safexcel.c 52.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2017 Marvell
 *
 * Antoine Tenart <antoine.tenart@free-electrons.com>
 */

#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
17
#include <linux/pci.h>
18 19 20
#include <linux/platform_device.h>
#include <linux/workqueue.h>

21
#include <crypto/internal/aead.h>
22 23 24 25 26 27 28 29 30
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>

#include "safexcel.h"

static u32 max_rings = EIP197_MAX_RINGS;
module_param(max_rings, uint, 0644);
MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");

31
static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv)
32
{
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
	int i;

	/*
	 * Map all interfaces/rings to register index 0
	 * so they can share contexts. Without this, the EIP197 will
	 * assume each interface/ring to be in its own memory domain
	 * i.e. have its own subset of UNIQUE memory addresses.
	 * Which would cause records with the SAME memory address to
	 * use DIFFERENT cache buffers, causing both poor cache utilization
	 * AND serious coherence/invalidation issues.
	 */
	for (i = 0; i < 4; i++)
		writel(0, priv->base + EIP197_FLUE_IFC_LUT(i));

	/*
	 * Initialize other virtualization regs for cache
	 * These may not be in their reset state ...
	 */
	for (i = 0; i < priv->config.rings; i++) {
		writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i));
		writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i));
		writel(EIP197_FLUE_CONFIG_MAGIC,
		       priv->base + EIP197_FLUE_CONFIG(i));
56
	}
57 58 59
	writel(0, priv->base + EIP197_FLUE_OFFSETS);
	writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET);
}
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv,
				     u32 addrmid, int *actbank)
{
	u32 val;
	int curbank;

	curbank = addrmid >> 16;
	if (curbank != *actbank) {
		val = readl(priv->base + EIP197_CS_RAM_CTRL);
		val = (val & ~EIP197_CS_BANKSEL_MASK) |
		      (curbank << EIP197_CS_BANKSEL_OFS);
		writel(val, priv->base + EIP197_CS_RAM_CTRL);
		*actbank = curbank;
	}
}
76

77 78 79 80 81
static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv,
				  int maxbanks, u32 probemask)
{
	u32 val, addrhi, addrlo, addrmid;
	int actbank;
82 83

	/*
84 85
	 * And probe the actual size of the physically attached cache data RAM
	 * Using a binary subdivision algorithm downto 32 byte cache lines.
86
	 */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	addrhi = 1 << (16 + maxbanks);
	addrlo = 0;
	actbank = min(maxbanks - 1, 0);
	while ((addrhi - addrlo) > 32) {
		/* write marker to lowest address in top half */
		addrmid = (addrhi + addrlo) >> 1;
		eip197_trc_cache_banksel(priv, addrmid, &actbank);
		writel((addrmid | (addrlo << 16)) & probemask,
			priv->base + EIP197_CLASSIFICATION_RAMS +
			(addrmid & 0xffff));

		/* write marker to lowest address in bottom half */
		eip197_trc_cache_banksel(priv, addrlo, &actbank);
		writel((addrlo | (addrhi << 16)) & probemask,
			priv->base + EIP197_CLASSIFICATION_RAMS +
			(addrlo & 0xffff));

		/* read back marker from top half */
		eip197_trc_cache_banksel(priv, addrmid, &actbank);
		val = readl(priv->base + EIP197_CLASSIFICATION_RAMS +
			    (addrmid & 0xffff));

		if (val == ((addrmid | (addrlo << 16)) & probemask)) {
			/* read back correct, continue with top half */
			addrlo = addrmid;
		} else {
			/* not read back correct, continue with bottom half */
			addrhi = addrmid;
		}
	}
	return addrhi;
}

static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv,
				   int cs_rc_max, int cs_ht_wc)
{
	int i;
	u32 htable_offset, val, offset;
125

126
	/* Clear all records in administration RAM */
127
	for (i = 0; i < cs_rc_max; i++) {
128
		offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
129 130 131 132 133

		writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
		       EIP197_CS_RC_PREV(EIP197_RC_NULL),
		       priv->base + offset);

134
		val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1);
135 136
		if (i == 0)
			val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
137
		else if (i == cs_rc_max - 1)
138
			val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
139 140 141 142
		writel(val, priv->base + offset + 4);
		/* must also initialize the address key due to ECC! */
		writel(0, priv->base + offset + 8);
		writel(0, priv->base + offset + 12);
143 144 145
	}

	/* Clear the hash table entries */
146 147
	htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
	for (i = 0; i < cs_ht_wc; i++)
148
		writel(GENMASK(29, 0),
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		       priv->base + EIP197_CLASSIFICATION_RAMS +
		       htable_offset + i * sizeof(u32));
}

static void eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
{
	u32 val, dsize, asize;
	int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
	int cs_rc_abs_max, cs_ht_sz;
	int maxbanks;

	/* Setup (dummy) virtualization for cache */
	eip197_trc_cache_setupvirt(priv);

	/*
	 * Enable the record cache memory access and
	 * probe the bank select width
	 */
	val = readl(priv->base + EIP197_CS_RAM_CTRL);
	val &= ~EIP197_TRC_ENABLE_MASK;
	val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK;
	writel(val, priv->base + EIP197_CS_RAM_CTRL);
	val = readl(priv->base + EIP197_CS_RAM_CTRL);
	maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1;

	/* Clear all ECC errors */
	writel(0, priv->base + EIP197_TRC_ECCCTRL);

	/*
	 * Make sure the cache memory is accessible by taking record cache into
	 * reset. Need data memory access here, not admin access.
	 */
	val = readl(priv->base + EIP197_TRC_PARAMS);
	val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS;
	writel(val, priv->base + EIP197_TRC_PARAMS);

	/* Probed data RAM size in bytes */
	dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff);

	/*
	 * Now probe the administration RAM size pretty much the same way
	 * Except that only the lower 30 bits are writable and we don't need
	 * bank selects
	 */
	val = readl(priv->base + EIP197_TRC_PARAMS);
	/* admin access now */
	val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK);
	writel(val, priv->base + EIP197_TRC_PARAMS);

	/* Probed admin RAM size in admin words */
	asize = eip197_trc_cache_probe(priv, 0, 0xbfffffff) >> 4;

	/* Clear any ECC errors detected while probing! */
	writel(0, priv->base + EIP197_TRC_ECCCTRL);

	/*
	 * Determine optimal configuration from RAM sizes
	 * Note that we assume that the physical RAM configuration is sane
	 * Therefore, we don't do any parameter error checking here ...
	 */

	/* For now, just use a single record format covering everything */
	cs_trc_rec_wc = EIP197_CS_TRC_REC_WC;
	cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC;

	/*
	 * Step #1: How many records will physically fit?
	 * Hard upper limit is 1023!
	 */
	cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023);
	/* Step #2: Need at least 2 words in the admin RAM per record */
	cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1));
	/* Step #3: Determine log2 of hash table size */
	cs_ht_sz = __fls(asize - cs_rc_max) - 2;
	/* Step #4: determine current size of hash table in dwords */
	cs_ht_wc = 16<<cs_ht_sz; /* dwords, not admin words */
	/* Step #5: add back excess words and see if we can fit more records */
	cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 4));

	/* Clear the cache RAMs */
	eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc);
230 231 232 233 234 235 236 237

	/* Disable the record cache memory access */
	val = readl(priv->base + EIP197_CS_RAM_CTRL);
	val &= ~EIP197_TRC_ENABLE_MASK;
	writel(val, priv->base + EIP197_CS_RAM_CTRL);

	/* Write head and tail pointers of the record free chain */
	val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
238
	      EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
239 240 241
	writel(val, priv->base + EIP197_TRC_FREECHAIN);

	/* Configure the record cache #1 */
242 243
	val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
	      EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
244 245 246
	writel(val, priv->base + EIP197_TRC_PARAMS2);

	/* Configure the record cache #2 */
247
	val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
248
	      EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
249
	      EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz);
250
	writel(val, priv->base + EIP197_TRC_PARAMS);
251 252 253

	dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n",
		 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc);
254 255
}

256
static void eip197_init_firmware(struct safexcel_crypto_priv *priv)
257
{
258
	int pe, i;
259 260
	u32 val;

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	for (pe = 0; pe < priv->config.pes; pe++) {
		/* Configure the token FIFO's */
		writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe));
		writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe));

		/* Clear the ICE scratchpad memory */
		val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
		val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
		       EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
		       EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
		       EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));

		/* clear the scratchpad RAM using 32 bit writes only */
		for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++)
			writel(0, EIP197_PE(priv) +
277
				  EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2));
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

		/* Reset the IFPP engine to make its program mem accessible */
		writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
		       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
		       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
		       EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));

		/* Reset the IPUE engine to make its program mem accessible */
		writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
		       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
		       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
		       EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));

		/* Enable access to all IFPP program memories */
		writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN,
		       EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
	}

}
297

298 299 300 301 302
static int eip197_write_firmware(struct safexcel_crypto_priv *priv,
				  const struct firmware *fw)
{
	const u32 *data = (const u32 *)fw->data;
	int i;
303 304 305 306 307 308

	/* Write the firmware */
	for (i = 0; i < fw->size / sizeof(u32); i++)
		writel(be32_to_cpu(data[i]),
		       priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(u32));

309 310 311
	/* Exclude final 2 NOPs from size */
	return i - EIP197_FW_TERMINAL_NOPS;
}
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/*
 * If FW is actual production firmware, then poll for its initialization
 * to complete and check if it is good for the HW, otherwise just return OK.
 */
static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp)
{
	int pe, pollcnt;
	u32 base, pollofs;

	if (fpp)
		pollofs  = EIP197_FW_FPP_READY;
	else
		pollofs  = EIP197_FW_PUE_READY;

	for (pe = 0; pe < priv->config.pes; pe++) {
		base = EIP197_PE_ICE_SCRATCH_RAM(pe);
		pollcnt = EIP197_FW_START_POLLCNT;
		while (pollcnt &&
		       (readl_relaxed(EIP197_PE(priv) + base +
			      pollofs) != 1)) {
			pollcnt--;
		}
		if (!pollcnt) {
			dev_err(priv->dev, "FW(%d) for PE %d failed to start\n",
				fpp, pe);
			return false;
		}
	}
	return true;
}

static bool eip197_start_firmware(struct safexcel_crypto_priv *priv,
				  int ipuesz, int ifppsz, int minifw)
{
	int pe;
	u32 val;

	for (pe = 0; pe < priv->config.pes; pe++) {
		/* Disable access to all program memory */
		writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));

		/* Start IFPP microengines */
		if (minifw)
			val = 0;
		else
			val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) &
					EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
				EIP197_PE_ICE_UENG_DEBUG_RESET;
		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));

		/* Start IPUE microengines */
		if (minifw)
			val = 0;
		else
			val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) &
					EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
				EIP197_PE_ICE_UENG_DEBUG_RESET;
		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
	}

	/* For miniFW startup, there is no initialization, so always succeed */
	if (minifw)
		return true;

	/* Wait until all the firmwares have properly started up */
	if (!poll_fw_ready(priv, 1))
		return false;
	if (!poll_fw_ready(priv, 0))
		return false;

	return true;
384 385 386 387 388 389
}

static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
{
	const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
	const struct firmware *fw[FW_NB];
390
	char fw_path[37], *dir = NULL;
391
	int i, j, ret = 0, pe;
392
	int ipuesz, ifppsz, minifw = 0;
393

394
	if (priv->version == EIP197D_MRVL)
395
		dir = "eip197d";
396 397 398 399 400
	else if (priv->version == EIP197B_MRVL ||
		 priv->version == EIP197_DEVBRD)
		dir = "eip197b";
	else
		return -ENODEV;
401

402
retry_fw:
403
	for (i = 0; i < FW_NB; i++) {
404 405
		snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]);
		ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev);
406
		if (ret) {
407
			if (minifw || priv->version != EIP197B_MRVL)
408 409 410 411 412
				goto release_fw;

			/* Fallback to the old firmware location for the
			 * EIP197b.
			 */
413 414 415
			ret = firmware_request_nowarn(&fw[i], fw_name[i],
						      priv->dev);
			if (ret)
416
				goto release_fw;
417
		}
418
	}
419

420 421 422
	eip197_init_firmware(priv);

	ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]);
423

424 425 426 427
	/* Enable access to IPUE program memories */
	for (pe = 0; pe < priv->config.pes; pe++)
		writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN,
		       EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
428

429
	ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]);
430

431
	if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) {
432
		dev_dbg(priv->dev, "Firmware loaded successfully\n");
433
		return 0;
434
	}
435

436 437
	ret = -ENODEV;

438 439 440 441
release_fw:
	for (j = 0; j < i; j++)
		release_firmware(fw[j]);

442 443 444 445 446 447 448 449 450 451
	if (!minifw) {
		/* Retry with minifw path */
		dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n");
		dir = "eip197_minifw";
		minifw = 1;
		goto retry_fw;
	}

	dev_dbg(priv->dev, "Firmware load failed.\n");

452 453 454 455 456
	return ret;
}

static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
{
457
	u32 cd_size_rnd, val;
458
	int i, cd_fetch_cnt;
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473
	cd_size_rnd  = (priv->config.cd_size +
			(BIT(priv->hwconfig.hwdataw) - 1)) >>
		       priv->hwconfig.hwdataw;
	/* determine number of CD's we can fetch into the CD FIFO as 1 block */
	if (priv->flags & SAFEXCEL_HW_EIP197) {
		/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
		cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd;
		cd_fetch_cnt = min_t(uint, cd_fetch_cnt,
				     (priv->config.pes * EIP197_FETCH_DEPTH));
	} else {
		/* for the EIP97, just fetch all that fits minus 1 */
		cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) /
				cd_size_rnd) - 1;
	}
474 475 476 477

	for (i = 0; i < priv->config.rings; i++) {
		/* ring base address */
		writel(lower_32_bits(priv->ring[i].cdr.base_dma),
478
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
479
		writel(upper_32_bits(priv->ring[i].cdr.base_dma),
480
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
481 482 483

		writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.cd_offset << 16) |
		       priv->config.cd_size,
484
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
485 486
		writel(((cd_fetch_cnt *
			 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
487
		       (cd_fetch_cnt * priv->config.cd_offset),
488
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
489 490 491 492

		/* Configure DMA tx control */
		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
493
		writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
494 495 496

		/* clear any pending interrupt */
		writel(GENMASK(5, 0),
497
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
498 499 500 501 502 503 504
	}

	return 0;
}

static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
{
505
	u32 rd_size_rnd, val;
506
	int i, rd_fetch_cnt;
507

508 509
	/* determine number of RD's we can fetch into the FIFO as one block */
	rd_size_rnd = (EIP197_RD64_FETCH_SIZE +
510
		       (BIT(priv->hwconfig.hwdataw) - 1)) >>
511 512 513 514 515 516 517 518 519
		      priv->hwconfig.hwdataw;
	if (priv->flags & SAFEXCEL_HW_EIP197) {
		/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
		rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd;
		rd_fetch_cnt = min_t(uint, rd_fetch_cnt,
				     (priv->config.pes * EIP197_FETCH_DEPTH));
	} else {
		/* for the EIP97, just fetch all that fits minus 1 */
		rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) /
520
				rd_size_rnd) - 1;
521
	}
522 523 524 525

	for (i = 0; i < priv->config.rings; i++) {
		/* ring base address */
		writel(lower_32_bits(priv->ring[i].rdr.base_dma),
526
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
527
		writel(upper_32_bits(priv->ring[i].rdr.base_dma),
528
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
529 530 531

		writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 16) |
		       priv->config.rd_size,
532
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
533

534 535
		writel(((rd_fetch_cnt *
			 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
536
		       (rd_fetch_cnt * priv->config.rd_offset),
537
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
538 539 540 541

		/* Configure DMA tx control */
		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
542
		val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
543
		writel(val,
544
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
545 546 547

		/* clear any pending interrupt */
		writel(GENMASK(7, 0),
548
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
549 550

		/* enable ring interrupt */
551
		val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
552
		val |= EIP197_RDR_IRQ(i);
553
		writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
554 555 556 557 558 559 560
	}

	return 0;
}

static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
{
561
	u32 val;
562
	int i, ret, pe;
563

564 565 566 567 568 569 570
	dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n",
		priv->config.pes, priv->config.rings);

	/*
	 * For EIP197's only set maximum number of TX commands to 2^5 = 32
	 * Skip for the EIP97 as it does not have this field.
	 */
571 572
	if (priv->flags & SAFEXCEL_HW_EIP197) {
		val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
573
		val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
574 575
		writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
	}
576 577 578 579

	/* Configure wr/rd cache values */
	writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
	       EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
580
	       EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
581 582 583 584

	/* Interrupts reset */

	/* Disable all global interrupts */
585
	writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
586 587

	/* Clear any pending interrupt */
588
	writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
589

590 591 592
	/* Processing Engine configuration */
	for (pe = 0; pe < priv->config.pes; pe++) {
		/* Data Fetch Engine configuration */
593

594 595 596
		/* Reset all DFE threads */
		writel(EIP197_DxE_THR_CTRL_RESET_PE,
		       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
597

598
		if (priv->flags & SAFEXCEL_HW_EIP197)
599
			/* Reset HIA input interface arbiter (EIP197 only) */
600 601
			writel(EIP197_HIA_RA_PE_CTRL_RESET,
			       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
		/* DMA transfer size to use */
		val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
		val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
		       EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
		val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
		       EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
		val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
		val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
		writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));

		/* Leave the DFE threads reset state */
		writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));

		/* Configure the processing engine thresholds */
		writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
		       EIP197_PE_IN_xBUF_THRES_MAX(9),
		       EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
		writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
		       EIP197_PE_IN_xBUF_THRES_MAX(7),
		       EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));

624
		if (priv->flags & SAFEXCEL_HW_EIP197)
625 626 627 628
			/* enable HIA input interface arbiter and rings */
			writel(EIP197_HIA_RA_PE_CTRL_EN |
			       GENMASK(priv->config.rings - 1, 0),
			       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		/* Data Store Engine configuration */

		/* Reset all DSE threads */
		writel(EIP197_DxE_THR_CTRL_RESET_PE,
		       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));

		/* Wait for all DSE threads to complete */
		while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
			GENMASK(15, 12)) != GENMASK(15, 12))
			;

		/* DMA transfer size to use */
		val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
		val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(7) |
		       EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(8);
		val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
		val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
647 648
		/* FIXME: instability issues can occur for EIP97 but disabling
		 * it impacts performance.
649
		 */
650
		if (priv->flags & SAFEXCEL_HW_EIP197)
651 652 653 654 655 656 657 658 659 660 661 662 663
			val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
		writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));

		/* Leave the DSE threads reset state */
		writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));

		/* Configure the procesing engine thresholds */
		writel(EIP197_PE_OUT_DBUF_THRES_MIN(7) |
		       EIP197_PE_OUT_DBUF_THRES_MAX(8),
		       EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));

		/* Processing Engine configuration */

664 665
		/* Token & context configuration */
		val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES |
666 667
		      EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT |
		      EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT;
668 669
		writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe));

670 671 672
		/* H/W capabilities selection: just enable everything */
		writel(EIP197_FUNCTION_ALL,
		       EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
673 674
		writel(EIP197_FUNCTION_ALL,
		       EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe));
675
	}
676 677 678 679 680

	/* Command Descriptor Rings prepare */
	for (i = 0; i < priv->config.rings; i++) {
		/* Clear interrupts for this ring */
		writel(GENMASK(31, 0),
681
		       EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
682 683

		/* Disable external triggering */
684
		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
685 686 687

		/* Clear the pending prepared counter */
		writel(EIP197_xDR_PREP_CLR_COUNT,
688
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
689 690 691

		/* Clear the pending processed counter */
		writel(EIP197_xDR_PROC_CLR_COUNT,
692
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
693 694

		writel(0,
695
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
696
		writel(0,
697
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
698 699

		writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset) << 2,
700
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
701 702 703 704 705
	}

	/* Result Descriptor Ring prepare */
	for (i = 0; i < priv->config.rings; i++) {
		/* Disable external triggering*/
706
		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
707 708 709

		/* Clear the pending prepared counter */
		writel(EIP197_xDR_PREP_CLR_COUNT,
710
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
711 712 713

		/* Clear the pending processed counter */
		writel(EIP197_xDR_PROC_CLR_COUNT,
714
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
715 716

		writel(0,
717
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
718
		writel(0,
719
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
720 721 722

		/* Ring size */
		writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset) << 2,
723
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
724 725
	}

726 727 728 729
	for (pe = 0; pe < priv->config.pes; pe++) {
		/* Enable command descriptor rings */
		writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
		       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
730

731 732 733 734
		/* Enable result descriptor rings */
		writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
		       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
	}
735 736

	/* Clear any HIA interrupt */
737
	writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
738

739
	if (priv->flags & SAFEXCEL_HW_EIP197) {
740
		eip197_trc_cache_init(priv);
741
		priv->flags |= EIP197_TRC_CACHE;
742

743 744 745 746
		ret = eip197_load_firmwares(priv);
		if (ret)
			return ret;
	}
747 748 749 750 751 752 753

	safexcel_hw_setup_cdesc_rings(priv);
	safexcel_hw_setup_rdesc_rings(priv);

	return 0;
}

754
/* Called with ring's lock taken */
755 756
static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
				       int ring)
757
{
758
	int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
759 760

	if (!coal)
761
		return;
762 763 764 765

	/* Configure when we want an interrupt */
	writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
	       EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
766
	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
767 768
}

769
void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
770 771 772
{
	struct crypto_async_request *req, *backlog;
	struct safexcel_context *ctx;
773
	int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
774

775 776 777 778 779 780 781 782
	/* If a request wasn't properly dequeued because of a lack of resources,
	 * proceeded it first,
	 */
	req = priv->ring[ring].req;
	backlog = priv->ring[ring].backlog;
	if (req)
		goto handle_req;

783
	while (true) {
784 785
		spin_lock_bh(&priv->ring[ring].queue_lock);
		backlog = crypto_get_backlog(&priv->ring[ring].queue);
786
		req = crypto_dequeue_request(&priv->ring[ring].queue);
787
		spin_unlock_bh(&priv->ring[ring].queue_lock);
788

789 790 791
		if (!req) {
			priv->ring[ring].req = NULL;
			priv->ring[ring].backlog = NULL;
792
			goto finalize;
793
		}
794

795
handle_req:
796
		ctx = crypto_tfm_ctx(req->tfm);
797 798
		ret = ctx->send(req, ring, &commands, &results);
		if (ret)
799
			goto request_failed;
800 801 802 803

		if (backlog)
			backlog->complete(backlog, -EINPROGRESS);

804 805 806 807
		/* In case the send() helper did not issue any command to push
		 * to the engine because the input data was cached, continue to
		 * dequeue other requests as this is valid and not an error.
		 */
808
		if (!commands && !results)
809
			continue;
810

811 812
		cdesc += commands;
		rdesc += results;
813 814
		nreq++;
	}
815

816 817 818 819 820 821 822
request_failed:
	/* Not enough resources to handle all the requests. Bail out and save
	 * the request and the backlog for the next dequeue call (per-ring).
	 */
	priv->ring[ring].req = req;
	priv->ring[ring].backlog = backlog;

823
finalize:
824
	if (!nreq)
825 826
		return;

827
	spin_lock_bh(&priv->ring[ring].lock);
828

829 830
	priv->ring[ring].requests += nreq;

831
	if (!priv->ring[ring].busy) {
832
		safexcel_try_push_requests(priv, ring);
833
		priv->ring[ring].busy = true;
834 835
	}

836
	spin_unlock_bh(&priv->ring[ring].lock);
837

838 839
	/* let the RDR know we have pending descriptors */
	writel((rdesc * priv->config.rd_offset) << 2,
840
	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
841

842 843
	/* let the CDR know we have pending descriptors */
	writel((cdesc * priv->config.cd_offset) << 2,
844
	       EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
845 846
}

847 848 849
inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
				       struct safexcel_result_desc *rdesc)
{
850 851 852
	if (likely((!rdesc->descriptor_overflow) &&
		   (!rdesc->buffer_overflow) &&
		   (!rdesc->result_data.error_code)))
853 854
		return 0;

855 856 857 858 859 860
	if (rdesc->descriptor_overflow)
		dev_err(priv->dev, "Descriptor overflow detected");

	if (rdesc->buffer_overflow)
		dev_err(priv->dev, "Buffer overflow detected");

861 862
	if (rdesc->result_data.error_code & 0x4066) {
		/* Fatal error (bits 1,2,5,6 & 14) */
863
		dev_err(priv->dev,
864
			"result descriptor error (%x)",
865
			rdesc->result_data.error_code);
866 867
		return -EIO;
	} else if (rdesc->result_data.error_code &
868
		   (BIT(7) | BIT(4) | BIT(3) | BIT(0))) {
869 870
		/*
		 * Give priority over authentication fails:
871 872
		 * Blocksize, length & overflow errors,
		 * something wrong with the input!
873
		 */
874
		return -EINVAL;
875
	} else if (rdesc->result_data.error_code & BIT(9)) {
876 877
		/* Authentication failed */
		return -EBADMSG;
878
	}
879 880 881 882 883

	/* All other non-fatal errors */
	return -EINVAL;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
				 int ring,
				 struct safexcel_result_desc *rdesc,
				 struct crypto_async_request *req)
{
	int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);

	priv->ring[ring].rdr_req[i] = req;
}

inline struct crypto_async_request *
safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
{
	int i = safexcel_ring_first_rdr_index(priv, ring);

	return priv->ring[ring].rdr_req[i];
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
{
	struct safexcel_command_desc *cdesc;

	/* Acknowledge the command descriptors */
	do {
		cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
		if (IS_ERR(cdesc)) {
			dev_err(priv->dev,
				"Could not retrieve the command descriptor\n");
			return;
		}
	} while (!cdesc->last_seg);
}

void safexcel_inv_complete(struct crypto_async_request *req, int error)
{
	struct safexcel_inv_result *result = req->data;

	if (error == -EINPROGRESS)
		return;

	result->error = error;
	complete(&result->completion);
}

int safexcel_invalidate_cache(struct crypto_async_request *async,
			      struct safexcel_crypto_priv *priv,
930
			      dma_addr_t ctxr_dma, int ring)
931 932 933 934 935 936 937
{
	struct safexcel_command_desc *cdesc;
	struct safexcel_result_desc *rdesc;
	int ret = 0;

	/* Prepare command descriptor */
	cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma);
938 939
	if (IS_ERR(cdesc))
		return PTR_ERR(cdesc);
940 941 942 943 944 945 946 947 948 949 950 951 952 953

	cdesc->control_data.type = EIP197_TYPE_EXTENDED;
	cdesc->control_data.options = 0;
	cdesc->control_data.refresh = 0;
	cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;

	/* Prepare result descriptor */
	rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);

	if (IS_ERR(rdesc)) {
		ret = PTR_ERR(rdesc);
		goto cdesc_rollback;
	}

954 955 956
	safexcel_rdr_req_set(priv, ring, rdesc, async);

	return ret;
957 958 959 960 961 962 963 964 965 966

cdesc_rollback:
	safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);

	return ret;
}

static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
						     int ring)
{
967
	struct crypto_async_request *req;
968
	struct safexcel_context *ctx;
969
	int ret, i, nreq, ndesc, tot_descs, handled = 0;
970 971
	bool should_complete;

972 973 974
handle_results:
	tot_descs = 0;

975
	nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
976 977
	nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
	nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
978
	if (!nreq)
979
		goto requests_left;
980 981

	for (i = 0; i < nreq; i++) {
982 983 984 985
		req = safexcel_rdr_req_get(priv, ring);

		ctx = crypto_tfm_ctx(req->tfm);
		ndesc = ctx->handle_result(priv, ring, req,
986 987
					   &should_complete, &ret);
		if (ndesc < 0) {
988 989
			dev_err(priv->dev, "failed to handle result (%d)\n",
				ndesc);
990
			goto acknowledge;
991 992 993 994
		}

		if (should_complete) {
			local_bh_disable();
995
			req->complete(req, ret);
996 997 998
			local_bh_enable();
		}

999
		tot_descs += ndesc;
1000
		handled++;
1001 1002 1003
	}

acknowledge:
1004
	if (i)
1005 1006
		writel(EIP197_xDR_PROC_xD_PKT(i) |
		       EIP197_xDR_PROC_xD_COUNT(tot_descs * priv->config.rd_offset),
1007
		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1008

1009 1010 1011 1012 1013 1014
	/* If the number of requests overflowed the counter, try to proceed more
	 * requests.
	 */
	if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
		goto handle_results;

1015
requests_left:
1016
	spin_lock_bh(&priv->ring[ring].lock);
1017

1018 1019
	priv->ring[ring].requests -= handled;
	safexcel_try_push_requests(priv, ring);
1020

1021
	if (!priv->ring[ring].requests)
1022 1023
		priv->ring[ring].busy = false;

1024
	spin_unlock_bh(&priv->ring[ring].lock);
1025 1026
}

1027 1028 1029 1030
static void safexcel_dequeue_work(struct work_struct *work)
{
	struct safexcel_work_data *data =
			container_of(work, struct safexcel_work_data, work);
1031

1032
	safexcel_dequeue(data->priv, data->ring);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

struct safexcel_ring_irq_data {
	struct safexcel_crypto_priv *priv;
	int ring;
};

static irqreturn_t safexcel_irq_ring(int irq, void *data)
{
	struct safexcel_ring_irq_data *irq_data = data;
	struct safexcel_crypto_priv *priv = irq_data->priv;
1044
	int ring = irq_data->ring, rc = IRQ_NONE;
1045 1046
	u32 status, stat;

1047
	status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
1048
	if (!status)
1049
		return rc;
1050 1051 1052

	/* RDR interrupts */
	if (status & EIP197_RDR_IRQ(ring)) {
1053
		stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1054 1055 1056 1057 1058 1059 1060

		if (unlikely(stat & EIP197_xDR_ERR)) {
			/*
			 * Fatal error, the RDR is unusable and must be
			 * reinitialized. This should not happen under
			 * normal circumstances.
			 */
1061
			dev_err(priv->dev, "RDR: fatal error.\n");
1062
		} else if (likely(stat & EIP197_xDR_THRESH)) {
1063
			rc = IRQ_WAKE_THREAD;
1064 1065 1066 1067
		}

		/* ACK the interrupts */
		writel(stat & 0xff,
1068
		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1069 1070 1071
	}

	/* ACK the interrupts */
1072
	writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	return rc;
}

static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
{
	struct safexcel_ring_irq_data *irq_data = data;
	struct safexcel_crypto_priv *priv = irq_data->priv;
	int ring = irq_data->ring;

	safexcel_handle_result_descriptor(priv, ring);

	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);

1088 1089 1090
	return IRQ_HANDLED;
}

1091 1092
static int safexcel_request_ring_irq(void *pdev, int irqid,
				     int is_pci_dev,
1093
				     irq_handler_t handler,
1094
				     irq_handler_t threaded_handler,
1095 1096
				     struct safexcel_ring_irq_data *ring_irq_priv)
{
1097 1098 1099 1100 1101
	int ret, irq;
	struct device *dev;

	if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) {
		struct pci_dev *pci_pdev = pdev;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		dev = &pci_pdev->dev;
		irq = pci_irq_vector(pci_pdev, irqid);
		if (irq < 0) {
			dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n",
				irqid, irq);
			return irq;
		}
	} else if (IS_ENABLED(CONFIG_OF)) {
		struct platform_device *plf_pdev = pdev;
		char irq_name[6] = {0}; /* "ringX\0" */

		snprintf(irq_name, 6, "ring%d", irqid);
		dev = &plf_pdev->dev;
		irq = platform_get_irq_byname(plf_pdev, irq_name);

		if (irq < 0) {
			dev_err(dev, "unable to get IRQ '%s' (err %d)\n",
				irq_name, irq);
			return irq;
		}
1123 1124
	}

1125
	ret = devm_request_threaded_irq(dev, irq, handler,
1126
					threaded_handler, IRQF_ONESHOT,
1127
					dev_name(dev), ring_irq_priv);
1128
	if (ret) {
1129
		dev_err(dev, "unable to request IRQ %d\n", irq);
1130 1131 1132 1133 1134 1135 1136
		return ret;
	}

	return irq;
}

static struct safexcel_alg_template *safexcel_algs[] = {
1137 1138
	&safexcel_alg_ecb_des,
	&safexcel_alg_cbc_des,
1139 1140
	&safexcel_alg_ecb_des3_ede,
	&safexcel_alg_cbc_des3_ede,
1141 1142
	&safexcel_alg_ecb_aes,
	&safexcel_alg_cbc_aes,
1143
	&safexcel_alg_cfb_aes,
1144
	&safexcel_alg_ofb_aes,
1145
	&safexcel_alg_ctr_aes,
1146
	&safexcel_alg_md5,
1147 1148 1149
	&safexcel_alg_sha1,
	&safexcel_alg_sha224,
	&safexcel_alg_sha256,
1150
	&safexcel_alg_sha384,
1151
	&safexcel_alg_sha512,
1152
	&safexcel_alg_hmac_md5,
1153
	&safexcel_alg_hmac_sha1,
1154
	&safexcel_alg_hmac_sha224,
1155
	&safexcel_alg_hmac_sha256,
1156
	&safexcel_alg_hmac_sha384,
1157
	&safexcel_alg_hmac_sha512,
1158
	&safexcel_alg_authenc_hmac_sha1_cbc_aes,
1159
	&safexcel_alg_authenc_hmac_sha224_cbc_aes,
1160
	&safexcel_alg_authenc_hmac_sha256_cbc_aes,
1161
	&safexcel_alg_authenc_hmac_sha384_cbc_aes,
1162
	&safexcel_alg_authenc_hmac_sha512_cbc_aes,
1163
	&safexcel_alg_authenc_hmac_sha1_cbc_des3_ede,
1164 1165 1166 1167 1168
	&safexcel_alg_authenc_hmac_sha1_ctr_aes,
	&safexcel_alg_authenc_hmac_sha224_ctr_aes,
	&safexcel_alg_authenc_hmac_sha256_ctr_aes,
	&safexcel_alg_authenc_hmac_sha384_ctr_aes,
	&safexcel_alg_authenc_hmac_sha512_ctr_aes,
1169
	&safexcel_alg_xts_aes,
1170
	&safexcel_alg_gcm,
1171
	&safexcel_alg_ccm,
1172 1173 1174 1175 1176 1177 1178 1179 1180
};

static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
{
	int i, j, ret = 0;

	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
		safexcel_algs[i]->priv = priv;

1181 1182 1183 1184 1185 1186
		/* Do we have all required base algorithms available? */
		if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
		    safexcel_algs[i]->algo_mask)
			/* No, so don't register this ciphersuite */
			continue;

1187 1188
		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
			ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
1189 1190
		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
			ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		else
			ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);

		if (ret)
			goto fail;
	}

	return 0;

fail:
	for (j = 0; j < i; j++) {
1202 1203 1204 1205 1206 1207
		/* Do we have all required base algorithms available? */
		if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) !=
		    safexcel_algs[j]->algo_mask)
			/* No, so don't unregister this ciphersuite */
			continue;

1208 1209
		if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
			crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
1210 1211
		else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
			crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		else
			crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
	}

	return ret;
}

static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1224 1225 1226 1227 1228 1229
		/* Do we have all required base algorithms available? */
		if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
		    safexcel_algs[i]->algo_mask)
			/* No, so don't unregister this ciphersuite */
			continue;

1230 1231
		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
			crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
1232 1233
		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
			crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
1234 1235 1236 1237 1238 1239 1240
		else
			crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
	}
}

static void safexcel_configure(struct safexcel_crypto_priv *priv)
{
1241
	u32 val, mask = 0;
1242

1243
	val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
1244 1245

	/* Read number of PEs from the engine */
1246
	if (priv->flags & SAFEXCEL_HW_EIP197)
1247 1248
		/* Wider field width for all EIP197 type engines */
		mask = EIP197_N_PES_MASK;
1249 1250 1251
	else
		/* Narrow field width for EIP97 type engine */
		mask = EIP97_N_PES_MASK;
1252

1253 1254
	priv->config.pes = (val >> EIP197_N_PES_OFFSET) & mask;

1255 1256
	priv->config.rings = min_t(u32, val & GENMASK(3, 0), max_rings);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	val = (val & GENMASK(27, 25)) >> 25;
	mask = BIT(val) - 1;

	priv->config.cd_size = (sizeof(struct safexcel_command_desc) / sizeof(u32));
	priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;

	priv->config.rd_size = (sizeof(struct safexcel_result_desc) / sizeof(u32));
	priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
}

1267 1268 1269 1270
static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
{
	struct safexcel_register_offsets *offsets = &priv->offsets;

1271
	if (priv->flags & SAFEXCEL_HW_EIP197) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		offsets->hia_aic	= EIP197_HIA_AIC_BASE;
		offsets->hia_aic_g	= EIP197_HIA_AIC_G_BASE;
		offsets->hia_aic_r	= EIP197_HIA_AIC_R_BASE;
		offsets->hia_aic_xdr	= EIP197_HIA_AIC_xDR_BASE;
		offsets->hia_dfe	= EIP197_HIA_DFE_BASE;
		offsets->hia_dfe_thr	= EIP197_HIA_DFE_THR_BASE;
		offsets->hia_dse	= EIP197_HIA_DSE_BASE;
		offsets->hia_dse_thr	= EIP197_HIA_DSE_THR_BASE;
		offsets->hia_gen_cfg	= EIP197_HIA_GEN_CFG_BASE;
		offsets->pe		= EIP197_PE_BASE;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		offsets->global		= EIP197_GLOBAL_BASE;
	} else {
		offsets->hia_aic	= EIP97_HIA_AIC_BASE;
		offsets->hia_aic_g	= EIP97_HIA_AIC_G_BASE;
		offsets->hia_aic_r	= EIP97_HIA_AIC_R_BASE;
		offsets->hia_aic_xdr	= EIP97_HIA_AIC_xDR_BASE;
		offsets->hia_dfe	= EIP97_HIA_DFE_BASE;
		offsets->hia_dfe_thr	= EIP97_HIA_DFE_THR_BASE;
		offsets->hia_dse	= EIP97_HIA_DSE_BASE;
		offsets->hia_dse_thr	= EIP97_HIA_DSE_THR_BASE;
		offsets->hia_gen_cfg	= EIP97_HIA_GEN_CFG_BASE;
		offsets->pe		= EIP97_PE_BASE;
		offsets->global		= EIP97_GLOBAL_BASE;
1295 1296 1297
	}
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/*
 * Generic part of probe routine, shared by platform and PCI driver
 *
 * Assumes IO resources have been mapped, private data mem has been allocated,
 * clocks have been enabled, device pointer has been assigned etc.
 *
 */
static int safexcel_probe_generic(void *pdev,
				  struct safexcel_crypto_priv *priv,
				  int is_pci_dev)
1308
{
1309
	struct device *dev = priv->dev;
1310
	u32 peid, version, mask, val, hiaopt;
1311
	int i, ret, hwctg;
1312

1313 1314 1315 1316
	priv->context_pool = dmam_pool_create("safexcel-context", dev,
					      sizeof(struct safexcel_context_record),
					      1, 0);
	if (!priv->context_pool)
1317 1318
		return -ENOMEM;

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * First try the EIP97 HIA version regs
	 * For the EIP197, this is guaranteed to NOT return any of the test
	 * values
	 */
	version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION);

	mask = 0;  /* do not swap */
	if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
		priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
	} else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) {
		/* read back byte-swapped, so complement byte swap bits */
		mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
		priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
	} else {
		/* So it wasn't an EIP97 ... maybe it's an EIP197? */
		version = readl(priv->base + EIP197_HIA_AIC_BASE +
				EIP197_HIA_VERSION);
		if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
			priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
			priv->flags |= SAFEXCEL_HW_EIP197;
		} else if (EIP197_REG_HI16(version) ==
			   EIP197_HIA_VERSION_BE) {
			/* read back byte-swapped, so complement swap bits */
			mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
			priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
			priv->flags |= SAFEXCEL_HW_EIP197;
		} else {
			return -ENODEV;
		}
	}

	/* Now initialize the reg offsets based on the probing info so far */
1352
	safexcel_init_register_offsets(priv);
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * If the version was read byte-swapped, we need to flip the device
	 * swapping Keep in mind here, though, that what we write will also be
	 * byte-swapped ...
	 */
	if (mask) {
		val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
		val = val ^ (mask >> 24); /* toggle byte swap bits */
		writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
	}

	/*
	 * We're not done probing yet! We may fall through to here if no HIA
	 * was found at all. So, with the endianness presumably correct now and
	 * the offsets setup, *really* probe for the EIP97/EIP197.
	 */
	version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION);
	if (((priv->flags & SAFEXCEL_HW_EIP197) &&
	     (EIP197_REG_LO16(version) != EIP197_VERSION_LE)) ||
	    ((!(priv->flags & SAFEXCEL_HW_EIP197) &&
	     (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) {
		/*
		 * We did not find the device that matched our initial probing
		 * (or our initial probing failed) Report appropriate error.
		 */
		return -ENODEV;
	}

	priv->hwconfig.hwver = EIP197_VERSION_MASK(version);
	hwctg = version >> 28;
	peid = version & 255;

	/* Detect EIP96 packet engine and version */
	version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0));
	if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
		dev_err(dev, "EIP%d: EIP96 not detected.\n", peid);
		return -ENODEV;
	}
	priv->hwconfig.pever = EIP197_VERSION_MASK(version);

1394 1395 1396 1397 1398 1399 1400 1401 1402
	hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS);

	if (priv->flags & SAFEXCEL_HW_EIP197) {
		/* EIP197 */
		priv->hwconfig.hwdataw  = (hiaopt >> EIP197_HWDATAW_OFFSET) &
					  EIP197_HWDATAW_MASK;
		priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) &
					   EIP197_CFSIZE_MASK) +
					  EIP197_CFSIZE_ADJUST;
1403 1404 1405
		priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) &
					   EIP197_RFSIZE_MASK) +
					  EIP197_RFSIZE_ADJUST;
1406 1407 1408 1409 1410 1411
	} else {
		/* EIP97 */
		priv->hwconfig.hwdataw  = (hiaopt >> EIP197_HWDATAW_OFFSET) &
					  EIP97_HWDATAW_MASK;
		priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) &
					  EIP97_CFSIZE_MASK;
1412 1413
		priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) &
					  EIP97_RFSIZE_MASK;
1414 1415
	}

1416 1417 1418 1419
	/* Get supported algorithms from EIP96 transform engine */
	priv->hwconfig.algo_flags = readl(EIP197_PE(priv) +
				    EIP197_PE_EIP96_OPTIONS(0));

1420
	/* Print single info line describing what we just detected */
1421 1422
	dev_info(priv->dev, "EIP%d:%x(%d)-HIA:%x(%d,%d,%d),PE:%x,alg:%08x\n",
		 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hiaver,
1423
		 priv->hwconfig.hwdataw, priv->hwconfig.hwcfsize,
1424 1425
		 priv->hwconfig.hwrfsize, priv->hwconfig.pever,
		 priv->hwconfig.algo_flags);
1426

1427
	safexcel_configure(priv);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (IS_ENABLED(CONFIG_PCI) && priv->version == EIP197_DEVBRD) {
		/*
		 * Request MSI vectors for global + 1 per ring -
		 * or just 1 for older dev images
		 */
		struct pci_dev *pci_pdev = pdev;

		ret = pci_alloc_irq_vectors(pci_pdev,
					    priv->config.rings + 1,
					    priv->config.rings + 1,
					    PCI_IRQ_MSI | PCI_IRQ_MSIX);
		if (ret < 0) {
			dev_err(dev, "Failed to allocate PCI MSI interrupts\n");
1442 1443 1444 1445
			return ret;
		}
	}

1446
	/* Register the ring IRQ handlers and configure the rings */
1447 1448
	priv->ring = devm_kcalloc(dev, priv->config.rings,
				  sizeof(*priv->ring),
1449
				  GFP_KERNEL);
1450 1451
	if (!priv->ring)
		return -ENOMEM;
1452

1453
	for (i = 0; i < priv->config.rings; i++) {
1454
		char wq_name[9] = {0};
1455 1456 1457 1458 1459 1460
		int irq;
		struct safexcel_ring_irq_data *ring_irq;

		ret = safexcel_init_ring_descriptors(priv,
						     &priv->ring[i].cdr,
						     &priv->ring[i].rdr);
1461 1462 1463 1464
		if (ret) {
			dev_err(dev, "Failed to initialize rings\n");
			return ret;
		}
1465

1466 1467 1468
		priv->ring[i].rdr_req = devm_kcalloc(dev,
			EIP197_DEFAULT_RING_SIZE,
			sizeof(priv->ring[i].rdr_req),
1469
			GFP_KERNEL);
1470 1471
		if (!priv->ring[i].rdr_req)
			return -ENOMEM;
1472

1473
		ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
1474 1475
		if (!ring_irq)
			return -ENOMEM;
1476 1477 1478 1479

		ring_irq->priv = priv;
		ring_irq->ring = i;

1480 1481 1482 1483
		irq = safexcel_request_ring_irq(pdev,
						EIP197_IRQ_NUMBER(i, is_pci_dev),
						is_pci_dev,
						safexcel_irq_ring,
1484
						safexcel_irq_ring_thread,
1485
						ring_irq);
1486
		if (irq < 0) {
1487 1488
			dev_err(dev, "Failed to get IRQ ID for ring %d\n", i);
			return irq;
1489
		}
1490 1491 1492

		priv->ring[i].work_data.priv = priv;
		priv->ring[i].work_data.ring = i;
1493 1494
		INIT_WORK(&priv->ring[i].work_data.work,
			  safexcel_dequeue_work);
1495 1496

		snprintf(wq_name, 9, "wq_ring%d", i);
1497 1498 1499 1500
		priv->ring[i].workqueue =
			create_singlethread_workqueue(wq_name);
		if (!priv->ring[i].workqueue)
			return -ENOMEM;
1501

1502
		priv->ring[i].requests = 0;
1503 1504
		priv->ring[i].busy = false;

1505 1506 1507
		crypto_init_queue(&priv->ring[i].queue,
				  EIP197_DEFAULT_RING_SIZE);

1508
		spin_lock_init(&priv->ring[i].lock);
1509
		spin_lock_init(&priv->ring[i].queue_lock);
1510 1511 1512 1513 1514 1515
	}

	atomic_set(&priv->ring_used, 0);

	ret = safexcel_hw_init(priv);
	if (ret) {
1516 1517
		dev_err(dev, "HW init failed (%d)\n", ret);
		return ret;
1518 1519 1520 1521 1522
	}

	ret = safexcel_register_algorithms(priv);
	if (ret) {
		dev_err(dev, "Failed to register algorithms (%d)\n", ret);
1523
		return ret;
1524 1525 1526 1527 1528
	}

	return 0;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
{
	int i;

	for (i = 0; i < priv->config.rings; i++) {
		/* clear any pending interrupt */
		writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
		writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);

		/* Reset the CDR base address */
		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);

		/* Reset the RDR base address */
		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
	}
}
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
#if IS_ENABLED(CONFIG_OF)
/* for Device Tree platform driver */

static int safexcel_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct safexcel_crypto_priv *priv;
	int ret;

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->dev = dev;
	priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev);

	platform_set_drvdata(pdev, priv);

	priv->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(priv->base)) {
		dev_err(dev, "failed to get resource\n");
		return PTR_ERR(priv->base);
	}

	priv->clk = devm_clk_get(&pdev->dev, NULL);
	ret = PTR_ERR_OR_ZERO(priv->clk);
	/* The clock isn't mandatory */
	if  (ret != -ENOENT) {
		if (ret)
			return ret;

		ret = clk_prepare_enable(priv->clk);
		if (ret) {
			dev_err(dev, "unable to enable clk (%d)\n", ret);
			return ret;
		}
	}

	priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
	ret = PTR_ERR_OR_ZERO(priv->reg_clk);
	/* The clock isn't mandatory */
	if  (ret != -ENOENT) {
		if (ret)
			goto err_core_clk;

		ret = clk_prepare_enable(priv->reg_clk);
		if (ret) {
			dev_err(dev, "unable to enable reg clk (%d)\n", ret);
			goto err_core_clk;
		}
	}

	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
	if (ret)
		goto err_reg_clk;

	/* Generic EIP97/EIP197 device probing */
	ret = safexcel_probe_generic(pdev, priv, 0);
	if (ret)
		goto err_reg_clk;

	return 0;

err_reg_clk:
	clk_disable_unprepare(priv->reg_clk);
err_core_clk:
	clk_disable_unprepare(priv->clk);
	return ret;
}

1618 1619 1620 1621 1622 1623
static int safexcel_remove(struct platform_device *pdev)
{
	struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
	int i;

	safexcel_unregister_algorithms(priv);
1624 1625
	safexcel_hw_reset_rings(priv);

1626 1627 1628 1629 1630 1631 1632 1633 1634
	clk_disable_unprepare(priv->clk);

	for (i = 0; i < priv->config.rings; i++)
		destroy_workqueue(priv->ring[i].workqueue);

	return 0;
}

static const struct of_device_id safexcel_of_match_table[] = {
1635
	{
1636
		.compatible = "inside-secure,safexcel-eip97ies",
1637
		.data = (void *)EIP97IES_MRVL,
1638 1639 1640
	},
	{
		.compatible = "inside-secure,safexcel-eip197b",
1641
		.data = (void *)EIP197B_MRVL,
1642
	},
1643 1644
	{
		.compatible = "inside-secure,safexcel-eip197d",
1645
		.data = (void *)EIP197D_MRVL,
1646
	},
1647
	/* For backward compatibility and intended for generic use */
1648
	{
1649
		.compatible = "inside-secure,safexcel-eip97",
1650
		.data = (void *)EIP97IES_MRVL,
1651 1652 1653
	},
	{
		.compatible = "inside-secure,safexcel-eip197",
1654
		.data = (void *)EIP197B_MRVL,
1655
	},
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	{},
};

static struct platform_driver  crypto_safexcel = {
	.probe		= safexcel_probe,
	.remove		= safexcel_remove,
	.driver		= {
		.name	= "crypto-safexcel",
		.of_match_table = safexcel_of_match_table,
	},
};
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
#endif

#if IS_ENABLED(CONFIG_PCI)
/* PCIE devices - i.e. Inside Secure development boards */

static int safexcel_pci_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct device *dev = &pdev->dev;
	struct safexcel_crypto_priv *priv;
	void __iomem *pciebase;
	int rc;
	u32 val;

	dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n",
		ent->vendor, ent->device, ent->subvendor,
		ent->subdevice, ent->driver_data);

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->dev = dev;
	priv->version = (enum safexcel_eip_version)ent->driver_data;

	pci_set_drvdata(pdev, priv);

	/* enable the device */
	rc = pcim_enable_device(pdev);
	if (rc) {
		dev_err(dev, "Failed to enable PCI device\n");
		return rc;
	}

	/* take ownership of PCI BAR0 */
	rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel");
	if (rc) {
		dev_err(dev, "Failed to map IO region for BAR0\n");
		return rc;
	}
	priv->base = pcim_iomap_table(pdev)[0];

	if (priv->version == EIP197_DEVBRD) {
		dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n");

		rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel");
		if (rc) {
			dev_err(dev, "Failed to map IO region for BAR4\n");
			return rc;
		}

		pciebase = pcim_iomap_table(pdev)[2];
		val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR);
		if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) {
			dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n",
				(val & 0xff));

			/* Setup MSI identity map mapping */
			writel(EIP197_XLX_USER_VECT_LUT0_IDENT,
			       pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR);
			writel(EIP197_XLX_USER_VECT_LUT1_IDENT,
			       pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR);
			writel(EIP197_XLX_USER_VECT_LUT2_IDENT,
			       pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR);
			writel(EIP197_XLX_USER_VECT_LUT3_IDENT,
			       pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR);

			/* Enable all device interrupts */
			writel(GENMASK(31, 0),
			       pciebase + EIP197_XLX_USER_INT_ENB_MSK);
		} else {
			dev_err(dev, "Unrecognised IRQ block identifier %x\n",
				val);
			return -ENODEV;
		}

		/* HW reset FPGA dev board */
		/* assert reset */
		writel(1, priv->base + EIP197_XLX_GPIO_BASE);
		wmb(); /* maintain strict ordering for accesses here */
		/* deassert reset */
		writel(0, priv->base + EIP197_XLX_GPIO_BASE);
		wmb(); /* maintain strict ordering for accesses here */
	}

	/* enable bus mastering */
	pci_set_master(pdev);

	/* Generic EIP97/EIP197 device probing */
	rc = safexcel_probe_generic(pdev, priv, 1);
	return rc;
}

void safexcel_pci_remove(struct pci_dev *pdev)
{
	struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev);
	int i;

	safexcel_unregister_algorithms(priv);

	for (i = 0; i < priv->config.rings; i++)
		destroy_workqueue(priv->ring[i].workqueue);

	safexcel_hw_reset_rings(priv);
}

static const struct pci_device_id safexcel_pci_ids[] = {
	{
		PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038,
			       0x16ae, 0xc522),
		.driver_data = EIP197_DEVBRD,
	},
	{},
};

MODULE_DEVICE_TABLE(pci, safexcel_pci_ids);

static struct pci_driver safexcel_pci_driver = {
	.name          = "crypto-safexcel",
	.id_table      = safexcel_pci_ids,
	.probe         = safexcel_pci_probe,
	.remove        = safexcel_pci_remove,
};
#endif

1792 1793 1794 1795
/* Unfortunately, we have to resort to global variables here */
#if IS_ENABLED(CONFIG_PCI)
int pcireg_rc = -EINVAL; /* Default safe value */
#endif
1796
#if IS_ENABLED(CONFIG_OF)
1797
int ofreg_rc = -EINVAL; /* Default safe value */
1798 1799
#endif

1800 1801
static int __init safexcel_init(void)
{
1802
#if IS_ENABLED(CONFIG_PCI)
1803 1804
	/* Register PCI driver */
	pcireg_rc = pci_register_driver(&safexcel_pci_driver);
1805 1806
#endif

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
#if IS_ENABLED(CONFIG_OF)
	/* Register platform driver */
	ofreg_rc = platform_driver_register(&crypto_safexcel);
 #if IS_ENABLED(CONFIG_PCI)
	/* Return success if either PCI or OF registered OK */
	return pcireg_rc ? ofreg_rc : 0;
 #else
	return ofreg_rc;
 #endif
#else
 #if IS_ENABLED(CONFIG_PCI)
	return pcireg_rc;
 #else
	return -EINVAL;
 #endif
#endif
1823 1824 1825 1826 1827
}

static void __exit safexcel_exit(void)
{
#if IS_ENABLED(CONFIG_OF)
1828 1829
	/* Unregister platform driver */
	if (!ofreg_rc)
1830 1831 1832 1833
		platform_driver_unregister(&crypto_safexcel);
#endif

#if IS_ENABLED(CONFIG_PCI)
1834 1835
	/* Unregister PCI driver if successfully registered before */
	if (!pcireg_rc)
1836 1837 1838 1839 1840 1841
		pci_unregister_driver(&safexcel_pci_driver);
#endif
}

module_init(safexcel_init);
module_exit(safexcel_exit);
1842 1843 1844 1845

MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
1846
MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197");
1847
MODULE_LICENSE("GPL v2");