safexcel.c 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2017 Marvell
 *
 * Antoine Tenart <antoine.tenart@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>

23
#include <crypto/internal/aead.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>

#include "safexcel.h"

static u32 max_rings = EIP197_MAX_RINGS;
module_param(max_rings, uint, 0644);
MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");

static void eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
{
	u32 val, htable_offset;
	int i;

	/* Enable the record cache memory access */
	val = readl(priv->base + EIP197_CS_RAM_CTRL);
	val &= ~EIP197_TRC_ENABLE_MASK;
	val |= EIP197_TRC_ENABLE_0;
	writel(val, priv->base + EIP197_CS_RAM_CTRL);

	/* Clear all ECC errors */
	writel(0, priv->base + EIP197_TRC_ECCCTRL);

	/*
	 * Make sure the cache memory is accessible by taking record cache into
	 * reset.
	 */
	val = readl(priv->base + EIP197_TRC_PARAMS);
	val |= EIP197_TRC_PARAMS_SW_RESET;
	val &= ~EIP197_TRC_PARAMS_DATA_ACCESS;
	writel(val, priv->base + EIP197_TRC_PARAMS);

	/* Clear all records */
	for (i = 0; i < EIP197_CS_RC_MAX; i++) {
		u32 val, offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;

		writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
		       EIP197_CS_RC_PREV(EIP197_RC_NULL),
		       priv->base + offset);

		val = EIP197_CS_RC_NEXT(i+1) | EIP197_CS_RC_PREV(i-1);
		if (i == 0)
			val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
		else if (i == EIP197_CS_RC_MAX - 1)
			val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
		writel(val, priv->base + offset + sizeof(u32));
	}

	/* Clear the hash table entries */
	htable_offset = EIP197_CS_RC_MAX * EIP197_CS_RC_SIZE;
	for (i = 0; i < 64; i++)
		writel(GENMASK(29, 0),
		       priv->base + EIP197_CLASSIFICATION_RAMS + htable_offset + i * sizeof(u32));

	/* Disable the record cache memory access */
	val = readl(priv->base + EIP197_CS_RAM_CTRL);
	val &= ~EIP197_TRC_ENABLE_MASK;
	writel(val, priv->base + EIP197_CS_RAM_CTRL);

	/* Write head and tail pointers of the record free chain */
	val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
	      EIP197_TRC_FREECHAIN_TAIL_PTR(EIP197_CS_RC_MAX - 1);
	writel(val, priv->base + EIP197_TRC_FREECHAIN);

	/* Configure the record cache #1 */
	val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(EIP197_CS_TRC_REC_WC) |
	      EIP197_TRC_PARAMS2_HTABLE_PTR(EIP197_CS_RC_MAX);
	writel(val, priv->base + EIP197_TRC_PARAMS2);

	/* Configure the record cache #2 */
	val = EIP197_TRC_PARAMS_RC_SZ_LARGE(EIP197_CS_TRC_LG_REC_WC) |
	      EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
	      EIP197_TRC_PARAMS_HTABLE_SZ(2);
	writel(val, priv->base + EIP197_TRC_PARAMS);
}

static void eip197_write_firmware(struct safexcel_crypto_priv *priv,
				  const struct firmware *fw, u32 ctrl,
				  u32 prog_en)
{
	const u32 *data = (const u32 *)fw->data;
	u32 val;
	int i;

	/* Reset the engine to make its program memory accessible */
	writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
	       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
	       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
112
	       EIP197_PE(priv) + ctrl);
113 114

	/* Enable access to the program memory */
115
	writel(prog_en, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL);
116 117 118 119 120 121 122

	/* Write the firmware */
	for (i = 0; i < fw->size / sizeof(u32); i++)
		writel(be32_to_cpu(data[i]),
		       priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(u32));

	/* Disable access to the program memory */
123
	writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL);
124 125

	/* Release engine from reset */
126
	val = readl(EIP197_PE(priv) + ctrl);
127
	val &= ~EIP197_PE_ICE_x_CTRL_SW_RESET;
128
	writel(val, EIP197_PE(priv) + ctrl);
129 130 131 132 133 134
}

static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
{
	const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
	const struct firmware *fw[FW_NB];
135
	char fw_path[31];
136 137 138 139
	int i, j, ret = 0;
	u32 val;

	for (i = 0; i < FW_NB; i++) {
140 141
		snprintf(fw_path, 31, "inside-secure/eip197b/%s", fw_name[i]);
		ret = request_firmware(&fw[i], fw_path, priv->dev);
142
		if (ret) {
143 144 145 146 147 148 149 150
			/* Fallback to the old firmware location. */
			ret = request_firmware(&fw[i], fw_name[i], priv->dev);
			if (ret) {
				dev_err(priv->dev,
					"Failed to request firmware %s (%d)\n",
					fw_name[i], ret);
				goto release_fw;
			}
151
		}
152
	}
153 154

	/* Clear the scratchpad memory */
155
	val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL);
156 157 158 159
	val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
	       EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
	       EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
	       EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
160
	writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL);
161

162 163
	memset_io(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_RAM, 0,
		  EIP197_NUM_OF_SCRATCH_BLOCKS * sizeof(u32));
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	eip197_write_firmware(priv, fw[FW_IFPP], EIP197_PE_ICE_FPP_CTRL,
			      EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN);

	eip197_write_firmware(priv, fw[FW_IPUE], EIP197_PE_ICE_PUE_CTRL,
			      EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN);

release_fw:
	for (j = 0; j < i; j++)
		release_firmware(fw[j]);

	return ret;
}

static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
{
	u32 hdw, cd_size_rnd, val;
	int i;

183
	hdw = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
184 185 186 187 188 189 190 191
	hdw &= GENMASK(27, 25);
	hdw >>= 25;

	cd_size_rnd = (priv->config.cd_size + (BIT(hdw) - 1)) >> hdw;

	for (i = 0; i < priv->config.rings; i++) {
		/* ring base address */
		writel(lower_32_bits(priv->ring[i].cdr.base_dma),
192
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
193
		writel(upper_32_bits(priv->ring[i].cdr.base_dma),
194
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
195 196 197

		writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.cd_offset << 16) |
		       priv->config.cd_size,
198
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
199 200
		writel(((EIP197_FETCH_COUNT * (cd_size_rnd << hdw)) << 16) |
		       (EIP197_FETCH_COUNT * priv->config.cd_offset),
201
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
202 203 204 205

		/* Configure DMA tx control */
		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
206
		writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
207 208 209

		/* clear any pending interrupt */
		writel(GENMASK(5, 0),
210
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
211 212 213 214 215 216 217 218 219 220
	}

	return 0;
}

static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
{
	u32 hdw, rd_size_rnd, val;
	int i;

221
	hdw = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
222 223 224 225 226 227 228 229
	hdw &= GENMASK(27, 25);
	hdw >>= 25;

	rd_size_rnd = (priv->config.rd_size + (BIT(hdw) - 1)) >> hdw;

	for (i = 0; i < priv->config.rings; i++) {
		/* ring base address */
		writel(lower_32_bits(priv->ring[i].rdr.base_dma),
230
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
231
		writel(upper_32_bits(priv->ring[i].rdr.base_dma),
232
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
233 234 235

		writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 16) |
		       priv->config.rd_size,
236
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
237 238 239

		writel(((EIP197_FETCH_COUNT * (rd_size_rnd << hdw)) << 16) |
		       (EIP197_FETCH_COUNT * priv->config.rd_offset),
240
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
241 242 243 244

		/* Configure DMA tx control */
		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
245
		val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
246
		writel(val,
247
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
248 249 250

		/* clear any pending interrupt */
		writel(GENMASK(7, 0),
251
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
252 253

		/* enable ring interrupt */
254
		val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
255
		val |= EIP197_RDR_IRQ(i);
256
		writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
257 258 259 260 261 262 263 264 265 266 267
	}

	return 0;
}

static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
{
	u32 version, val;
	int i, ret;

	/* Determine endianess and configure byte swap */
268 269
	version = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_VERSION);
	val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
270 271 272 273 274 275

	if ((version & 0xffff) == EIP197_HIA_VERSION_BE)
		val |= EIP197_MST_CTRL_BYTE_SWAP;
	else if (((version >> 16) & 0xffff) == EIP197_HIA_VERSION_LE)
		val |= (EIP197_MST_CTRL_NO_BYTE_SWAP >> 24);

276
	writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
277 278 279 280

	/* Configure wr/rd cache values */
	writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
	       EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
281
	       EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
282 283 284 285

	/* Interrupts reset */

	/* Disable all global interrupts */
286
	writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
287 288

	/* Clear any pending interrupt */
289
	writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
290 291 292 293 294

	/* Data Fetch Engine configuration */

	/* Reset all DFE threads */
	writel(EIP197_DxE_THR_CTRL_RESET_PE,
295
	       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL);
296

297 298 299 300 301
	if (priv->version == EIP197) {
		/* Reset HIA input interface arbiter */
		writel(EIP197_HIA_RA_PE_CTRL_RESET,
		       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL);
	}
302 303 304

	/* DMA transfer size to use */
	val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
305 306
	val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
	val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) | EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
307 308
	val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
	val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
309
	writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG);
310 311

	/* Leave the DFE threads reset state */
312
	writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL);
313 314

	/* Configure the procesing engine thresholds */
315
	writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | EIP197_PE_IN_xBUF_THRES_MAX(9),
316
	       EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES);
317
	writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | EIP197_PE_IN_xBUF_THRES_MAX(7),
318
	       EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES);
319

320 321 322 323 324 325
	if (priv->version == EIP197) {
		/* enable HIA input interface arbiter and rings */
		writel(EIP197_HIA_RA_PE_CTRL_EN |
		       GENMASK(priv->config.rings - 1, 0),
		       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL);
	}
326 327 328 329 330

	/* Data Store Engine configuration */

	/* Reset all DSE threads */
	writel(EIP197_DxE_THR_CTRL_RESET_PE,
331
	       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL);
332 333

	/* Wait for all DSE threads to complete */
334
	while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT) &
335 336 337 338 339 340
		GENMASK(15, 12)) != GENMASK(15, 12))
		;

	/* DMA transfer size to use */
	val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
	val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(7) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(8);
341
	val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
342
	val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
343 344 345 346 347 348
	/* FIXME: instability issues can occur for EIP97 but disabling it impact
	 * performances.
	 */
	if (priv->version == EIP197)
		val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
	writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG);
349 350

	/* Leave the DSE threads reset state */
351
	writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL);
352 353 354

	/* Configure the procesing engine thresholds */
	writel(EIP197_PE_OUT_DBUF_THRES_MIN(7) | EIP197_PE_OUT_DBUF_THRES_MAX(8),
355
	       EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES);
356 357 358 359 360 361

	/* Processing Engine configuration */

	/* H/W capabilities selection */
	val = EIP197_FUNCTION_RSVD;
	val |= EIP197_PROTOCOL_ENCRYPT_ONLY | EIP197_PROTOCOL_HASH_ONLY;
362
	val |= EIP197_PROTOCOL_ENCRYPT_HASH | EIP197_PROTOCOL_HASH_DECRYPT;
363 364
	val |= EIP197_ALG_AES_ECB | EIP197_ALG_AES_CBC;
	val |= EIP197_ALG_SHA1 | EIP197_ALG_HMAC_SHA1;
365
	val |= EIP197_ALG_SHA2 | EIP197_ALG_HMAC_SHA2;
366
	writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN);
367 368 369 370 371

	/* Command Descriptor Rings prepare */
	for (i = 0; i < priv->config.rings; i++) {
		/* Clear interrupts for this ring */
		writel(GENMASK(31, 0),
372
		       EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
373 374

		/* Disable external triggering */
375
		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
376 377 378

		/* Clear the pending prepared counter */
		writel(EIP197_xDR_PREP_CLR_COUNT,
379
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
380 381 382

		/* Clear the pending processed counter */
		writel(EIP197_xDR_PROC_CLR_COUNT,
383
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
384 385

		writel(0,
386
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
387
		writel(0,
388
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
389 390

		writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset) << 2,
391
		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
392 393 394 395 396
	}

	/* Result Descriptor Ring prepare */
	for (i = 0; i < priv->config.rings; i++) {
		/* Disable external triggering*/
397
		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
398 399 400

		/* Clear the pending prepared counter */
		writel(EIP197_xDR_PREP_CLR_COUNT,
401
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
402 403 404

		/* Clear the pending processed counter */
		writel(EIP197_xDR_PROC_CLR_COUNT,
405
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
406 407

		writel(0,
408
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
409
		writel(0,
410
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
411 412 413

		/* Ring size */
		writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset) << 2,
414
		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
415 416 417 418
	}

	/* Enable command descriptor rings */
	writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
419
	       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL);
420 421 422

	/* Enable result descriptor rings */
	writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
423
	       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL);
424 425

	/* Clear any HIA interrupt */
426
	writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
427

428 429
	if (priv->version == EIP197) {
		eip197_trc_cache_init(priv);
430

431 432 433 434
		ret = eip197_load_firmwares(priv);
		if (ret)
			return ret;
	}
435 436 437 438 439 440 441

	safexcel_hw_setup_cdesc_rings(priv);
	safexcel_hw_setup_rdesc_rings(priv);

	return 0;
}

442
/* Called with ring's lock taken */
443 444
static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
				       int ring)
445
{
446
	int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
447 448

	if (!coal)
449
		return;
450 451 452 453

	/* Configure when we want an interrupt */
	writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
	       EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
454
	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
455 456
}

457
void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
458 459 460 461
{
	struct crypto_async_request *req, *backlog;
	struct safexcel_context *ctx;
	struct safexcel_request *request;
462
	int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
463

464 465 466 467 468 469 470 471
	/* If a request wasn't properly dequeued because of a lack of resources,
	 * proceeded it first,
	 */
	req = priv->ring[ring].req;
	backlog = priv->ring[ring].backlog;
	if (req)
		goto handle_req;

472
	while (true) {
473 474
		spin_lock_bh(&priv->ring[ring].queue_lock);
		backlog = crypto_get_backlog(&priv->ring[ring].queue);
475
		req = crypto_dequeue_request(&priv->ring[ring].queue);
476
		spin_unlock_bh(&priv->ring[ring].queue_lock);
477

478 479 480
		if (!req) {
			priv->ring[ring].req = NULL;
			priv->ring[ring].backlog = NULL;
481
			goto finalize;
482
		}
483

484
handle_req:
485
		request = kzalloc(sizeof(*request), EIP197_GFP_FLAGS(*req));
486 487
		if (!request)
			goto request_failed;
488 489

		ctx = crypto_tfm_ctx(req->tfm);
490
		ret = ctx->send(req, ring, request, &commands, &results);
491 492
		if (ret) {
			kfree(request);
493
			goto request_failed;
494 495 496 497 498
		}

		if (backlog)
			backlog->complete(backlog, -EINPROGRESS);

499 500 501 502 503 504 505 506 507
		/* In case the send() helper did not issue any command to push
		 * to the engine because the input data was cached, continue to
		 * dequeue other requests as this is valid and not an error.
		 */
		if (!commands && !results) {
			kfree(request);
			continue;
		}

508 509 510
		spin_lock_bh(&priv->ring[ring].egress_lock);
		list_add_tail(&request->list, &priv->ring[ring].list);
		spin_unlock_bh(&priv->ring[ring].egress_lock);
511

512 513
		cdesc += commands;
		rdesc += results;
514 515
		nreq++;
	}
516

517 518 519 520 521 522 523
request_failed:
	/* Not enough resources to handle all the requests. Bail out and save
	 * the request and the backlog for the next dequeue call (per-ring).
	 */
	priv->ring[ring].req = req;
	priv->ring[ring].backlog = backlog;

524
finalize:
525
	if (!nreq)
526 527
		return;

528
	spin_lock_bh(&priv->ring[ring].egress_lock);
529

530 531
	priv->ring[ring].requests += nreq;

532
	if (!priv->ring[ring].busy) {
533
		safexcel_try_push_requests(priv, ring);
534
		priv->ring[ring].busy = true;
535 536 537
	}

	spin_unlock_bh(&priv->ring[ring].egress_lock);
538

539 540
	/* let the RDR know we have pending descriptors */
	writel((rdesc * priv->config.rd_offset) << 2,
541
	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
542

543 544
	/* let the CDR know we have pending descriptors */
	writel((cdesc * priv->config.cd_offset) << 2,
545
	       EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
				       struct safexcel_result_desc *rdesc)
{
	if (likely(!rdesc->result_data.error_code))
		return 0;

	if (rdesc->result_data.error_code & 0x407f) {
		/* Fatal error (bits 0-7, 14) */
		dev_err(priv->dev,
			"cipher: result: result descriptor error (%d)\n",
			rdesc->result_data.error_code);
		return -EIO;
	} else if (rdesc->result_data.error_code == BIT(9)) {
		/* Authentication failed */
		return -EBADMSG;
	}

	/* All other non-fatal errors */
	return -EINVAL;
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
{
	struct safexcel_command_desc *cdesc;

	/* Acknowledge the command descriptors */
	do {
		cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
		if (IS_ERR(cdesc)) {
			dev_err(priv->dev,
				"Could not retrieve the command descriptor\n");
			return;
		}
	} while (!cdesc->last_seg);
}

void safexcel_inv_complete(struct crypto_async_request *req, int error)
{
	struct safexcel_inv_result *result = req->data;

	if (error == -EINPROGRESS)
		return;

	result->error = error;
	complete(&result->completion);
}

int safexcel_invalidate_cache(struct crypto_async_request *async,
			      struct safexcel_crypto_priv *priv,
			      dma_addr_t ctxr_dma, int ring,
			      struct safexcel_request *request)
{
	struct safexcel_command_desc *cdesc;
	struct safexcel_result_desc *rdesc;
	int ret = 0;

	spin_lock_bh(&priv->ring[ring].egress_lock);

	/* Prepare command descriptor */
	cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma);
	if (IS_ERR(cdesc)) {
		ret = PTR_ERR(cdesc);
		goto unlock;
	}

	cdesc->control_data.type = EIP197_TYPE_EXTENDED;
	cdesc->control_data.options = 0;
	cdesc->control_data.refresh = 0;
	cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;

	/* Prepare result descriptor */
	rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);

	if (IS_ERR(rdesc)) {
		ret = PTR_ERR(rdesc);
		goto cdesc_rollback;
	}

	request->req = async;
	goto unlock;

cdesc_rollback:
	safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);

unlock:
	spin_unlock_bh(&priv->ring[ring].egress_lock);
	return ret;
}

static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
						     int ring)
{
	struct safexcel_request *sreq;
	struct safexcel_context *ctx;
642
	int ret, i, nreq, ndesc, tot_descs, handled = 0;
643 644
	bool should_complete;

645 646 647
handle_results:
	tot_descs = 0;

648
	nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
649 650
	nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
	nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
651
	if (!nreq)
652
		goto requests_left;
653 654 655 656 657 658 659 660 661 662 663 664

	for (i = 0; i < nreq; i++) {
		spin_lock_bh(&priv->ring[ring].egress_lock);
		sreq = list_first_entry(&priv->ring[ring].list,
					struct safexcel_request, list);
		list_del(&sreq->list);
		spin_unlock_bh(&priv->ring[ring].egress_lock);

		ctx = crypto_tfm_ctx(sreq->req->tfm);
		ndesc = ctx->handle_result(priv, ring, sreq->req,
					   &should_complete, &ret);
		if (ndesc < 0) {
665
			kfree(sreq);
666
			dev_err(priv->dev, "failed to handle result (%d)", ndesc);
667
			goto acknowledge;
668 669 670 671 672 673 674 675 676
		}

		if (should_complete) {
			local_bh_disable();
			sreq->req->complete(sreq->req, ret);
			local_bh_enable();
		}

		kfree(sreq);
677
		tot_descs += ndesc;
678
		handled++;
679 680 681 682 683 684
	}

acknowledge:
	if (i) {
		writel(EIP197_xDR_PROC_xD_PKT(i) |
		       EIP197_xDR_PROC_xD_COUNT(tot_descs * priv->config.rd_offset),
685
		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
686
	}
687

688 689 690 691 692 693
	/* If the number of requests overflowed the counter, try to proceed more
	 * requests.
	 */
	if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
		goto handle_results;

694 695 696
requests_left:
	spin_lock_bh(&priv->ring[ring].egress_lock);

697 698
	priv->ring[ring].requests -= handled;
	safexcel_try_push_requests(priv, ring);
699

700
	if (!priv->ring[ring].requests)
701 702 703
		priv->ring[ring].busy = false;

	spin_unlock_bh(&priv->ring[ring].egress_lock);
704 705
}

706 707 708 709
static void safexcel_dequeue_work(struct work_struct *work)
{
	struct safexcel_work_data *data =
			container_of(work, struct safexcel_work_data, work);
710

711
	safexcel_dequeue(data->priv, data->ring);
712 713 714 715 716 717 718 719 720 721 722
}

struct safexcel_ring_irq_data {
	struct safexcel_crypto_priv *priv;
	int ring;
};

static irqreturn_t safexcel_irq_ring(int irq, void *data)
{
	struct safexcel_ring_irq_data *irq_data = data;
	struct safexcel_crypto_priv *priv = irq_data->priv;
723
	int ring = irq_data->ring, rc = IRQ_NONE;
724 725
	u32 status, stat;

726
	status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
727
	if (!status)
728
		return rc;
729 730 731

	/* RDR interrupts */
	if (status & EIP197_RDR_IRQ(ring)) {
732
		stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
733 734 735 736 737 738 739 740 741

		if (unlikely(stat & EIP197_xDR_ERR)) {
			/*
			 * Fatal error, the RDR is unusable and must be
			 * reinitialized. This should not happen under
			 * normal circumstances.
			 */
			dev_err(priv->dev, "RDR: fatal error.");
		} else if (likely(stat & EIP197_xDR_THRESH)) {
742
			rc = IRQ_WAKE_THREAD;
743 744 745 746
		}

		/* ACK the interrupts */
		writel(stat & 0xff,
747
		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
748 749 750
	}

	/* ACK the interrupts */
751
	writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766
	return rc;
}

static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
{
	struct safexcel_ring_irq_data *irq_data = data;
	struct safexcel_crypto_priv *priv = irq_data->priv;
	int ring = irq_data->ring;

	safexcel_handle_result_descriptor(priv, ring);

	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);

767 768 769 770 771
	return IRQ_HANDLED;
}

static int safexcel_request_ring_irq(struct platform_device *pdev, const char *name,
				     irq_handler_t handler,
772
				     irq_handler_t threaded_handler,
773 774 775 776 777 778 779 780 781
				     struct safexcel_ring_irq_data *ring_irq_priv)
{
	int ret, irq = platform_get_irq_byname(pdev, name);

	if (irq < 0) {
		dev_err(&pdev->dev, "unable to get IRQ '%s'\n", name);
		return irq;
	}

782 783 784
	ret = devm_request_threaded_irq(&pdev->dev, irq, handler,
					threaded_handler, IRQF_ONESHOT,
					dev_name(&pdev->dev), ring_irq_priv);
785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if (ret) {
		dev_err(&pdev->dev, "unable to request IRQ %d\n", irq);
		return ret;
	}

	return irq;
}

static struct safexcel_alg_template *safexcel_algs[] = {
	&safexcel_alg_ecb_aes,
	&safexcel_alg_cbc_aes,
	&safexcel_alg_sha1,
	&safexcel_alg_sha224,
	&safexcel_alg_sha256,
799
	&safexcel_alg_sha384,
800
	&safexcel_alg_sha512,
801
	&safexcel_alg_hmac_sha1,
802
	&safexcel_alg_hmac_sha224,
803
	&safexcel_alg_hmac_sha256,
804
	&safexcel_alg_hmac_sha384,
805
	&safexcel_alg_hmac_sha512,
806
	&safexcel_alg_authenc_hmac_sha1_cbc_aes,
807
	&safexcel_alg_authenc_hmac_sha224_cbc_aes,
808
	&safexcel_alg_authenc_hmac_sha256_cbc_aes,
809
	&safexcel_alg_authenc_hmac_sha384_cbc_aes,
810
	&safexcel_alg_authenc_hmac_sha512_cbc_aes,
811 812 813 814 815 816 817 818 819 820 821
};

static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
{
	int i, j, ret = 0;

	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
		safexcel_algs[i]->priv = priv;

		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
			ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
822 823
		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
			ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
824 825 826 827 828 829 830 831 832 833 834 835 836
		else
			ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);

		if (ret)
			goto fail;
	}

	return 0;

fail:
	for (j = 0; j < i; j++) {
		if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
			crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
837 838
		else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
			crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
839 840 841 842 843 844 845 846 847 848 849 850 851 852
		else
			crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
	}

	return ret;
}

static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
			crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
853 854
		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
			crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
855 856 857 858 859 860 861 862 863
		else
			crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
	}
}

static void safexcel_configure(struct safexcel_crypto_priv *priv)
{
	u32 val, mask;

864
	val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
865 866 867
	val = (val & GENMASK(27, 25)) >> 25;
	mask = BIT(val) - 1;

868
	val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
869 870 871 872 873 874 875 876 877
	priv->config.rings = min_t(u32, val & GENMASK(3, 0), max_rings);

	priv->config.cd_size = (sizeof(struct safexcel_command_desc) / sizeof(u32));
	priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;

	priv->config.rd_size = (sizeof(struct safexcel_result_desc) / sizeof(u32));
	priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
{
	struct safexcel_register_offsets *offsets = &priv->offsets;

	if (priv->version == EIP197) {
		offsets->hia_aic	= EIP197_HIA_AIC_BASE;
		offsets->hia_aic_g	= EIP197_HIA_AIC_G_BASE;
		offsets->hia_aic_r	= EIP197_HIA_AIC_R_BASE;
		offsets->hia_aic_xdr	= EIP197_HIA_AIC_xDR_BASE;
		offsets->hia_dfe	= EIP197_HIA_DFE_BASE;
		offsets->hia_dfe_thr	= EIP197_HIA_DFE_THR_BASE;
		offsets->hia_dse	= EIP197_HIA_DSE_BASE;
		offsets->hia_dse_thr	= EIP197_HIA_DSE_THR_BASE;
		offsets->hia_gen_cfg	= EIP197_HIA_GEN_CFG_BASE;
		offsets->pe		= EIP197_PE_BASE;
	} else {
		offsets->hia_aic	= EIP97_HIA_AIC_BASE;
		offsets->hia_aic_g	= EIP97_HIA_AIC_G_BASE;
		offsets->hia_aic_r	= EIP97_HIA_AIC_R_BASE;
		offsets->hia_aic_xdr	= EIP97_HIA_AIC_xDR_BASE;
		offsets->hia_dfe	= EIP97_HIA_DFE_BASE;
		offsets->hia_dfe_thr	= EIP97_HIA_DFE_THR_BASE;
		offsets->hia_dse	= EIP97_HIA_DSE_BASE;
		offsets->hia_dse_thr	= EIP97_HIA_DSE_THR_BASE;
		offsets->hia_gen_cfg	= EIP97_HIA_GEN_CFG_BASE;
		offsets->pe		= EIP97_PE_BASE;
	}
}

907 908 909 910 911 912 913 914 915 916 917 918
static int safexcel_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *res;
	struct safexcel_crypto_priv *priv;
	int i, ret;

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->dev = dev;
919 920 921
	priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev);

	safexcel_init_register_offsets(priv);
922 923 924 925 926 927 928 929

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	priv->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(priv->base)) {
		dev_err(dev, "failed to get resource\n");
		return PTR_ERR(priv->base);
	}

930
	priv->clk = devm_clk_get(&pdev->dev, NULL);
931 932 933 934 935 936
	ret = PTR_ERR_OR_ZERO(priv->clk);
	/* The clock isn't mandatory */
	if  (ret != -ENOENT) {
		if (ret)
			return ret;

937 938 939 940 941 942 943
		ret = clk_prepare_enable(priv->clk);
		if (ret) {
			dev_err(dev, "unable to enable clk (%d)\n", ret);
			return ret;
		}
	}

944 945 946 947 948 949 950 951 952 953 954 955 956 957
	priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
	ret = PTR_ERR_OR_ZERO(priv->reg_clk);
	/* The clock isn't mandatory */
	if  (ret != -ENOENT) {
		if (ret)
			goto err_core_clk;

		ret = clk_prepare_enable(priv->reg_clk);
		if (ret) {
			dev_err(dev, "unable to enable reg clk (%d)\n", ret);
			goto err_core_clk;
		}
	}

958
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
959
	if (ret)
960
		goto err_reg_clk;
961 962 963 964 965 966

	priv->context_pool = dmam_pool_create("safexcel-context", dev,
					      sizeof(struct safexcel_context_record),
					      1, 0);
	if (!priv->context_pool) {
		ret = -ENOMEM;
967
		goto err_reg_clk;
968 969 970 971 972 973 974 975 976 977 978 979 980 981
	}

	safexcel_configure(priv);

	for (i = 0; i < priv->config.rings; i++) {
		char irq_name[6] = {0}; /* "ringX\0" */
		char wq_name[9] = {0}; /* "wq_ringX\0" */
		int irq;
		struct safexcel_ring_irq_data *ring_irq;

		ret = safexcel_init_ring_descriptors(priv,
						     &priv->ring[i].cdr,
						     &priv->ring[i].rdr);
		if (ret)
982
			goto err_reg_clk;
983 984 985 986

		ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
		if (!ring_irq) {
			ret = -ENOMEM;
987
			goto err_reg_clk;
988 989 990 991 992 993 994
		}

		ring_irq->priv = priv;
		ring_irq->ring = i;

		snprintf(irq_name, 6, "ring%d", i);
		irq = safexcel_request_ring_irq(pdev, irq_name, safexcel_irq_ring,
995
						safexcel_irq_ring_thread,
996
						ring_irq);
997 998
		if (irq < 0) {
			ret = irq;
999
			goto err_reg_clk;
1000
		}
1001 1002 1003

		priv->ring[i].work_data.priv = priv;
		priv->ring[i].work_data.ring = i;
1004
		INIT_WORK(&priv->ring[i].work_data.work, safexcel_dequeue_work);
1005 1006 1007 1008 1009

		snprintf(wq_name, 9, "wq_ring%d", i);
		priv->ring[i].workqueue = create_singlethread_workqueue(wq_name);
		if (!priv->ring[i].workqueue) {
			ret = -ENOMEM;
1010
			goto err_reg_clk;
1011 1012
		}

1013
		priv->ring[i].requests = 0;
1014 1015
		priv->ring[i].busy = false;

1016 1017 1018
		crypto_init_queue(&priv->ring[i].queue,
				  EIP197_DEFAULT_RING_SIZE);

1019 1020 1021
		INIT_LIST_HEAD(&priv->ring[i].list);
		spin_lock_init(&priv->ring[i].lock);
		spin_lock_init(&priv->ring[i].egress_lock);
1022
		spin_lock_init(&priv->ring[i].queue_lock);
1023 1024 1025 1026 1027 1028 1029 1030
	}

	platform_set_drvdata(pdev, priv);
	atomic_set(&priv->ring_used, 0);

	ret = safexcel_hw_init(priv);
	if (ret) {
		dev_err(dev, "EIP h/w init failed (%d)\n", ret);
1031
		goto err_reg_clk;
1032 1033 1034 1035 1036
	}

	ret = safexcel_register_algorithms(priv);
	if (ret) {
		dev_err(dev, "Failed to register algorithms (%d)\n", ret);
1037
		goto err_reg_clk;
1038 1039 1040 1041
	}

	return 0;

1042 1043 1044
err_reg_clk:
	clk_disable_unprepare(priv->reg_clk);
err_core_clk:
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	clk_disable_unprepare(priv->clk);
	return ret;
}


static int safexcel_remove(struct platform_device *pdev)
{
	struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
	int i;

	safexcel_unregister_algorithms(priv);
	clk_disable_unprepare(priv->clk);

	for (i = 0; i < priv->config.rings; i++)
		destroy_workqueue(priv->ring[i].workqueue);

	return 0;
}

static const struct of_device_id safexcel_of_match_table[] = {
1065 1066 1067 1068 1069 1070 1071 1072
	{
		.compatible = "inside-secure,safexcel-eip97",
		.data = (void *)EIP97,
	},
	{
		.compatible = "inside-secure,safexcel-eip197",
		.data = (void *)EIP197,
	},
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	{},
};


static struct platform_driver  crypto_safexcel = {
	.probe		= safexcel_probe,
	.remove		= safexcel_remove,
	.driver		= {
		.name	= "crypto-safexcel",
		.of_match_table = safexcel_of_match_table,
	},
};
module_platform_driver(crypto_safexcel);

MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
MODULE_DESCRIPTION("Support for SafeXcel cryptographic engine EIP197");
MODULE_LICENSE("GPL v2");