cpufreq_conservative.c 10.8 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

14
#include <linux/slab.h>
15
#include "cpufreq_governor.h"
16

17
/* Conservative governor macros */
18 19
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
20
#define DEF_FREQUENCY_STEP			(5)
21 22
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
23

24
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25

26 27 28 29 30 31 32 33 34 35 36 37
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
					   struct cpufreq_policy *policy)
{
	unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;

	/* max freq cannot be less than 100. But who knows... */
	if (unlikely(freq_target == 0))
		freq_target = DEF_FREQUENCY_STEP;

	return freq_target;
}

38 39
/*
 * Every sampling_rate, we check, if current idle time is less than 20%
40 41 42
 * (default), then we try to increase frequency. Every sampling_rate *
 * sampling_down_factor, we check, if current idle time is more than 80%
 * (default), then we try to decrease frequency
43 44 45 46 47
 *
 * Any frequency increase takes it to the maximum frequency. Frequency reduction
 * happens at minimum steps of 5% (default) of maximum frequency
 */
static void cs_check_cpu(int cpu, unsigned int load)
48
{
49 50
	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51 52
	struct dbs_data *dbs_data = policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53 54 55 56 57

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
58
	if (cs_tuners->freq_step == 0)
59 60 61
		return;

	/* Check for frequency increase */
62
	if (load > cs_tuners->up_threshold) {
63 64 65 66 67 68
		dbs_info->down_skip = 0;

		/* if we are already at full speed then break out early */
		if (dbs_info->requested_freq == policy->max)
			return;

69
		dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70 71
		if (dbs_info->requested_freq > policy->max)
			dbs_info->requested_freq = policy->max;
72

73 74 75 76 77
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
			CPUFREQ_RELATION_H);
		return;
	}

78 79 80 81 82
	/* if sampling_down_factor is active break out early */
	if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
		return;
	dbs_info->down_skip = 0;

83 84
	/* Check for frequency decrease */
	if (load < cs_tuners->down_threshold) {
85 86 87 88 89 90
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

91
		dbs_info->requested_freq -= get_freq_target(cs_tuners, policy);
92 93 94
		if (dbs_info->requested_freq < policy->min)
			dbs_info->requested_freq = policy->min;

95
		__cpufreq_driver_target(policy, dbs_info->requested_freq,
96
				CPUFREQ_RELATION_L);
97 98 99 100
		return;
	}
}

101
static void cs_dbs_timer(struct work_struct *work)
102
{
103 104
	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
			struct cs_cpu_dbs_info_s, cdbs.work.work);
105
	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
106 107
	struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
			cpu);
108 109 110
	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
111
	bool modify_all = true;
112

113
	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
114 115 116
	if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
		modify_all = false;
	else
117
		dbs_check_cpu(dbs_data, cpu);
118

119
	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
120
	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
121 122
}

123 124 125 126 127 128
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		void *data)
{
	struct cpufreq_freqs *freq = data;
	struct cs_cpu_dbs_info_s *dbs_info =
					&per_cpu(cs_cpu_dbs_info, freq->cpu);
129 130
	struct cpufreq_policy *policy;

131
	if (!dbs_info->enable)
132 133
		return 0;

134
	policy = dbs_info->cdbs.cur_policy;
135 136

	/*
137
	 * we only care if our internally tracked freq moves outside the 'valid'
138
	 * ranges of frequency available to us otherwise we do not change it
139
	*/
140 141 142
	if (dbs_info->requested_freq > policy->max
			|| dbs_info->requested_freq < policy->min)
		dbs_info->requested_freq = freq->new;
143 144 145 146

	return 0;
}

147
/************************** sysfs interface ************************/
148
static struct common_dbs_data cs_dbs_cdata;
149

150 151
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
		const char *buf, size_t count)
152
{
153
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
154 155
	unsigned int input;
	int ret;
156
	ret = sscanf(buf, "%u", &input);
157

158
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
159 160
		return -EINVAL;

161
	cs_tuners->sampling_down_factor = input;
162 163 164
	return count;
}

165 166
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
		size_t count)
167
{
168
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
169 170
	unsigned int input;
	int ret;
171
	ret = sscanf(buf, "%u", &input);
172

173
	if (ret != 1)
174
		return -EINVAL;
175

176
	cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
177 178 179
	return count;
}

180 181
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
182
{
183
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
184 185
	unsigned int input;
	int ret;
186
	ret = sscanf(buf, "%u", &input);
187

188
	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
189 190
		return -EINVAL;

191
	cs_tuners->up_threshold = input;
192 193 194
	return count;
}

195 196
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
197
{
198
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
199 200
	unsigned int input;
	int ret;
201
	ret = sscanf(buf, "%u", &input);
202

203 204
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
205
			input >= cs_tuners->up_threshold)
206 207
		return -EINVAL;

208
	cs_tuners->down_threshold = input;
209 210 211
	return count;
}

212 213
static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
		size_t count)
214
{
215
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
216
	unsigned int input, j;
217 218
	int ret;

219 220
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
221 222
		return -EINVAL;

223
	if (input > 1)
224
		input = 1;
225

226
	if (input == cs_tuners->ignore_nice) /* nothing to do */
227
		return count;
228

229
	cs_tuners->ignore_nice = input;
230

231
	/* we need to re-evaluate prev_cpu_idle */
232
	for_each_online_cpu(j) {
233
		struct cs_cpu_dbs_info_s *dbs_info;
234
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
235
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
236
					&dbs_info->cdbs.prev_cpu_wall, 0);
237
		if (cs_tuners->ignore_nice)
238 239
			dbs_info->cdbs.prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
240 241 242 243
	}
	return count;
}

244 245
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
		size_t count)
246
{
247
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
248 249
	unsigned int input;
	int ret;
250
	ret = sscanf(buf, "%u", &input);
251

252
	if (ret != 1)
253 254
		return -EINVAL;

255
	if (input > 100)
256
		input = 100;
257

258 259 260 261
	/*
	 * no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :)
	 */
262
	cs_tuners->freq_step = input;
263 264 265
	return count;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
show_store_one(cs, sampling_rate);
show_store_one(cs, sampling_down_factor);
show_store_one(cs, up_threshold);
show_store_one(cs, down_threshold);
show_store_one(cs, ignore_nice);
show_store_one(cs, freq_step);
declare_show_sampling_rate_min(cs);

gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(down_threshold);
gov_sys_pol_attr_rw(ignore_nice);
gov_sys_pol_attr_rw(freq_step);
gov_sys_pol_attr_ro(sampling_rate_min);

static struct attribute *dbs_attributes_gov_sys[] = {
	&sampling_rate_min_gov_sys.attr,
	&sampling_rate_gov_sys.attr,
	&sampling_down_factor_gov_sys.attr,
	&up_threshold_gov_sys.attr,
	&down_threshold_gov_sys.attr,
	&ignore_nice_gov_sys.attr,
	&freq_step_gov_sys.attr,
290 291 292
	NULL
};

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static struct attribute_group cs_attr_group_gov_sys = {
	.attrs = dbs_attributes_gov_sys,
	.name = "conservative",
};

static struct attribute *dbs_attributes_gov_pol[] = {
	&sampling_rate_min_gov_pol.attr,
	&sampling_rate_gov_pol.attr,
	&sampling_down_factor_gov_pol.attr,
	&up_threshold_gov_pol.attr,
	&down_threshold_gov_pol.attr,
	&ignore_nice_gov_pol.attr,
	&freq_step_gov_pol.attr,
	NULL
};

static struct attribute_group cs_attr_group_gov_pol = {
	.attrs = dbs_attributes_gov_pol,
311 312 313 314 315
	.name = "conservative",
};

/************************** sysfs end ************************/

316 317 318 319 320 321 322 323 324 325 326 327 328 329
static int cs_init(struct dbs_data *dbs_data)
{
	struct cs_dbs_tuners *tuners;

	tuners = kzalloc(sizeof(struct cs_dbs_tuners), GFP_KERNEL);
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
	tuners->ignore_nice = 0;
330
	tuners->freq_step = DEF_FREQUENCY_STEP;
331 332 333 334 335 336 337 338 339 340 341 342 343

	dbs_data->tuners = tuners;
	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
		jiffies_to_usecs(10);
	mutex_init(&dbs_data->mutex);
	return 0;
}

static void cs_exit(struct dbs_data *dbs_data)
{
	kfree(dbs_data->tuners);
}

344
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
345

346 347 348
static struct notifier_block cs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier,
};
349

350 351 352
static struct cs_ops cs_ops = {
	.notifier_block = &cs_cpufreq_notifier_block,
};
353

354
static struct common_dbs_data cs_dbs_cdata = {
355
	.governor = GOV_CONSERVATIVE,
356 357
	.attr_group_gov_sys = &cs_attr_group_gov_sys,
	.attr_group_gov_pol = &cs_attr_group_gov_pol,
358 359 360 361 362
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = cs_dbs_timer,
	.gov_check_cpu = cs_check_cpu,
	.gov_ops = &cs_ops,
363 364
	.init = cs_init,
	.exit = cs_exit,
365
};
366

367
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
368 369
				   unsigned int event)
{
370
	return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
371 372
}

373 374 375
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
376 377
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
378
	.governor		= cs_cpufreq_governor_dbs,
379 380
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
381 382 383 384
};

static int __init cpufreq_gov_dbs_init(void)
{
385
	return cpufreq_register_governor(&cpufreq_gov_conservative);
386 387 388 389
}

static void __exit cpufreq_gov_dbs_exit(void)
{
390
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
391 392
}

393
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
394
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
395 396
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
397
MODULE_LICENSE("GPL");
398

399 400 401
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
402
module_init(cpufreq_gov_dbs_init);
403
#endif
404
module_exit(cpufreq_gov_dbs_exit);