slab.h 17.1 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4 5 6 7
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
24
	slab_flags_t flags;	/* Active flags on the slab */
25 26
	unsigned int useroffset;/* Usercopy region offset */
	unsigned int usersize;	/* Usercopy region size */
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
44 45 46
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
47
#include <linux/random.h>
48
#include <linux/sched/mm.h>
49

50 51 52 53 54 55 56 57 58 59 60
/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
61
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 63 64 65 66 67
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

68 69
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
70 71

/* The list of all slab caches on the system */
72 73
extern struct list_head slab_caches;

74 75 76
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

77 78
/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
79
	const char *name[NR_KMALLOC_TYPES];
80
	unsigned int size;
81 82
} kmalloc_info[];

83 84
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
85
void setup_kmalloc_cache_index_table(void);
86
void create_kmalloc_caches(slab_flags_t);
87 88 89

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 91
#endif

92
gfp_t kmalloc_fix_flags(gfp_t flags);
93

94
/* Functions provided by the slab allocators */
95
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96

97 98 99
struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
			slab_flags_t flags, unsigned int useroffset,
			unsigned int usersize);
100
extern void create_boot_cache(struct kmem_cache *, const char *name,
101 102
			unsigned int size, slab_flags_t flags,
			unsigned int useroffset, unsigned int usersize);
103

104
int slab_unmergeable(struct kmem_cache *s);
105
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106
		slab_flags_t flags, const char *name, void (*ctor)(void *));
J
Joonsoo Kim 已提交
107
#ifndef CONFIG_SLOB
108
struct kmem_cache *
109
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110
		   slab_flags_t flags, void (*ctor)(void *));
111

112
slab_flags_t kmem_cache_flags(unsigned int object_size,
113
	slab_flags_t flags, const char *name);
114
#else
115
static inline struct kmem_cache *
116
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117
		   slab_flags_t flags, void (*ctor)(void *))
118
{ return NULL; }
119

120
static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121
	slab_flags_t flags, const char *name)
122 123 124
{
	return flags;
}
125 126 127
#endif


128
/* Legal flag mask for kmem_cache_create(), for various configurations */
129 130
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
131
			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
132 133 134 135 136

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
137
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
138 139 140 141 142 143
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
V
Vladimir Davydov 已提交
144
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
145
			  SLAB_ACCOUNT)
146 147
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
148
			  SLAB_TEMPORARY | SLAB_ACCOUNT)
149 150 151 152
#else
#define SLAB_CACHE_FLAGS (0)
#endif

153
/* Common flags available with current configuration */
154 155
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

156 157 158 159 160 161 162 163 164 165 166 167 168
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_MEM_SPREAD | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_ACCOUNT)

169
bool __kmem_cache_empty(struct kmem_cache *);
170
int __kmem_cache_shutdown(struct kmem_cache *);
171
void __kmem_cache_release(struct kmem_cache *);
172
int __kmem_cache_shrink(struct kmem_cache *);
173
void slab_kmem_cache_release(struct kmem_cache *);
174

175 176 177
struct seq_file;
struct file;

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
193 194
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);
G
Glauber Costa 已提交
195

196 197 198
/*
 * Generic implementation of bulk operations
 * These are useful for situations in which the allocator cannot
J
Jesper Dangaard Brouer 已提交
199
 * perform optimizations. In that case segments of the object listed
200 201 202
 * may be allocated or freed using these operations.
 */
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
203
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204

205
static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
206 207
{
	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
208
		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
209 210
}

211 212 213 214 215 216 217
#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
extern void print_tracking(struct kmem_cache *s, void *object);
218
long validate_slab_cache(struct kmem_cache *s);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#else
static inline void print_tracking(struct kmem_cache *s, void *object)
{
}
#endif

/*
 * Returns true if any of the specified slub_debug flags is enabled for the
 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
 * the static key.
 */
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
{
#ifdef CONFIG_SLUB_DEBUG
	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
	if (static_branch_unlikely(&slub_debug_enabled))
		return s->flags & flags;
#endif
	return false;
}

240
#ifdef CONFIG_MEMCG_KMEM
241
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
242
				 gfp_t gfp, bool new_page);
243 244
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr);
245 246 247

static inline void memcg_free_page_obj_cgroups(struct page *page)
{
248
	kfree(page_objcgs(page));
249
	page->memcg_data = 0;
250 251
}

252 253 254 255 256 257 258 259 260
static inline size_t obj_full_size(struct kmem_cache *s)
{
	/*
	 * For each accounted object there is an extra space which is used
	 * to store obj_cgroup membership. Charge it too.
	 */
	return s->size + sizeof(struct obj_cgroup *);
}

261 262 263 264 265 266
/*
 * Returns false if the allocation should fail.
 */
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
					     struct obj_cgroup **objcgp,
					     size_t objects, gfp_t flags)
267
{
268 269
	struct obj_cgroup *objcg;

270 271 272 273 274 275
	if (!memcg_kmem_enabled())
		return true;

	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
		return true;

276 277
	objcg = get_obj_cgroup_from_current();
	if (!objcg)
278
		return true;
279 280 281

	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
		obj_cgroup_put(objcg);
282
		return false;
283 284
	}

285 286
	*objcgp = objcg;
	return true;
287 288
}

289 290
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
					      struct obj_cgroup *objcg,
291 292
					      gfp_t flags, size_t size,
					      void **p)
293 294 295 296 297
{
	struct page *page;
	unsigned long off;
	size_t i;

298
	if (!memcg_kmem_enabled() || !objcg)
299 300
		return;

301 302 303
	for (i = 0; i < size; i++) {
		if (likely(p[i])) {
			page = virt_to_head_page(p[i]);
304

305
			if (!page_objcgs(page) &&
306 307
			    memcg_alloc_page_obj_cgroups(page, s, flags,
							 false)) {
308 309 310 311
				obj_cgroup_uncharge(objcg, obj_full_size(s));
				continue;
			}

312 313
			off = obj_to_index(s, page, p[i]);
			obj_cgroup_get(objcg);
314
			page_objcgs(page)[off] = objcg;
315 316 317 318
			mod_objcg_state(objcg, page_pgdat(page),
					cache_vmstat_idx(s), obj_full_size(s));
		} else {
			obj_cgroup_uncharge(objcg, obj_full_size(s));
319 320 321 322 323
		}
	}
	obj_cgroup_put(objcg);
}

324 325
static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
					void **p, int objects)
326
{
327
	struct kmem_cache *s;
328
	struct obj_cgroup **objcgs;
329
	struct obj_cgroup *objcg;
330
	struct page *page;
331
	unsigned int off;
332
	int i;
333

334 335 336
	if (!memcg_kmem_enabled())
		return;

337 338 339
	for (i = 0; i < objects; i++) {
		if (unlikely(!p[i]))
			continue;
340

341
		page = virt_to_head_page(p[i]);
342 343
		objcgs = page_objcgs(page);
		if (!objcgs)
344
			continue;
345

346 347 348 349
		if (!s_orig)
			s = page->slab_cache;
		else
			s = s_orig;
350

351
		off = obj_to_index(s, page, p[i]);
352
		objcg = objcgs[off];
353 354
		if (!objcg)
			continue;
355

356
		objcgs[off] = NULL;
357 358 359 360 361
		obj_cgroup_uncharge(objcg, obj_full_size(s));
		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
				-obj_full_size(s));
		obj_cgroup_put(objcg);
	}
362 363
}

364
#else /* CONFIG_MEMCG_KMEM */
365
static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
366 367 368 369
{
	return NULL;
}

370
static inline int memcg_alloc_page_obj_cgroups(struct page *page,
371 372
					       struct kmem_cache *s, gfp_t gfp,
					       bool new_page)
373 374 375 376 377 378 379 380
{
	return 0;
}

static inline void memcg_free_page_obj_cgroups(struct page *page)
{
}

381 382 383
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
					     struct obj_cgroup **objcgp,
					     size_t objects, gfp_t flags)
384
{
385
	return true;
386 387
}

388 389
static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
					      struct obj_cgroup *objcg,
390 391
					      gfp_t flags, size_t size,
					      void **p)
392 393 394
{
}

395 396
static inline void memcg_slab_free_hook(struct kmem_cache *s,
					void **p, int objects)
397 398
{
}
399
#endif /* CONFIG_MEMCG_KMEM */
400

401 402 403 404 405 406 407 408 409 410 411
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page;

	page = virt_to_head_page(obj);
	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
					__func__))
		return NULL;
	return page->slab_cache;
}

412
static __always_inline void account_slab_page(struct page *page, int order,
413 414
					      struct kmem_cache *s,
					      gfp_t gfp)
415
{
416 417 418
	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
		memcg_alloc_page_obj_cgroups(page, s, gfp, true);

419 420
	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
			    PAGE_SIZE << order);
421 422
}

423 424
static __always_inline void unaccount_slab_page(struct page *page, int order,
						struct kmem_cache *s)
425
{
426
	if (memcg_kmem_enabled())
427
		memcg_free_page_obj_cgroups(page);
428

429 430
	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
			    -(PAGE_SIZE << order));
431 432
}

433 434 435 436 437 438 439 440 441
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;

	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
		return s;

	cachep = virt_to_cache(x);
442
	if (WARN(cachep && cachep != s,
443 444 445 446 447 448
		  "%s: Wrong slab cache. %s but object is from %s\n",
		  __func__, s->name, cachep->name))
		print_tracking(cachep, x);
	return cachep;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
463 464
	if (s->flags & SLAB_KASAN)
		return s->object_size;
465 466 467 468 469
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
470
	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
471 472 473 474 475 476 477 478 479
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
480 481
						     struct obj_cgroup **objcgp,
						     size_t size, gfp_t flags)
482 483
{
	flags &= gfp_allowed_mask;
484

485
	might_alloc(flags);
486

487
	if (should_failslab(s, flags))
488 489
		return NULL;

490 491
	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
		return NULL;
492 493

	return s;
494 495
}

496
static inline void slab_post_alloc_hook(struct kmem_cache *s,
497 498
					struct obj_cgroup *objcg, gfp_t flags,
					size_t size, void **p, bool init)
499 500 501 502
{
	size_t i;

	flags &= gfp_allowed_mask;
503 504 505 506 507 508 509 510

	/*
	 * As memory initialization might be integrated into KASAN,
	 * kasan_slab_alloc and initialization memset must be
	 * kept together to avoid discrepancies in behavior.
	 *
	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
	 */
511
	for (i = 0; i < size; i++) {
512 513 514
		p[i] = kasan_slab_alloc(s, p[i], flags, init);
		if (p[i] && init && !kasan_has_integrated_init())
			memset(p[i], 0, s->object_size);
515
		kmemleak_alloc_recursive(p[i], s->object_size, 1,
516 517
					 s->flags, flags);
	}
518

519
	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
520 521
}

522
#ifndef CONFIG_SLOB
523 524 525 526 527 528 529 530 531 532
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
533 534
	unsigned long total_slabs;	/* length of all slab lists */
	unsigned long free_slabs;	/* length of free slab list only */
535 536 537 538
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
J
Joonsoo Kim 已提交
539
	struct alien_cache **alien;	/* on other nodes */
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};
555

556 557 558 559 560 561 562 563 564 565
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
566 567
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))
568 569 570

#endif

571
void *slab_start(struct seq_file *m, loff_t *pos);
572 573
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
574
int memcg_slab_show(struct seq_file *m, void *p);
575

576 577 578 579 580 581 582 583
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif

584 585
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

586 587 588 589 590 591 592 593 594 595 596 597 598
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

599 600
static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
601 602
	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
				&init_on_alloc)) {
603 604 605 606 607 608 609 610 611 612 613
		if (c->ctor)
			return false;
		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
			return flags & __GFP_ZERO;
		return true;
	}
	return flags & __GFP_ZERO;
}

static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
614 615
	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
				&init_on_free))
616 617 618 619 620
		return !(c->ctor ||
			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
	return false;
}

621 622 623 624 625 626
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
void debugfs_slab_release(struct kmem_cache *);
#else
static inline void debugfs_slab_release(struct kmem_cache *s) { }
#endif

627
#ifdef CONFIG_PRINTK
628 629 630 631 632 633 634 635 636
#define KS_ADDRS_COUNT 16
struct kmem_obj_info {
	void *kp_ptr;
	struct page *kp_page;
	void *kp_objp;
	unsigned long kp_data_offset;
	struct kmem_cache *kp_slab_cache;
	void *kp_ret;
	void *kp_stack[KS_ADDRS_COUNT];
637
	void *kp_free_stack[KS_ADDRS_COUNT];
638 639
};
void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
640
#endif
641

642
#endif /* MM_SLAB_H */