blk-mq.c 81.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-pm.h"
37
#include "blk-stat.h"
38
#include "blk-mq-sched.h"
39
#include "blk-rq-qos.h"
40

41
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47 48
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
49
	ddir = rq_data_dir(rq);
50 51 52 53 54 55 56 57 58 59 60 61
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

62 63 64
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
65
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66
{
67 68
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
69
			blk_mq_sched_has_work(hctx);
70 71
}

72 73 74 75 76 77
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
78 79 80 81
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
82 83 84 85 86
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
87 88 89
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
90 91
}

92 93 94 95 96
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

97
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 99 100 101 102
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

103 104 105 106 107 108 109 110 111
	/*
	 * index[0] counts the specific partition that was asked for. index[1]
	 * counts the ones that are active on the whole device, so increment
	 * that if mi->part is indeed a partition, and not a whole device.
	 */
	if (rq->part == mi->part)
		mi->inflight[0]++;
	if (mi->part->partno)
		mi->inflight[1]++;
112 113

	return true;
114 115 116 117 118 119 120
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

121
	inflight[0] = inflight[1] = 0;
122 123 124
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

125
static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
126 127 128 129 130 131 132
				     struct request *rq, void *priv,
				     bool reserved)
{
	struct mq_inflight *mi = priv;

	if (rq->part == mi->part)
		mi->inflight[rq_data_dir(rq)]++;
133 134

	return true;
135 136 137 138 139 140 141 142 143 144 145
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

	inflight[0] = inflight[1] = 0;
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
}

146
void blk_freeze_queue_start(struct request_queue *q)
147
{
148
	int freeze_depth;
149

150 151
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
152
		percpu_ref_kill(&q->q_usage_counter);
153 154
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
155
	}
156
}
157
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158

159
void blk_mq_freeze_queue_wait(struct request_queue *q)
160
{
161
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162
}
163
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164

165 166 167 168 169 170 171 172
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173

174 175 176 177
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
178
void blk_freeze_queue(struct request_queue *q)
179
{
180 181 182 183 184 185 186
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
187
	blk_freeze_queue_start(q);
188 189
	blk_mq_freeze_queue_wait(q);
}
190 191 192 193 194 195 196 197 198

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
199
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200

201
void blk_mq_unfreeze_queue(struct request_queue *q)
202
{
203
	int freeze_depth;
204

205 206 207
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
208
		percpu_ref_resurrect(&q->q_usage_counter);
209
		wake_up_all(&q->mq_freeze_wq);
210
	}
211
}
212
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213

214 215 216 217 218 219
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
220
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 222 223
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

224
/**
225
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226 227 228
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
229 230 231
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
232 233 234 235 236 237 238
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

239
	blk_mq_quiesce_queue_nowait(q);
240

241 242
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
243
			synchronize_srcu(hctx->srcu);
244 245 246 247 248 249 250 251
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

252 253 254 255 256 257 258 259 260
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
261
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262

263 264
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
265 266 267
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

268 269 270 271 272 273 274 275 276 277
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

278 279 280 281 282 283
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

284 285
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
286
{
287 288
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
289
	req_flags_t rq_flags = 0;
290

291 292 293 294
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
295
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
296
			rq_flags = RQF_MQ_INFLIGHT;
297 298 299 300 301 302 303
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

304
	/* csd/requeue_work/fifo_time is initialized before use */
305 306
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
307
	rq->mq_hctx = data->hctx;
308
	rq->rq_flags = rq_flags;
309
	rq->cmd_flags = op;
310 311
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
312
	if (blk_queue_io_stat(data->q))
313
		rq->rq_flags |= RQF_IO_STAT;
314
	INIT_LIST_HEAD(&rq->queuelist);
315 316 317 318
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
319
	rq->start_time_ns = ktime_get_ns();
320
	rq->io_start_time_ns = 0;
321 322 323 324 325 326 327
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
328
	WRITE_ONCE(rq->deadline, 0);
329

330 331
	rq->timeout = 0;

332 333 334 335
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

336
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
337
	refcount_set(&rq->ref, 1);
338
	return rq;
339 340
}

341
static struct request *blk_mq_get_request(struct request_queue *q,
342 343
					  struct bio *bio,
					  struct blk_mq_alloc_data *data)
344 345 346
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
347
	unsigned int tag;
348
	bool put_ctx_on_error = false;
349 350 351

	blk_queue_enter_live(q);
	data->q = q;
352 353 354 355
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
356
	if (likely(!data->hctx))
357 358 359
		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
						data->ctx->cpu);
	if (data->cmd_flags & REQ_NOWAIT)
360
		data->flags |= BLK_MQ_REQ_NOWAIT;
361 362 363 364 365 366

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
367 368
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
369
		 */
370 371
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
372
		    !(data->flags & BLK_MQ_REQ_RESERVED))
373
			e->type->ops.limit_depth(data->cmd_flags, data);
374 375
	} else {
		blk_mq_tag_busy(data->hctx);
376 377
	}

378 379
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
380 381
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
382 383
			data->ctx = NULL;
		}
384 385
		blk_queue_exit(q);
		return NULL;
386 387
	}

388 389
	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
	if (!op_is_flush(data->cmd_flags)) {
390
		rq->elv.icq = NULL;
391
		if (e && e->type->ops.prepare_request) {
392 393 394
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

395
			e->type->ops.prepare_request(rq, bio);
396
			rq->rq_flags |= RQF_ELVPRIV;
397
		}
398 399 400
	}
	data->hctx->queued++;
	return rq;
401 402
}

403
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
404
		blk_mq_req_flags_t flags)
405
{
406
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
407
	struct request *rq;
408
	int ret;
409

410
	ret = blk_queue_enter(q, flags);
411 412
	if (ret)
		return ERR_PTR(ret);
413

414
	rq = blk_mq_get_request(q, NULL, &alloc_data);
415
	blk_queue_exit(q);
416

417
	if (!rq)
418
		return ERR_PTR(-EWOULDBLOCK);
419

420 421
	blk_mq_put_ctx(alloc_data.ctx);

422 423 424
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
425 426
	return rq;
}
427
EXPORT_SYMBOL(blk_mq_alloc_request);
428

429
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
431
{
432
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
M
Ming Lin 已提交
433
	struct request *rq;
434
	unsigned int cpu;
M
Ming Lin 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

449
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
450 451 452
	if (ret)
		return ERR_PTR(ret);

453 454 455 456
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
457 458 459 460
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
461
	}
462
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
463
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
464

465
	rq = blk_mq_get_request(q, NULL, &alloc_data);
466
	blk_queue_exit(q);
467

468 469 470 471
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
472 473 474
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
475 476 477 478
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
479
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
480 481
	const int sched_tag = rq->internal_tag;

482
	blk_pm_mark_last_busy(rq);
483
	rq->mq_hctx = NULL;
K
Keith Busch 已提交
484 485 486 487 488 489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

492
void blk_mq_free_request(struct request *rq)
493 494
{
	struct request_queue *q = rq->q;
495 496
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
497
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
498

499
	if (rq->rq_flags & RQF_ELVPRIV) {
500 501
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
502 503 504 505 506
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
507

508
	ctx->rq_completed[rq_is_sync(rq)]++;
509
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
510
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
511

512 513 514
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

515
	rq_qos_done(q, rq);
516

K
Keith Busch 已提交
517 518 519
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
520
}
J
Jens Axboe 已提交
521
EXPORT_SYMBOL_GPL(blk_mq_free_request);
522

523
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
524
{
525 526
	u64 now = ktime_get_ns();

527 528
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
529
		blk_stat_add(rq, now);
530 531
	}

532 533 534
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq, now);

535
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
536

C
Christoph Hellwig 已提交
537
	if (rq->end_io) {
538
		rq_qos_done(rq->q, rq);
539
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
540 541 542
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
543
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
544
	}
545
}
546
EXPORT_SYMBOL(__blk_mq_end_request);
547

548
void blk_mq_end_request(struct request *rq, blk_status_t error)
549 550 551
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
552
	__blk_mq_end_request(rq, error);
553
}
554
EXPORT_SYMBOL(blk_mq_end_request);
555

556
static void __blk_mq_complete_request_remote(void *data)
557
{
558
	struct request *rq = data;
559
	struct request_queue *q = rq->q;
560

561
	q->mq_ops->complete(rq);
562 563
}

564
static void __blk_mq_complete_request(struct request *rq)
565 566
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
567
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
568
	bool shared = false;
569 570
	int cpu;

571
	if (!blk_mq_mark_complete(rq))
K
Keith Busch 已提交
572
		return;
573

574 575 576 577 578 579 580 581 582
	/*
	 * Most of single queue controllers, there is only one irq vector
	 * for handling IO completion, and the only irq's affinity is set
	 * as all possible CPUs. On most of ARCHs, this affinity means the
	 * irq is handled on one specific CPU.
	 *
	 * So complete IO reqeust in softirq context in case of single queue
	 * for not degrading IO performance by irqsoff latency.
	 */
583
	if (q->nr_hw_queues == 1) {
584 585 586 587
		__blk_complete_request(rq);
		return;
	}

588 589
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
		q->mq_ops->complete(rq);
590 591
		return;
	}
592 593

	cpu = get_cpu();
594
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
C
Christoph Hellwig 已提交
595 596 597
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
598
		rq->csd.func = __blk_mq_complete_request_remote;
599 600
		rq->csd.info = rq;
		rq->csd.flags = 0;
601
		smp_call_function_single_async(ctx->cpu, &rq->csd);
602
	} else {
603
		q->mq_ops->complete(rq);
604
	}
605 606
	put_cpu();
}
607

608
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
609
	__releases(hctx->srcu)
610 611 612 613
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
614
		srcu_read_unlock(hctx->srcu, srcu_idx);
615 616 617
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
618
	__acquires(hctx->srcu)
619
{
620 621 622
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
623
		rcu_read_lock();
624
	} else
625
		*srcu_idx = srcu_read_lock(hctx->srcu);
626 627
}

628 629 630 631 632 633 634 635
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
636
void blk_mq_complete_request(struct request *rq)
637
{
K
Keith Busch 已提交
638
	if (unlikely(blk_should_fake_timeout(rq->q)))
639
		return;
K
Keith Busch 已提交
640
	__blk_mq_complete_request(rq);
641 642
}
EXPORT_SYMBOL(blk_mq_complete_request);
643

644 645
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
646
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
647 648 649
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

650
void blk_mq_start_request(struct request *rq)
651 652 653
{
	struct request_queue *q = rq->q;

654 655
	blk_mq_sched_started_request(rq);

656 657
	trace_block_rq_issue(q, rq);

658
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659 660 661 662
		rq->io_start_time_ns = ktime_get_ns();
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
		rq->throtl_size = blk_rq_sectors(rq);
#endif
663
		rq->rq_flags |= RQF_STATS;
664
		rq_qos_issue(q, rq);
665 666
	}

667
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
668

669
	blk_add_timer(rq);
K
Keith Busch 已提交
670
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
671 672 673 674 675 676 677 678 679

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
680
}
681
EXPORT_SYMBOL(blk_mq_start_request);
682

683
static void __blk_mq_requeue_request(struct request *rq)
684 685 686
{
	struct request_queue *q = rq->q;

687 688
	blk_mq_put_driver_tag(rq);

689
	trace_block_rq_requeue(q, rq);
690
	rq_qos_requeue(q, rq);
691

K
Keith Busch 已提交
692 693
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
694
		rq->rq_flags &= ~RQF_TIMED_OUT;
695 696 697
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
698 699
}

700
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
701 702 703
{
	__blk_mq_requeue_request(rq);

704 705 706
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
707
	BUG_ON(!list_empty(&rq->queuelist));
708
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
709 710 711
}
EXPORT_SYMBOL(blk_mq_requeue_request);

712 713 714
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
715
		container_of(work, struct request_queue, requeue_work.work);
716 717 718
	LIST_HEAD(rq_list);
	struct request *rq, *next;

719
	spin_lock_irq(&q->requeue_lock);
720
	list_splice_init(&q->requeue_list, &rq_list);
721
	spin_unlock_irq(&q->requeue_lock);
722 723

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
724
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
725 726
			continue;

727
		rq->rq_flags &= ~RQF_SOFTBARRIER;
728
		list_del_init(&rq->queuelist);
729
		blk_mq_sched_insert_request(rq, true, false, false);
730 731 732 733 734
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
735
		blk_mq_sched_insert_request(rq, false, false, false);
736 737
	}

738
	blk_mq_run_hw_queues(q, false);
739 740
}

741 742
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
743 744 745 746 747 748
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
749
	 * request head insertion from the workqueue.
750
	 */
751
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
752 753 754

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
755
		rq->rq_flags |= RQF_SOFTBARRIER;
756 757 758 759 760
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
761 762 763

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
764 765 766 767 768
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
769
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
770 771 772
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

773 774 775
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
776 777
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
778 779 780
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

781 782
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
783 784
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
785
		return tags->rqs[tag];
786
	}
787 788

	return NULL;
789 790 791
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
			      void *priv, bool reserved)
{
	/*
	 * If we find a request, we know the queue is busy. Return false
	 * to stop the iteration.
	 */
	if (rq->q == hctx->queue) {
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

bool blk_mq_queue_busy(struct request_queue *q)
{
	bool busy = false;

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
	return busy;
}
EXPORT_SYMBOL_GPL(blk_mq_queue_busy);

818
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
819
{
820
	req->rq_flags |= RQF_TIMED_OUT;
821 822 823 824 825 826 827
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
828
	}
829 830

	blk_add_timer(req);
831
}
832

K
Keith Busch 已提交
833
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
834
{
K
Keith Busch 已提交
835
	unsigned long deadline;
836

K
Keith Busch 已提交
837 838
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
839 840
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
841

842
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
843 844
	if (time_after_eq(jiffies, deadline))
		return true;
845

K
Keith Busch 已提交
846 847 848 849 850
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
851 852
}

853
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
854 855
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
856 857 858 859 860 861 862
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
863
		return true;
K
Keith Busch 已提交
864 865 866 867 868 869 870 871 872 873 874

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
875
		return true;
K
Keith Busch 已提交
876

877
	/*
K
Keith Busch 已提交
878 879 880 881
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
882
	 */
K
Keith Busch 已提交
883
	if (blk_mq_req_expired(rq, next))
884
		blk_mq_rq_timed_out(rq, reserved);
K
Keith Busch 已提交
885 886
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
887 888

	return true;
889 890
}

891
static void blk_mq_timeout_work(struct work_struct *work)
892
{
893 894
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
895
	unsigned long next = 0;
896
	struct blk_mq_hw_ctx *hctx;
897
	int i;
898

899 900 901 902 903 904 905 906 907
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
908
	 * blk_freeze_queue_start, and the moment the last request is
909 910 911 912
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
913 914
		return;

K
Keith Busch 已提交
915
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
916

K
Keith Busch 已提交
917 918
	if (next != 0) {
		mod_timer(&q->timeout, next);
919
	} else {
920 921 922 923 924 925
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
926 927 928 929 930
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
931
	}
932
	blk_queue_exit(q);
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
948
	sbitmap_clear_bit(sb, bitnr);
949 950 951 952
	spin_unlock(&ctx->lock);
	return true;
}

953 954 955 956
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
957
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
958
{
959 960 961 962
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
963

964
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
965
}
966
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
967

968 969 970 971 972 973 974 975 976 977 978 979 980
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
H
huhai 已提交
981
	if (!list_empty(&ctx->rq_list)) {
982 983 984 985 986 987 988 989 990 991 992 993 994
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
995
	unsigned off = start ? start->index_hw[hctx->type] : 0;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1007 1008 1009 1010
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1011

1012
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1013 1014
}

1015
bool blk_mq_get_driver_tag(struct request *rq)
1016 1017 1018
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
1019
		.hctx = rq->mq_hctx,
1020
		.flags = BLK_MQ_REQ_NOWAIT,
1021
		.cmd_flags = rq->cmd_flags,
1022
	};
1023
	bool shared;
1024

1025 1026
	if (rq->tag != -1)
		goto done;
1027

1028 1029 1030
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1031
	shared = blk_mq_tag_busy(data.hctx);
1032 1033
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1034
		if (shared) {
1035 1036 1037
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1038 1039 1040
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1041 1042
done:
	return rq->tag != -1;
1043 1044
}

1045 1046
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1047 1048 1049 1050 1051
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1052
	spin_lock(&hctx->dispatch_wait_lock);
1053
	list_del_init(&wait->entry);
1054 1055
	spin_unlock(&hctx->dispatch_wait_lock);

1056 1057 1058 1059
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1060 1061
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1062 1063
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1064 1065
 * marking us as waiting.
 */
1066
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1067
				 struct request *rq)
1068
{
1069
	struct wait_queue_head *wq;
1070 1071
	wait_queue_entry_t *wait;
	bool ret;
1072

1073 1074 1075
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1076

1077 1078 1079 1080 1081 1082 1083 1084
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1085
		return blk_mq_get_driver_tag(rq);
1086 1087
	}

1088
	wait = &hctx->dispatch_wait;
1089 1090 1091
	if (!list_empty_careful(&wait->entry))
		return false;

1092 1093 1094 1095
	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1096
	if (!list_empty(&wait->entry)) {
1097 1098
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1099
		return false;
1100 1101
	}

1102 1103
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1104

1105
	/*
1106 1107 1108
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1109
	 */
1110
	ret = blk_mq_get_driver_tag(rq);
1111
	if (!ret) {
1112 1113
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1114
		return false;
1115
	}
1116 1117 1118 1119 1120 1121

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1122 1123
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1124 1125

	return true;
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1157 1158
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1159 1160 1161
/*
 * Returns true if we did some work AND can potentially do more.
 */
1162
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1163
			     bool got_budget)
1164
{
1165
	struct blk_mq_hw_ctx *hctx;
1166
	struct request *rq, *nxt;
1167
	bool no_tag = false;
1168
	int errors, queued;
1169
	blk_status_t ret = BLK_STS_OK;
1170

1171 1172 1173
	if (list_empty(list))
		return false;

1174 1175
	WARN_ON(!list_is_singular(list) && got_budget);

1176 1177 1178
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1179
	errors = queued = 0;
1180
	do {
1181
		struct blk_mq_queue_data bd;
1182

1183
		rq = list_first_entry(list, struct request, queuelist);
1184

1185
		hctx = rq->mq_hctx;
1186 1187 1188
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1189
		if (!blk_mq_get_driver_tag(rq)) {
1190
			/*
1191
			 * The initial allocation attempt failed, so we need to
1192 1193 1194 1195
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1196
			 */
1197
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1198
				blk_mq_put_dispatch_budget(hctx);
1199 1200 1201 1202 1203 1204
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1205 1206 1207 1208
				break;
			}
		}

1209 1210
		list_del_init(&rq->queuelist);

1211
		bd.rq = rq;
1212 1213 1214 1215 1216 1217 1218 1219 1220

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1221
			bd.last = !blk_mq_get_driver_tag(nxt);
1222
		}
1223 1224

		ret = q->mq_ops->queue_rq(hctx, &bd);
1225
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1226 1227
			/*
			 * If an I/O scheduler has been configured and we got a
1228 1229
			 * driver tag for the next request already, free it
			 * again.
1230 1231 1232 1233 1234
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1235
			list_add(&rq->queuelist, list);
1236
			__blk_mq_requeue_request(rq);
1237
			break;
1238 1239 1240
		}

		if (unlikely(ret != BLK_STS_OK)) {
1241
			errors++;
1242
			blk_mq_end_request(rq, BLK_STS_IOERR);
1243
			continue;
1244 1245
		}

1246
		queued++;
1247
	} while (!list_empty(list));
1248

1249
	hctx->dispatched[queued_to_index(queued)]++;
1250 1251 1252 1253 1254

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1255
	if (!list_empty(list)) {
1256 1257
		bool needs_restart;

1258
		spin_lock(&hctx->lock);
1259
		list_splice_init(list, &hctx->dispatch);
1260
		spin_unlock(&hctx->lock);
1261

1262
		/*
1263 1264 1265
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1266
		 *
1267 1268 1269 1270
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1271
		 *
1272 1273 1274 1275 1276 1277 1278
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1279
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1280
		 *   and dm-rq.
1281 1282 1283 1284
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1285
		 */
1286 1287
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1288
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1289
			blk_mq_run_hw_queue(hctx, true);
1290 1291
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1292

1293
		blk_mq_update_dispatch_busy(hctx, true);
1294
		return false;
1295 1296
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1297

1298 1299 1300 1301 1302 1303 1304
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1305
	return (queued + errors) != 0;
1306 1307
}

1308 1309 1310 1311
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1312 1313 1314
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1328
	 */
1329 1330 1331 1332 1333 1334 1335
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1336

1337 1338 1339 1340 1341 1342
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1343
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1344

1345 1346 1347
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1359 1360 1361 1362 1363 1364 1365 1366
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1367
	bool tried = false;
1368
	int next_cpu = hctx->next_cpu;
1369

1370 1371
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1372 1373

	if (--hctx->next_cpu_batch <= 0) {
1374
select_cpu:
1375
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1376
				cpu_online_mask);
1377
		if (next_cpu >= nr_cpu_ids)
1378
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1379 1380 1381
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1382 1383 1384 1385
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1386
	if (!cpu_online(next_cpu)) {
1387 1388 1389 1390 1391 1392 1393 1394 1395
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1396
		hctx->next_cpu = next_cpu;
1397 1398 1399
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1400 1401 1402

	hctx->next_cpu = next_cpu;
	return next_cpu;
1403 1404
}

1405 1406
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1407
{
1408
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1409 1410
		return;

1411
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1412 1413
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1414
			__blk_mq_run_hw_queue(hctx);
1415
			put_cpu();
1416 1417
			return;
		}
1418

1419
		put_cpu();
1420
	}
1421

1422 1423
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1424 1425 1426 1427 1428 1429 1430 1431
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1432
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1433
{
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1445 1446 1447 1448
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1449 1450

	if (need_run) {
1451 1452 1453 1454 1455
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1456
}
O
Omar Sandoval 已提交
1457
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1458

1459
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1460 1461 1462 1463 1464
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1465
		if (blk_mq_hctx_stopped(hctx))
1466 1467
			continue;

1468
		blk_mq_run_hw_queue(hctx, async);
1469 1470
	}
}
1471
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1493 1494 1495
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1496
 * BLK_STS_RESOURCE is usually returned.
1497 1498 1499 1500 1501
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1502 1503
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1504
	cancel_delayed_work(&hctx->run_work);
1505

1506
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1507
}
1508
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1509

1510 1511 1512
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1513
 * BLK_STS_RESOURCE is usually returned.
1514 1515 1516 1517 1518
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1519 1520
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1521 1522 1523 1524 1525
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1526 1527 1528
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1529 1530 1531
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1532

1533
	blk_mq_run_hw_queue(hctx, false);
1534 1535 1536
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1557
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1558 1559 1560 1561
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1562 1563
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1564 1565 1566
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1567
static void blk_mq_run_work_fn(struct work_struct *work)
1568 1569 1570
{
	struct blk_mq_hw_ctx *hctx;

1571
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1572

1573
	/*
M
Ming Lei 已提交
1574
	 * If we are stopped, don't run the queue.
1575
	 */
M
Ming Lei 已提交
1576
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1577
		return;
1578 1579 1580 1581

	__blk_mq_run_hw_queue(hctx);
}

1582 1583 1584
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1585
{
J
Jens Axboe 已提交
1586 1587
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1588 1589
	lockdep_assert_held(&ctx->lock);

1590 1591
	trace_block_rq_insert(hctx->queue, rq);

1592 1593 1594 1595
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1596
}
1597

1598 1599
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1600 1601 1602
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1603 1604
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1605
	__blk_mq_insert_req_list(hctx, rq, at_head);
1606 1607 1608
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1609 1610 1611 1612
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1613
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1614
{
1615
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1616 1617 1618 1619 1620

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1621 1622
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1623 1624
}

1625 1626
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1627 1628

{
1629 1630
	struct request *rq;

1631 1632 1633 1634
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1635
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1636
		BUG_ON(rq->mq_ctx != ctx);
1637
		trace_block_rq_insert(hctx->queue, rq);
1638
	}
1639 1640 1641

	spin_lock(&ctx->lock);
	list_splice_tail_init(list, &ctx->rq_list);
1642
	blk_mq_hctx_mark_pending(hctx, ctx);
1643 1644 1645
	spin_unlock(&ctx->lock);
}

J
Jens Axboe 已提交
1646
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1647 1648 1649 1650
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

J
Jens Axboe 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	if (rqa->mq_ctx < rqb->mq_ctx)
		return -1;
	else if (rqa->mq_ctx > rqb->mq_ctx)
		return 1;
	else if (rqa->mq_hctx < rqb->mq_hctx)
		return -1;
	else if (rqa->mq_hctx > rqb->mq_hctx)
		return 1;

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1661 1662 1663 1664
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
1665
	struct blk_mq_hw_ctx *this_hctx;
1666 1667 1668 1669
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
1670
	LIST_HEAD(rq_list);
1671 1672 1673 1674
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

J
Jens Axboe 已提交
1675
	list_sort(NULL, &list, plug_rq_cmp);
1676 1677

	this_q = NULL;
1678
	this_hctx = NULL;
1679 1680 1681 1682 1683 1684 1685
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
1686 1687
		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
			if (this_hctx) {
1688
				trace_block_unplug(this_q, depth, !from_schedule);
1689 1690
				blk_mq_sched_insert_requests(this_hctx, this_ctx,
								&rq_list,
1691
								from_schedule);
1692 1693 1694
			}

			this_q = rq->q;
1695 1696
			this_ctx = rq->mq_ctx;
			this_hctx = rq->mq_hctx;
1697 1698 1699 1700
			depth = 0;
		}

		depth++;
1701
		list_add_tail(&rq->queuelist, &rq_list);
1702 1703 1704
	}

	/*
1705 1706
	 * If 'this_hctx' is set, we know we have entries to complete
	 * on 'rq_list'. Do those.
1707
	 */
1708
	if (this_hctx) {
1709
		trace_block_unplug(this_q, depth, !from_schedule);
1710
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1711
						from_schedule);
1712 1713 1714 1715 1716
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1717
	blk_init_request_from_bio(rq, bio);
1718

1719
	blk_account_io_start(rq, true);
1720 1721
}

1722 1723
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1724 1725 1726 1727
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1728 1729
}

1730 1731 1732
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1733 1734 1735 1736
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1737
		.last = true,
1738
	};
1739
	blk_qc_t new_cookie;
1740
	blk_status_t ret;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1752
		blk_mq_update_dispatch_busy(hctx, false);
1753 1754 1755
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1756
	case BLK_STS_DEV_RESOURCE:
1757
		blk_mq_update_dispatch_busy(hctx, true);
1758 1759 1760
		__blk_mq_requeue_request(rq);
		break;
	default:
1761
		blk_mq_update_dispatch_busy(hctx, false);
1762 1763 1764 1765 1766 1767 1768 1769 1770
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1771 1772
						blk_qc_t *cookie,
						bool bypass_insert)
1773 1774
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1775 1776
	bool run_queue = true;

1777 1778 1779 1780
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1781
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1782 1783
	 * and avoid driver to try to dispatch again.
	 */
1784
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1785
		run_queue = false;
1786
		bypass_insert = false;
M
Ming Lei 已提交
1787 1788
		goto insert;
	}
1789

1790
	if (q->elevator && !bypass_insert)
1791 1792
		goto insert;

1793
	if (!blk_mq_get_dispatch_budget(hctx))
1794 1795
		goto insert;

1796
	if (!blk_mq_get_driver_tag(rq)) {
1797
		blk_mq_put_dispatch_budget(hctx);
1798
		goto insert;
1799
	}
1800

1801
	return __blk_mq_issue_directly(hctx, rq, cookie);
1802
insert:
1803 1804
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1805

1806
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1807
	return BLK_STS_OK;
1808 1809
}

1810 1811 1812
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1813
	blk_status_t ret;
1814
	int srcu_idx;
1815

1816
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1817

1818
	hctx_lock(hctx, &srcu_idx);
1819

1820
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1821
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1822
		blk_mq_sched_insert_request(rq, false, true, false);
1823 1824 1825
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1826
	hctx_unlock(hctx, srcu_idx);
1827 1828
}

1829
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1830 1831 1832 1833
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
1834
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1835 1836 1837 1838 1839 1840

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1841 1842
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
		blk_status_t ret;
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
		ret = blk_mq_request_issue_directly(rq);
		if (ret != BLK_STS_OK) {
1854 1855 1856 1857 1858 1859
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
				list_add(&rq->queuelist, list);
				break;
			}
			blk_mq_end_request(rq, ret);
1860 1861 1862 1863
		}
	}
}

1864
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1865
{
1866
	const int is_sync = op_is_sync(bio->bi_opf);
1867
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1868
	struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1869
	struct request *rq;
1870
	unsigned int request_count = 0;
1871
	struct blk_plug *plug;
1872
	struct request *same_queue_rq = NULL;
1873
	blk_qc_t cookie;
1874 1875 1876

	blk_queue_bounce(q, &bio);

1877
	blk_queue_split(q, &bio);
1878

1879
	if (!bio_integrity_prep(bio))
1880
		return BLK_QC_T_NONE;
1881

1882 1883 1884
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1885

1886 1887 1888
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

1889
	rq_qos_throttle(q, bio, NULL);
J
Jens Axboe 已提交
1890

1891
	rq = blk_mq_get_request(q, bio, &data);
J
Jens Axboe 已提交
1892
	if (unlikely(!rq)) {
1893
		rq_qos_cleanup(q, bio);
1894 1895
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1896
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1897 1898
	}

1899 1900
	trace_block_getrq(q, bio, bio->bi_opf);

1901
	rq_qos_track(q, rq, bio);
1902

1903
	cookie = request_to_qc_t(data.hctx, rq);
1904

1905
	plug = current->plug;
1906
	if (unlikely(is_flush_fua)) {
1907
		blk_mq_put_ctx(data.ctx);
1908
		blk_mq_bio_to_request(rq, bio);
1909 1910 1911 1912

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1913
	} else if (plug && q->nr_hw_queues == 1) {
1914 1915
		struct request *last = NULL;

1916
		blk_mq_put_ctx(data.ctx);
1917
		blk_mq_bio_to_request(rq, bio);
1918 1919 1920 1921 1922 1923 1924

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1925 1926 1927
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1928
		if (!request_count)
1929
			trace_block_plug(q);
1930 1931
		else
			last = list_entry_rq(plug->mq_list.prev);
1932

1933 1934
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1935 1936
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1937
		}
1938

1939
		list_add_tail(&rq->queuelist, &plug->mq_list);
1940
	} else if (plug && !blk_queue_nomerges(q)) {
1941
		blk_mq_bio_to_request(rq, bio);
1942 1943

		/*
1944
		 * We do limited plugging. If the bio can be merged, do that.
1945 1946
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1947 1948
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1949
		 */
1950 1951 1952 1953 1954 1955
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1956 1957
		blk_mq_put_ctx(data.ctx);

1958
		if (same_queue_rq) {
1959
			data.hctx = same_queue_rq->mq_hctx;
1960 1961
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1962
		}
1963 1964
	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
			!data.hctx->dispatch_busy)) {
1965
		blk_mq_put_ctx(data.ctx);
1966 1967
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1968
	} else {
1969
		blk_mq_put_ctx(data.ctx);
1970
		blk_mq_bio_to_request(rq, bio);
1971
		blk_mq_sched_insert_request(rq, false, true, true);
1972
	}
1973

1974
	return cookie;
1975 1976
}

1977 1978
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1979
{
1980
	struct page *page;
1981

1982
	if (tags->rqs && set->ops->exit_request) {
1983
		int i;
1984

1985
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1986 1987 1988
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1989
				continue;
1990
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1991
			tags->static_rqs[i] = NULL;
1992
		}
1993 1994
	}

1995 1996
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1997
		list_del_init(&page->lru);
1998 1999 2000 2001 2002
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
2003 2004
		__free_pages(page, page->private);
	}
2005
}
2006

2007 2008
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2009
	kfree(tags->rqs);
2010
	tags->rqs = NULL;
J
Jens Axboe 已提交
2011 2012
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2013

2014
	blk_mq_free_tags(tags);
2015 2016
}

2017 2018 2019 2020
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2021
{
2022
	struct blk_mq_tags *tags;
2023
	int node;
2024

J
Jens Axboe 已提交
2025
	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2026 2027 2028 2029
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2030
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2031 2032
	if (!tags)
		return NULL;
2033

2034
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2035
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2036
				 node);
2037 2038 2039 2040
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2041

2042 2043 2044
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2045 2046 2047 2048 2049 2050
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2051 2052 2053 2054 2055 2056 2057 2058
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2070
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2071 2072 2073
	return 0;
}

2074 2075 2076 2077 2078
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2079 2080
	int node;

J
Jens Axboe 已提交
2081
	node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2082 2083
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2084 2085 2086

	INIT_LIST_HEAD(&tags->page_list);

2087 2088 2089 2090
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2091
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2092
				cache_line_size());
2093
	left = rq_size * depth;
2094

2095
	for (i = 0; i < depth; ) {
2096 2097 2098 2099 2100
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2101
		while (this_order && left < order_to_size(this_order - 1))
2102 2103 2104
			this_order--;

		do {
2105
			page = alloc_pages_node(node,
2106
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2107
				this_order);
2108 2109 2110 2111 2112 2113 2114 2115 2116
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2117
			goto fail;
2118 2119

		page->private = this_order;
2120
		list_add_tail(&page->lru, &tags->page_list);
2121 2122

		p = page_address(page);
2123 2124 2125 2126
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2127
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2128
		entries_per_page = order_to_size(this_order) / rq_size;
2129
		to_do = min(entries_per_page, depth - i);
2130 2131
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2132 2133 2134
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2135 2136 2137
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2138 2139
			}

2140 2141 2142 2143
			p += rq_size;
			i++;
		}
	}
2144
	return 0;
2145

2146
fail:
2147 2148
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2149 2150
}

J
Jens Axboe 已提交
2151 2152 2153 2154 2155
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2156
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2157
{
2158
	struct blk_mq_hw_ctx *hctx;
2159 2160 2161
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2162
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2163
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2164 2165 2166 2167 2168 2169 2170 2171 2172

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2173
		return 0;
2174

J
Jens Axboe 已提交
2175 2176 2177
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2178 2179

	blk_mq_run_hw_queue(hctx, true);
2180
	return 0;
2181 2182
}

2183
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2184
{
2185 2186
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2187 2188
}

2189
/* hctx->ctxs will be freed in queue's release handler */
2190 2191 2192 2193
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2194 2195
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2196

2197
	if (set->ops->exit_request)
2198
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2199

2200 2201 2202
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2203
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2204
		cleanup_srcu_struct(hctx->srcu);
2205

2206
	blk_mq_remove_cpuhp(hctx);
2207
	blk_free_flush_queue(hctx->fq);
2208
	sbitmap_free(&hctx->ctx_map);
2209 2210
}

M
Ming Lei 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2220
		blk_mq_debugfs_unregister_hctx(hctx);
2221
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2222 2223 2224
	}
}

2225 2226 2227
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228
{
2229 2230 2231 2232 2233 2234
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2235
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2236 2237 2238
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2239
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240

2241
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242 2243

	hctx->tags = set->tags[hctx_idx];
2244 2245

	/*
2246 2247
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2248
	 */
2249
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2251 2252
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2253

2254 2255
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2256
		goto free_ctxs;
2257

2258
	hctx->nr_ctx = 0;
2259

2260
	spin_lock_init(&hctx->dispatch_wait_lock);
2261 2262 2263
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2264 2265 2266
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2267

2268 2269
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2270
	if (!hctx->fq)
2271
		goto exit_hctx;
2272

2273
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2274
		goto free_fq;
2275

2276
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2277
		init_srcu_struct(hctx->srcu);
2278

2279
	return 0;
2280

2281 2282 2283 2284 2285
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2286
 free_bitmap:
2287
	sbitmap_free(&hctx->ctx_map);
2288 2289 2290
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2291
	blk_mq_remove_cpuhp(hctx);
2292 2293
	return -1;
}
2294 2295 2296 2297

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2298 2299
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2314 2315 2316 2317 2318
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
				hctx->numa_node = local_memory_node(cpu_to_node(i));
		}
2319 2320 2321
	}
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2344 2345 2346 2347 2348
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2349 2350
}

2351
static void blk_mq_map_swqueue(struct request_queue *q)
2352
{
J
Jens Axboe 已提交
2353
	unsigned int i, j, hctx_idx;
2354 2355
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2356
	struct blk_mq_tag_set *set = q->tag_set;
2357

2358 2359 2360 2361 2362
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2363
	queue_for_each_hw_ctx(q, hctx, i) {
2364
		cpumask_clear(hctx->cpumask);
2365
		hctx->nr_ctx = 0;
2366
		hctx->dispatch_from = NULL;
2367 2368 2369
	}

	/*
2370
	 * Map software to hardware queues.
2371 2372
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2373
	 */
2374
	for_each_possible_cpu(i) {
J
Jens Axboe 已提交
2375
		hctx_idx = set->map[0].mq_map[i];
2376 2377 2378 2379 2380 2381 2382 2383 2384
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
J
Jens Axboe 已提交
2385
			set->map[0].mq_map[i] = 0;
2386 2387
		}

2388
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2389 2390
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
2391

J
Jens Axboe 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2411
	}
2412

2413 2414
	mutex_unlock(&q->sysfs_lock);

2415
	queue_for_each_hw_ctx(q, hctx, i) {
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2431

M
Ming Lei 已提交
2432 2433 2434
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2435 2436 2437 2438 2439
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2440
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2441

2442 2443 2444
		/*
		 * Initialize batch roundrobin counts
		 */
2445
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2446 2447
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2448 2449
}

2450 2451 2452 2453
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2454
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2455 2456 2457 2458
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2459
	queue_for_each_hw_ctx(q, hctx, i) {
2460
		if (shared)
2461
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2462
		else
2463 2464 2465 2466
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2467 2468
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2469 2470
{
	struct request_queue *q;
2471

2472 2473
	lockdep_assert_held(&set->tag_list_lock);

2474 2475
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2476
		queue_set_hctx_shared(q, shared);
2477 2478 2479 2480 2481 2482 2483 2484 2485
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2486
	list_del_rcu(&q->tag_set_list);
2487 2488 2489 2490 2491 2492
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2493
	mutex_unlock(&set->tag_list_lock);
2494
	INIT_LIST_HEAD(&q->tag_set_list);
2495 2496 2497 2498 2499 2500
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2501

2502 2503 2504 2505 2506
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2507 2508 2509 2510 2511 2512
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2513
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2514

2515 2516 2517
	mutex_unlock(&set->tag_list_lock);
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2530 2531 2532
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2533
		kobject_put(&hctx->kobj);
2534
	}
2535 2536 2537

	kfree(q->queue_hw_ctx);

2538 2539 2540 2541 2542 2543
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2544 2545 2546
	free_percpu(q->queue_ctx);
}

2547
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2548 2549 2550
{
	struct request_queue *uninit_q, *q;

2551
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
J
Jens Axboe 已提交
2578
	set->nr_maps = 1;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

2597 2598 2599 2600
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2601
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2602 2603 2604 2605 2606 2607 2608 2609 2610
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
			node);
	if (!hctx)
		return NULL;

	if (!zalloc_cpumask_var_node(&hctx->cpumask,
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				node)) {
		kfree(hctx);
		return NULL;
	}

	atomic_set(&hctx->nr_active, 0);
	hctx->numa_node = node;
	hctx->queue_num = hctx_idx;

	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
		free_cpumask_var(hctx->cpumask);
		kfree(hctx);
		return NULL;
	}
	blk_mq_hctx_kobj_init(hctx);

	return hctx;
}

K
Keith Busch 已提交
2644 2645
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2646
{
2647
	int i, j, end;
K
Keith Busch 已提交
2648
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2649

2650 2651
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2652
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2653
		int node;
2654
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2655

J
Jens Axboe 已提交
2656
		node = blk_mq_hw_queue_to_node(&set->map[0], i);
2657 2658 2659 2660 2661 2662 2663
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
			if (hctxs[i]) {
				blk_mq_exit_hctx(q, set, hctxs[i], i);
				kobject_put(&hctxs[i]->kobj);
			}
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2679
		}
2680
	}
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2693

2694
	for (; j < end; j++) {
K
Keith Busch 已提交
2695 2696 2697
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2698 2699
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2700 2701 2702 2703 2704 2705
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
2706
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/*
 * Maximum number of hardware queues we support. For single sets, we'll never
 * have more than the CPUs (software queues). For multiple sets, the tag_set
 * user may have set ->nr_hw_queues larger.
 */
static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
{
	if (set->nr_maps == 1)
		return nr_cpu_ids;

	return max(set->nr_hw_queues, nr_cpu_ids);
}

K
Keith Busch 已提交
2722 2723 2724
struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2725 2726 2727
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2728
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2729 2730
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2731 2732 2733
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2734 2735
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2736
		goto err_exit;
K
Keith Busch 已提交
2737

2738 2739 2740
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2741 2742
	q->nr_queues = nr_hw_queues(set);
	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
K
Keith Busch 已提交
2743 2744 2745 2746 2747 2748 2749
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2750

2751
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2752
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2753

J
Jens Axboe 已提交
2754
	q->tag_set = set;
2755

2756
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2757

2758
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2759
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2760

2761 2762
	q->sg_reserved_size = INT_MAX;

2763
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2764 2765 2766
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2767
	blk_queue_make_request(q, blk_mq_make_request);
2768 2769
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2770

2771 2772 2773 2774 2775
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2776 2777 2778 2779 2780
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2781
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2782
	blk_mq_add_queue_tag_set(set, q);
2783
	blk_mq_map_swqueue(q);
2784

2785 2786 2787
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

2788
		ret = elevator_init_mq(q);
2789 2790 2791 2792
		if (ret)
			return ERR_PTR(ret);
	}

2793
	return q;
2794

2795
err_hctxs:
K
Keith Busch 已提交
2796
	kfree(q->queue_hw_ctx);
2797
err_percpu:
K
Keith Busch 已提交
2798
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2799 2800
err_exit:
	q->mq_ops = NULL;
2801 2802
	return ERR_PTR(-ENOMEM);
}
2803
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2804 2805 2806

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2807
	struct blk_mq_tag_set	*set = q->tag_set;
2808

2809
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2810
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2811 2812
}

2813 2814 2815 2816
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2817 2818
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2819 2820 2821 2822 2823 2824
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2825
		blk_mq_free_rq_map(set->tags[i]);
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2865 2866
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2867
	if (set->ops->map_queues) {
J
Jens Axboe 已提交
2868 2869
		int i;

2870 2871 2872 2873 2874 2875 2876
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
2877
		 * 		set->map[x].mq_map[cpu] = queue;
2878 2879 2880 2881 2882 2883
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
2884 2885
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
2886

2887
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
2888 2889
	} else {
		BUG_ON(set->nr_maps > 1);
J
Jens Axboe 已提交
2890
		return blk_mq_map_queues(&set->map[0]);
J
Jens Axboe 已提交
2891
	}
2892 2893
}

2894 2895 2896
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
2897
 * requested depth down, if it's too large. In that case, the set
2898 2899
 * value will be stored in set->queue_depth.
 */
2900 2901
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
2902
	int i, ret;
2903

B
Bart Van Assche 已提交
2904 2905
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2906 2907
	if (!set->nr_hw_queues)
		return -EINVAL;
2908
	if (!set->queue_depth)
2909 2910 2911 2912
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2913
	if (!set->ops->queue_rq)
2914 2915
		return -EINVAL;

2916 2917 2918
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2919 2920 2921 2922 2923
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2924

J
Jens Axboe 已提交
2925 2926 2927 2928 2929
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

2930 2931 2932 2933 2934 2935 2936 2937 2938
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2939
	/*
2940 2941
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
2942
	 */
2943
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
2944
		set->nr_hw_queues = nr_cpu_ids;
2945

2946
	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
2947 2948
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2949
		return -ENOMEM;
2950

2951
	ret = -ENOMEM;
J
Jens Axboe 已提交
2952 2953 2954 2955 2956 2957 2958 2959
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
						  sizeof(struct blk_mq_queue_map),
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
		set->map[i].nr_queues = set->nr_hw_queues;
	}
2960

2961
	ret = blk_mq_update_queue_map(set);
2962 2963 2964 2965 2966
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2967
		goto out_free_mq_map;
2968

2969 2970 2971
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2972
	return 0;
2973 2974

out_free_mq_map:
J
Jens Axboe 已提交
2975 2976 2977 2978
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
2979 2980
	kfree(set->tags);
	set->tags = NULL;
2981
	return ret;
2982 2983 2984 2985 2986
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
2987
	int i, j;
2988

2989
	for (i = 0; i < nr_hw_queues(set); i++)
2990
		blk_mq_free_map_and_requests(set, i);
2991

J
Jens Axboe 已提交
2992 2993 2994 2995
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
2996

M
Ming Lei 已提交
2997
	kfree(set->tags);
2998
	set->tags = NULL;
2999 3000 3001
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3002 3003 3004 3005 3006 3007
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3008
	if (!set)
3009 3010
		return -EINVAL;

3011
	blk_mq_freeze_queue(q);
3012
	blk_mq_quiesce_queue(q);
3013

3014 3015
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3016 3017
		if (!hctx->tags)
			continue;
3018 3019 3020 3021
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3022
		if (!hctx->sched_tags) {
3023
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3024 3025 3026 3027 3028
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
3029 3030 3031 3032 3033 3034 3035
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

3036
	blk_mq_unquiesce_queue(q);
3037 3038
	blk_mq_unfreeze_queue(q);

3039 3040 3041
	return ret;
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3112 3113
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3114 3115
{
	struct request_queue *q;
3116
	LIST_HEAD(head);
3117
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3118

3119 3120
	lockdep_assert_held(&set->tag_list_lock);

3121
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3122 3123 3124 3125 3126 3127
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3128 3129 3130 3131
	/*
	 * Sync with blk_mq_queue_tag_busy_iter.
	 */
	synchronize_rcu();
3132 3133 3134 3135 3136 3137 3138 3139
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3140

3141 3142 3143 3144 3145
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3146
	prev_nr_hw_queues = set->nr_hw_queues;
K
Keith Busch 已提交
3147
	set->nr_hw_queues = nr_hw_queues;
3148
	blk_mq_update_queue_map(set);
3149
fallback:
K
Keith Busch 已提交
3150 3151
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3152 3153 3154 3155
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
J
Jens Axboe 已提交
3156
			blk_mq_map_queues(&set->map[0]);
3157 3158
			goto fallback;
		}
3159 3160 3161 3162 3163 3164
		blk_mq_map_swqueue(q);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3165 3166
	}

3167 3168 3169 3170
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3171 3172 3173
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3174 3175 3176 3177 3178 3179 3180

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3181 3182
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3183 3184 3185 3186
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3187
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3209
	int bucket;
3210

3211 3212 3213 3214
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3215 3216
}

3217 3218 3219 3220 3221
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3222
	int bucket;
3223 3224 3225 3226 3227

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3228
	if (!blk_poll_stats_enable(q))
3229 3230 3231 3232 3233 3234 3235 3236
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3237 3238
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3239
	 */
3240 3241 3242 3243 3244 3245
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3246 3247 3248 3249

	return ret;
}

3250
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3251
				     struct blk_mq_hw_ctx *hctx,
3252 3253 3254 3255
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3256
	unsigned int nsecs;
3257 3258
	ktime_t kt;

J
Jens Axboe 已提交
3259
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3277 3278
		return false;

J
Jens Axboe 已提交
3279
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3280 3281 3282 3283 3284

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3285
	kt = nsecs;
3286 3287 3288 3289 3290 3291 3292

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3293
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3308 3309 3310 3311 3312
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3313 3314 3315 3316 3317 3318 3319
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3320
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3321 3322
		return true;

J
Jens Axboe 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3348
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3349 3350 3351
	return false;
}

3352
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3353 3354 3355 3356
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3357
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3358 3359 3360
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3361 3362
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3363
	else {
3364
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3365 3366 3367 3368 3369 3370 3371 3372 3373
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3374 3375 3376 3377

	return __blk_mq_poll(hctx, rq);
}

J
Jens Axboe 已提交
3378 3379 3380 3381 3382 3383
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3384 3385
static int __init blk_mq_init(void)
{
3386 3387
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3388 3389 3390
	return 0;
}
subsys_initcall(blk_mq_init);