowest zone be
 *   used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
 *   it would require careful auditing as some users really require it and
 *   others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
 *   lowest zone as a type of emergency reserve.
 *
 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
 *   address.
 *
 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
 *   do not need to be directly accessible by the kernel but that cannot
 *   move once in use. An example may be a hardware allocation that maps
 *   data directly into userspace but has no addressing limitations.
 *
 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
 *   need direct access to but can use kmap() when access is required. They
 *   are expected to be movable via page reclaim or page migration. Typically,
 *   pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
 *
266 267 268 269 270
 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
 *   compound allocations that will generally fail quickly if memory is not
 *   available and will not wake kswapd/kcompactd on failure. The _LIGHT
 *   version does not attempt reclaim/compaction at all and is by default used
 *   in page fault path, while the non-light is used by khugepaged.
271 272
 */
#define GFP_ATOMIC	(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
273
#define GFP_KERNEL	(__GFP_RECLAIM | __GFP_IO | __GFP_FS)
274
#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
275
#define GFP_NOWAIT	(__GFP_KSWAPD_RECLAIM)
276 277 278
#define GFP_NOIO	(__GFP_RECLAIM)
#define GFP_NOFS	(__GFP_RECLAIM | __GFP_IO)
#define GFP_USER	(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
279 280
#define GFP_DMA		__GFP_DMA
#define GFP_DMA32	__GFP_DMA32
281 282
#define GFP_HIGHUSER	(GFP_USER | __GFP_HIGHMEM)
#define GFP_HIGHUSER_MOVABLE	(GFP_HIGHUSER | __GFP_MOVABLE)
283 284 285
#define GFP_TRANSHUGE_LIGHT	((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
			 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
#define GFP_TRANSHUGE	(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
L
Linus Torvalds 已提交
286

287
/* Convert GFP flags to their corresponding migrate type */
288
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
289
#define GFP_MOVABLE_SHIFT 3
C
Christoph Lameter 已提交
290

291
static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
292
{
293 294 295
	VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
	BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
	BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
296 297 298 299 300

	if (unlikely(page_group_by_mobility_disabled))
		return MIGRATE_UNMOVABLE;

	/* Group based on mobility */
301
	return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
302
}
303 304
#undef GFP_MOVABLE_MASK
#undef GFP_MOVABLE_SHIFT
A
Andi Kleen 已提交
305

306 307
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
{
308
	return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
309 310
}

311 312 313 314 315 316
#ifdef CONFIG_HIGHMEM
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
#else
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
#endif

317
#ifdef CONFIG_ZONE_DMA
318 319 320
#define OPT_ZONE_DMA ZONE_DMA
#else
#define OPT_ZONE_DMA ZONE_NORMAL
321
#endif
322

323
#ifdef CONFIG_ZONE_DMA32
324 325 326
#define OPT_ZONE_DMA32 ZONE_DMA32
#else
#define OPT_ZONE_DMA32 ZONE_NORMAL
327
#endif
328 329 330

/*
 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
H
Hao Lee 已提交
331 332
 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
 * bits long and there are 16 of them to cover all possible combinations of
333
 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
334 335 336 337
 *
 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
 * But GFP_MOVABLE is not only a zone specifier but also an allocation
 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
338
 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
339 340 341 342 343 344 345
 *
 *       bit       result
 *       =================
 *       0x0    => NORMAL
 *       0x1    => DMA or NORMAL
 *       0x2    => HIGHMEM or NORMAL
 *       0x3    => BAD (DMA+HIGHMEM)
346
 *       0x4    => DMA32 or NORMAL
347 348 349 350 351 352 353
 *       0x5    => BAD (DMA+DMA32)
 *       0x6    => BAD (HIGHMEM+DMA32)
 *       0x7    => BAD (HIGHMEM+DMA32+DMA)
 *       0x8    => NORMAL (MOVABLE+0)
 *       0x9    => DMA or NORMAL (MOVABLE+DMA)
 *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
 *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
354
 *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
355 356 357 358
 *       0xd    => BAD (MOVABLE+DMA32+DMA)
 *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
 *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
 *
359
 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
360 361
 */

362 363 364 365 366 367 368 369 370
#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
/* ZONE_DEVICE is not a valid GFP zone specifier */
#define GFP_ZONES_SHIFT 2
#else
#define GFP_ZONES_SHIFT ZONES_SHIFT
#endif

#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
371 372 373
#endif

#define GFP_ZONE_TABLE ( \
374 375 376 377 378 379 380 381
	(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)				       \
	| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)		       \
	| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)	       \
	| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)		       \
	| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)		       \
	| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
	| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
	| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
382 383 384
)

/*
385
 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
386 387 388 389 390
 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
 * entry starting with bit 0. Bit is set if the combination is not
 * allowed.
 */
#define GFP_ZONE_BAD ( \
391 392 393 394 395 396 397 398
	1 << (___GFP_DMA | ___GFP_HIGHMEM)				      \
	| 1 << (___GFP_DMA | ___GFP_DMA32)				      \
	| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)				      \
	| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)		      \
	| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)		      \
	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)		      \
	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)		      \
	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
399 400 401 402 403
)

static inline enum zone_type gfp_zone(gfp_t flags)
{
	enum zone_type z;
404
	int bit = (__force int) (flags & GFP_ZONEMASK);
405

406 407
	z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
					 ((1 << GFP_ZONES_SHIFT) - 1);
408
	VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
409
	return z;
410 411
}

L
Linus Torvalds 已提交
412 413 414 415 416 417 418
/*
 * There is only one page-allocator function, and two main namespaces to
 * it. The alloc_page*() variants return 'struct page *' and as such
 * can allocate highmem pages, the *get*page*() variants return
 * virtual kernel addresses to the allocated page(s).
 */

419 420
static inline int gfp_zonelist(gfp_t flags)
{
421 422 423 424 425
#ifdef CONFIG_NUMA
	if (unlikely(flags & __GFP_THISNODE))
		return ZONELIST_NOFALLBACK;
#endif
	return ZONELIST_FALLBACK;
426 427
}

L
Linus Torvalds 已提交
428 429 430
/*
 * We get the zone list from the current node and the gfp_mask.
 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
431 432
 * There are two zonelists per node, one for all zones with memory and
 * one containing just zones from the node the zonelist belongs to.
L
Linus Torvalds 已提交
433 434 435 436
 *
 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
 * optimized to &contig_page_data at compile-time.
 */
437 438
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
{
439
	return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
440
}
L
Linus Torvalds 已提交
441 442 443 444

#ifndef HAVE_ARCH_FREE_PAGE
static inline void arch_free_page(struct page *page, int order) { }
#endif
N
Nick Piggin 已提交
445 446 447
#ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }
#endif
L
Linus Torvalds 已提交
448

449
struct page *
450 451
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask);
452 453

static inline struct page *
454
__alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid)
455
{
456
	return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL);
457 458
}

459 460 461 462 463 464
/*
 * Allocate pages, preferring the node given as nid. The node must be valid and
 * online. For more general interface, see alloc_pages_node().
 */
static inline struct page *
__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
465
{
466
	VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
467
	VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
468

469
	return __alloc_pages(gfp_mask, order, nid);
L
Linus Torvalds 已提交
470 471
}

472 473
/*
 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
474 475
 * prefer the current CPU's closest node. Otherwise node must be valid and
 * online.
476 477
 */
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
478 479
						unsigned int order)
{
480
	if (nid == NUMA_NO_NODE)
481
		nid = numa_mem_id();
482

483
	return __alloc_pages_node(nid, gfp_mask, order);
484 485
}

L
Linus Torvalds 已提交
486
#ifdef CONFIG_NUMA
A
Al Viro 已提交
487
extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
L
Linus Torvalds 已提交
488 489

static inline struct page *
A
Al Viro 已提交
490
alloc_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
491 492 493
{
	return alloc_pages_current(gfp_mask, order);
}
494
extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
495
			struct vm_area_struct *vma, unsigned long addr,
496 497 498
			int node, bool hugepage);
#define alloc_hugepage_vma(gfp_mask, vma, addr, order)	\
	alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
L
Linus Torvalds 已提交
499 500 501
#else
#define alloc_pages(gfp_mask, order) \
		alloc_pages_node(numa_node_id(), gfp_mask, order)
502
#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
503
	alloc_pages(gfp_mask, order)
504 505
#define alloc_hugepage_vma(gfp_mask, vma, addr, order)	\
	alloc_pages(gfp_mask, order)
L
Linus Torvalds 已提交
506 507
#endif
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
508
#define alloc_page_vma(gfp_mask, vma, addr)			\
509
	alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
A
Andi Kleen 已提交
510
#define alloc_page_vma_node(gfp_mask, vma, addr, node)		\
511
	alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
L
Linus Torvalds 已提交
512

513 514
extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
extern unsigned long get_zeroed_page(gfp_t gfp_mask);
L
Linus Torvalds 已提交
515

516 517
void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
void free_pages_exact(void *virt, size_t size);
518
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
519

L
Linus Torvalds 已提交
520
#define __get_free_page(gfp_mask) \
521
		__get_free_pages((gfp_mask), 0)
L
Linus Torvalds 已提交
522 523

#define __get_dma_pages(gfp_mask, order) \
524
		__get_free_pages((gfp_mask) | GFP_DMA, (order))
L
Linus Torvalds 已提交
525

526 527
extern void __free_pages(struct page *page, unsigned int order);
extern void free_pages(unsigned long addr, unsigned int order);
528 529
extern void free_unref_page(struct page *page);
extern void free_unref_page_list(struct list_head *list);
L
Linus Torvalds 已提交
530

531
struct page_frag_cache;
532
extern void __page_frag_cache_drain(struct page *page, unsigned int count);
533 534 535
extern void *page_frag_alloc(struct page_frag_cache *nc,
			     unsigned int fragsz, gfp_t gfp_mask);
extern void page_frag_free(void *addr);
536

L
Linus Torvalds 已提交
537
#define __free_page(page) __free_pages((page), 0)
538
#define free_page(addr) free_pages((addr), 0)
L
Linus Torvalds 已提交
539 540

void page_alloc_init(void);
541
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
542 543
void drain_all_pages(struct zone *zone);
void drain_local_pages(struct zone *zone);
L
Linus Torvalds 已提交
544

545 546
void page_alloc_init_late(void);

547 548 549 550 551 552 553
/*
 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
 * GFP flags are used before interrupts are enabled. Once interrupts are
 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
 * hibernation, it is used by PM to avoid I/O during memory allocation while
 * devices are suspended.
 */
554 555
extern gfp_t gfp_allowed_mask;

556 557 558
/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);

559 560
extern void pm_restrict_gfp_mask(void);
extern void pm_restore_gfp_mask(void);
561

562 563 564 565 566 567 568 569 570
#ifdef CONFIG_PM_SLEEP
extern bool pm_suspended_storage(void);
#else
static inline bool pm_suspended_storage(void)
{
	return false;
}
#endif /* CONFIG_PM_SLEEP */

571
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
572
/* The below functions must be run on a range from a single zone. */
573
extern int alloc_contig_range(unsigned long start, unsigned long end,
574
			      unsigned migratetype, gfp_t gfp_mask);
575
extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
576
#endif
577

578
#ifdef CONFIG_CMA
579 580
/* CMA stuff */
extern void init_cma_reserved_pageblock(struct page *page);
581 582
#endif

L
Linus Torvalds 已提交
583
#endif /* __LINUX_GFP_H */