e1000_hw.c 308.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*******************************************************************************

3 4 5 6 7 8 9 10 11 12
  Intel PRO/1000 Linux driver
  Copyright(c) 1999 - 2006 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
L
Linus Torvalds 已提交
13
  more details.
14

L
Linus Torvalds 已提交
15
  You should have received a copy of the GNU General Public License along with
16 17 18 19 20 21
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

L
Linus Torvalds 已提交
22 23
  Contact Information:
  Linux NICS <linux.nics@intel.com>
24
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
L
Linus Torvalds 已提交
25 26 27 28 29 30 31 32
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* e1000_hw.c
 * Shared functions for accessing and configuring the MAC
 */

33

L
Linus Torvalds 已提交
34 35
#include "e1000_hw.h"

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
static void e1000_release_software_semaphore(struct e1000_hw *hw);

static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
static int32_t e1000_check_downshift(struct e1000_hw *hw);
static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
static void e1000_clear_vfta(struct e1000_hw *hw);
static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
static int32_t e1000_get_software_flag(struct e1000_hw *hw);
static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
static int32_t e1000_id_led_init(struct e1000_hw *hw);
static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
static void e1000_init_rx_addrs(struct e1000_hw *hw);
static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
static void e1000_release_software_flag(struct e1000_hw *hw);
static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
L
Linus Torvalds 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
static int32_t e1000_set_phy_type(struct e1000_hw *hw);
static void e1000_phy_init_script(struct e1000_hw *hw);
static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
                                     uint16_t count);
static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
                                      uint16_t words, uint16_t *data);
static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
                                            uint16_t offset, uint16_t words,
                                            uint16_t *data);
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
                                    uint16_t count);
static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
                                      uint16_t phy_data);
static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
                                     uint16_t *phy_data);
static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
static void e1000_standby_eeprom(struct e1000_hw *hw);
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
126 127
static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
128 129
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
                                               uint16_t duplex);
130
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
L
Linus Torvalds 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143

/* IGP cable length table */
static const
uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};

144 145
static const
uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
146 147 148 149 150 151 152 153
    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
      104, 109, 114, 118, 121, 124};
154

L
Linus Torvalds 已提交
155 156 157 158 159
/******************************************************************************
 * Set the phy type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
160
static int32_t
L
Linus Torvalds 已提交
161 162 163 164
e1000_set_phy_type(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_set_phy_type");

165
    if (hw->mac_type == e1000_undefined)
166 167
        return -E1000_ERR_PHY_TYPE;

168
    switch (hw->phy_id) {
L
Linus Torvalds 已提交
169 170 171
    case M88E1000_E_PHY_ID:
    case M88E1000_I_PHY_ID:
    case M88E1011_I_PHY_ID:
172
    case M88E1111_I_PHY_ID:
L
Linus Torvalds 已提交
173 174 175
        hw->phy_type = e1000_phy_m88;
        break;
    case IGP01E1000_I_PHY_ID:
176 177 178 179
        if (hw->mac_type == e1000_82541 ||
            hw->mac_type == e1000_82541_rev_2 ||
            hw->mac_type == e1000_82547 ||
            hw->mac_type == e1000_82547_rev_2) {
L
Linus Torvalds 已提交
180 181 182
            hw->phy_type = e1000_phy_igp;
            break;
        }
183 184 185 186 187 188 189 190
    case IGP03E1000_E_PHY_ID:
        hw->phy_type = e1000_phy_igp_3;
        break;
    case IFE_E_PHY_ID:
    case IFE_PLUS_E_PHY_ID:
    case IFE_C_E_PHY_ID:
        hw->phy_type = e1000_phy_ife;
        break;
191 192 193 194 195
    case GG82563_E_PHY_ID:
        if (hw->mac_type == e1000_80003es2lan) {
            hw->phy_type = e1000_phy_gg82563;
            break;
        }
L
Linus Torvalds 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        /* Fall Through */
    default:
        /* Should never have loaded on this device */
        hw->phy_type = e1000_phy_undefined;
        return -E1000_ERR_PHY_TYPE;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * IGP phy init script - initializes the GbE PHY
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
    uint32_t ret_val;
    uint16_t phy_saved_data;

    DEBUGFUNC("e1000_phy_init_script");

219
    if (hw->phy_init_script) {
220
        msleep(20);
L
Linus Torvalds 已提交
221 222 223 224 225 226 227 228

        /* Save off the current value of register 0x2F5B to be restored at
         * the end of this routine. */
        ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

        /* Disabled the PHY transmitter */
        e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

229
        msleep(20);
L
Linus Torvalds 已提交
230 231 232

        e1000_write_phy_reg(hw,0x0000,0x0140);

233
        msleep(5);
L
Linus Torvalds 已提交
234

235
        switch (hw->mac_type) {
L
Linus Torvalds 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        case e1000_82541:
        case e1000_82547:
            e1000_write_phy_reg(hw, 0x1F95, 0x0001);

            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);

            e1000_write_phy_reg(hw, 0x1F79, 0x0018);

            e1000_write_phy_reg(hw, 0x1F30, 0x1600);

            e1000_write_phy_reg(hw, 0x1F31, 0x0014);

            e1000_write_phy_reg(hw, 0x1F32, 0x161C);

            e1000_write_phy_reg(hw, 0x1F94, 0x0003);

            e1000_write_phy_reg(hw, 0x1F96, 0x003F);

            e1000_write_phy_reg(hw, 0x2010, 0x0008);
            break;

        case e1000_82541_rev_2:
        case e1000_82547_rev_2:
            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
            break;
        default:
            break;
        }

        e1000_write_phy_reg(hw, 0x0000, 0x3300);

267
        msleep(20);
L
Linus Torvalds 已提交
268 269 270 271

        /* Now enable the transmitter */
        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

272
        if (hw->mac_type == e1000_82547) {
L
Linus Torvalds 已提交
273 274 275 276 277
            uint16_t fused, fine, coarse;

            /* Move to analog registers page */
            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);

278
            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
L
Linus Torvalds 已提交
279 280 281 282 283
                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);

                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;

284
                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
L
Linus Torvalds 已提交
285 286
                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
287
                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
L
Linus Torvalds 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;

                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);

                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
            }
        }
    }
}

/******************************************************************************
 * Set the mac type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_set_mac_type");

    switch (hw->device_id) {
    case E1000_DEV_ID_82542:
        switch (hw->revision_id) {
        case E1000_82542_2_0_REV_ID:
            hw->mac_type = e1000_82542_rev2_0;
            break;
        case E1000_82542_2_1_REV_ID:
            hw->mac_type = e1000_82542_rev2_1;
            break;
        default:
            /* Invalid 82542 revision ID */
            return -E1000_ERR_MAC_TYPE;
        }
        break;
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
        hw->mac_type = e1000_82543;
        break;
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
        hw->mac_type = e1000_82544;
        break;
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
        hw->mac_type = e1000_82540;
        break;
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82545EM_FIBER:
        hw->mac_type = e1000_82545;
        break;
    case E1000_DEV_ID_82545GM_COPPER:
    case E1000_DEV_ID_82545GM_FIBER:
    case E1000_DEV_ID_82545GM_SERDES:
        hw->mac_type = e1000_82545_rev_3;
        break;
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_FIBER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
        hw->mac_type = e1000_82546;
        break;
    case E1000_DEV_ID_82546GB_COPPER:
    case E1000_DEV_ID_82546GB_FIBER:
    case E1000_DEV_ID_82546GB_SERDES:
    case E1000_DEV_ID_82546GB_PCIE:
361 362
    case E1000_DEV_ID_82546GB_QUAD_COPPER:
    case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
L
Linus Torvalds 已提交
363 364 365 366
        hw->mac_type = e1000_82546_rev_3;
        break;
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EI_MOBILE:
367
    case E1000_DEV_ID_82541ER_LOM:
L
Linus Torvalds 已提交
368 369 370 371 372 373 374 375 376
        hw->mac_type = e1000_82541;
        break;
    case E1000_DEV_ID_82541ER:
    case E1000_DEV_ID_82541GI:
    case E1000_DEV_ID_82541GI_LF:
    case E1000_DEV_ID_82541GI_MOBILE:
        hw->mac_type = e1000_82541_rev_2;
        break;
    case E1000_DEV_ID_82547EI:
377
    case E1000_DEV_ID_82547EI_MOBILE:
L
Linus Torvalds 已提交
378 379 380 381 382
        hw->mac_type = e1000_82547;
        break;
    case E1000_DEV_ID_82547GI:
        hw->mac_type = e1000_82547_rev_2;
        break;
383 384 385
    case E1000_DEV_ID_82571EB_COPPER:
    case E1000_DEV_ID_82571EB_FIBER:
    case E1000_DEV_ID_82571EB_SERDES:
386
    case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 388 389 390 391
            hw->mac_type = e1000_82571;
        break;
    case E1000_DEV_ID_82572EI_COPPER:
    case E1000_DEV_ID_82572EI_FIBER:
    case E1000_DEV_ID_82572EI_SERDES:
392
    case E1000_DEV_ID_82572EI:
393 394
        hw->mac_type = e1000_82572;
        break;
395 396
    case E1000_DEV_ID_82573E:
    case E1000_DEV_ID_82573E_IAMT:
397
    case E1000_DEV_ID_82573L:
398 399
        hw->mac_type = e1000_82573;
        break;
400 401
    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
402 403 404 405
    case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
        hw->mac_type = e1000_80003es2lan;
        break;
406 407 408 409 410 411 412
    case E1000_DEV_ID_ICH8_IGP_M_AMT:
    case E1000_DEV_ID_ICH8_IGP_AMT:
    case E1000_DEV_ID_ICH8_IGP_C:
    case E1000_DEV_ID_ICH8_IFE:
    case E1000_DEV_ID_ICH8_IGP_M:
        hw->mac_type = e1000_ich8lan;
        break;
L
Linus Torvalds 已提交
413 414 415 416 417
    default:
        /* Should never have loaded on this device */
        return -E1000_ERR_MAC_TYPE;
    }

418
    switch (hw->mac_type) {
419 420 421 422
    case e1000_ich8lan:
        hw->swfwhw_semaphore_present = TRUE;
        hw->asf_firmware_present = TRUE;
        break;
423 424 425
    case e1000_80003es2lan:
        hw->swfw_sync_present = TRUE;
        /* fall through */
426 427
    case e1000_82571:
    case e1000_82572:
428 429 430
    case e1000_82573:
        hw->eeprom_semaphore_present = TRUE;
        /* fall through */
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        hw->asf_firmware_present = TRUE;
        break;
    default:
        break;
    }

    return E1000_SUCCESS;
}

/*****************************************************************************
 * Set media type and TBI compatibility.
 *
 * hw - Struct containing variables accessed by shared code
 * **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
    uint32_t status;

    DEBUGFUNC("e1000_set_media_type");

456
    if (hw->mac_type != e1000_82543) {
L
Linus Torvalds 已提交
457 458 459 460 461 462 463
        /* tbi_compatibility is only valid on 82543 */
        hw->tbi_compatibility_en = FALSE;
    }

    switch (hw->device_id) {
    case E1000_DEV_ID_82545GM_SERDES:
    case E1000_DEV_ID_82546GB_SERDES:
464 465
    case E1000_DEV_ID_82571EB_SERDES:
    case E1000_DEV_ID_82572EI_SERDES:
466
    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
L
Linus Torvalds 已提交
467 468 469
        hw->media_type = e1000_media_type_internal_serdes;
        break;
    default:
470 471 472 473 474
        switch (hw->mac_type) {
        case e1000_82542_rev2_0:
        case e1000_82542_rev2_1:
            hw->media_type = e1000_media_type_fiber;
            break;
475
        case e1000_ich8lan:
476 477 478 479 480 481 482
        case e1000_82573:
            /* The STATUS_TBIMODE bit is reserved or reused for the this
             * device.
             */
            hw->media_type = e1000_media_type_copper;
            break;
        default:
L
Linus Torvalds 已提交
483
            status = E1000_READ_REG(hw, STATUS);
484
            if (status & E1000_STATUS_TBIMODE) {
L
Linus Torvalds 已提交
485 486 487 488 489 490
                hw->media_type = e1000_media_type_fiber;
                /* tbi_compatibility not valid on fiber */
                hw->tbi_compatibility_en = FALSE;
            } else {
                hw->media_type = e1000_media_type_copper;
            }
491
            break;
L
Linus Torvalds 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        }
    }
}

/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_reset_hw(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t ctrl_ext;
    uint32_t icr;
    uint32_t manc;
    uint32_t led_ctrl;
509 510 511
    uint32_t timeout;
    uint32_t extcnf_ctrl;
    int32_t ret_val;
L
Linus Torvalds 已提交
512 513 514 515

    DEBUGFUNC("e1000_reset_hw");

    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
516
    if (hw->mac_type == e1000_82542_rev2_0) {
L
Linus Torvalds 已提交
517 518 519 520
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
    }

521
    if (hw->bus_type == e1000_bus_type_pci_express) {
522 523 524
        /* Prevent the PCI-E bus from sticking if there is no TLP connection
         * on the last TLP read/write transaction when MAC is reset.
         */
525
        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
526 527 528 529
            DEBUGOUT("PCI-E Master disable polling has failed.\n");
        }
    }

L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Disable the Transmit and Receive units.  Then delay to allow
     * any pending transactions to complete before we hit the MAC with
     * the global reset.
     */
    E1000_WRITE_REG(hw, RCTL, 0);
    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
    E1000_WRITE_FLUSH(hw);

    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
    hw->tbi_compatibility_on = FALSE;

    /* Delay to allow any outstanding PCI transactions to complete before
     * resetting the device
     */
548
    msleep(10);
L
Linus Torvalds 已提交
549 550 551 552

    ctrl = E1000_READ_REG(hw, CTRL);

    /* Must reset the PHY before resetting the MAC */
553
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
554
        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
555
        msleep(5);
L
Linus Torvalds 已提交
556 557
    }

558 559
    /* Must acquire the MDIO ownership before MAC reset.
     * Ownership defaults to firmware after a reset. */
560
    if (hw->mac_type == e1000_82573) {
561 562 563 564 565 566 567 568 569
        timeout = 10;

        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

        do {
            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);

570
            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
571 572 573 574
                break;
            else
                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

575
            msleep(2);
576
            timeout--;
577
        } while (timeout);
578 579
    }

580 581 582 583 584 585 586 587
    /* Workaround for ICH8 bit corruption issue in FIFO memory */
    if (hw->mac_type == e1000_ich8lan) {
        /* Set Tx and Rx buffer allocation to 8k apiece. */
        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
        /* Set Packet Buffer Size to 16k. */
        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
    }

L
Linus Torvalds 已提交
588 589 590 591 592 593 594
    /* Issue a global reset to the MAC.  This will reset the chip's
     * transmit, receive, DMA, and link units.  It will not effect
     * the current PCI configuration.  The global reset bit is self-
     * clearing, and should clear within a microsecond.
     */
    DEBUGOUT("Issuing a global reset to MAC\n");

595
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        case e1000_82544:
        case e1000_82540:
        case e1000_82545:
        case e1000_82546:
        case e1000_82541:
        case e1000_82541_rev_2:
            /* These controllers can't ack the 64-bit write when issuing the
             * reset, so use IO-mapping as a workaround to issue the reset */
            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
        case e1000_82545_rev_3:
        case e1000_82546_rev_3:
            /* Reset is performed on a shadow of the control register */
            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
            break;
611 612 613 614 615 616 617 618 619 620 621 622
        case e1000_ich8lan:
            if (!hw->phy_reset_disable &&
                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
                 * at the same time to make sure the interface between
                 * MAC and the external PHY is reset.
                 */
                ctrl |= E1000_CTRL_PHY_RST;
            }

            e1000_get_software_flag(hw);
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
623
            msleep(5);
624
            break;
L
Linus Torvalds 已提交
625 626 627 628 629 630 631 632 633
        default:
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
    }

    /* After MAC reset, force reload of EEPROM to restore power-on settings to
     * device.  Later controllers reload the EEPROM automatically, so just wait
     * for reload to complete.
     */
634
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
635 636 637 638 639 640 641 642 643 644 645
        case e1000_82542_rev2_0:
        case e1000_82542_rev2_1:
        case e1000_82543:
        case e1000_82544:
            /* Wait for reset to complete */
            udelay(10);
            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
            E1000_WRITE_FLUSH(hw);
            /* Wait for EEPROM reload */
646
            msleep(2);
L
Linus Torvalds 已提交
647 648 649 650 651 652
            break;
        case e1000_82541:
        case e1000_82541_rev_2:
        case e1000_82547:
        case e1000_82547_rev_2:
            /* Wait for EEPROM reload */
653
            msleep(20);
L
Linus Torvalds 已提交
654
            break;
655
        case e1000_82573:
J
Jeff Kirsher 已提交
656 657 658 659 660 661 662
            if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
                udelay(10);
                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                E1000_WRITE_FLUSH(hw);
            }
663
            /* fall through */
664 665
        case e1000_82571:
        case e1000_82572:
666
        case e1000_ich8lan:
667
        case e1000_80003es2lan:
668
            ret_val = e1000_get_auto_rd_done(hw);
669
            if (ret_val)
670 671 672
                /* We don't want to continue accessing MAC registers. */
                return ret_val;
            break;
L
Linus Torvalds 已提交
673 674
        default:
            /* Wait for EEPROM reload (it happens automatically) */
675
            msleep(5);
L
Linus Torvalds 已提交
676 677 678 679
            break;
    }

    /* Disable HW ARPs on ASF enabled adapters */
680
    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
L
Linus Torvalds 已提交
681 682 683 684 685
        manc = E1000_READ_REG(hw, MANC);
        manc &= ~(E1000_MANC_ARP_EN);
        E1000_WRITE_REG(hw, MANC, manc);
    }

686
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
L
Linus Torvalds 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        e1000_phy_init_script(hw);

        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }

    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Clear any pending interrupt events. */
    icr = E1000_READ_REG(hw, ICR);

    /* If MWI was previously enabled, reenable it. */
704
    if (hw->mac_type == e1000_82542_rev2_0) {
705
        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
L
Linus Torvalds 已提交
706 707 708
            e1000_pci_set_mwi(hw);
    }

709 710 711 712 713 714
    if (hw->mac_type == e1000_ich8lan) {
        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
        kab |= E1000_KABGTXD_BGSQLBIAS;
        E1000_WRITE_REG(hw, KABGTXD, kab);
    }

L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    return E1000_SUCCESS;
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Assumes that the controller has previously been reset and is in a
 * post-reset uninitialized state. Initializes the receive address registers,
 * multicast table, and VLAN filter table. Calls routines to setup link
 * configuration and flow control settings. Clears all on-chip counters. Leaves
 * the transmit and receive units disabled and uninitialized.
 *****************************************************************************/
int32_t
e1000_init_hw(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t i;
    int32_t ret_val;
    uint16_t pcix_cmd_word;
    uint16_t pcix_stat_hi_word;
    uint16_t cmd_mmrbc;
    uint16_t stat_mmrbc;
739
    uint32_t mta_size;
740
    uint32_t reg_data;
741
    uint32_t ctrl_ext;
742

L
Linus Torvalds 已提交
743 744
    DEBUGFUNC("e1000_init_hw");

745 746 747 748 749 750 751 752 753 754 755
    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
    if (hw->mac_type == e1000_ich8lan) {
        reg_data = E1000_READ_REG(hw, TARC0);
        reg_data |= 0x30000000;
        E1000_WRITE_REG(hw, TARC0, reg_data);

        reg_data = E1000_READ_REG(hw, STATUS);
        reg_data &= ~0x80000000;
        E1000_WRITE_REG(hw, STATUS, reg_data);
    }

L
Linus Torvalds 已提交
756 757
    /* Initialize Identification LED */
    ret_val = e1000_id_led_init(hw);
758
    if (ret_val) {
L
Linus Torvalds 已提交
759 760 761 762 763 764 765 766 767
        DEBUGOUT("Error Initializing Identification LED\n");
        return ret_val;
    }

    /* Set the media type and TBI compatibility */
    e1000_set_media_type(hw);

    /* Disabling VLAN filtering. */
    DEBUGOUT("Initializing the IEEE VLAN\n");
768 769 770 771 772 773
    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
    if (hw->mac_type != e1000_ich8lan) {
        if (hw->mac_type < e1000_82545_rev_3)
            E1000_WRITE_REG(hw, VET, 0);
        e1000_clear_vfta(hw);
    }
L
Linus Torvalds 已提交
774 775

    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
776
    if (hw->mac_type == e1000_82542_rev2_0) {
L
Linus Torvalds 已提交
777 778 779 780
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
        E1000_WRITE_FLUSH(hw);
781
        msleep(5);
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789
    }

    /* Setup the receive address. This involves initializing all of the Receive
     * Address Registers (RARs 0 - 15).
     */
    e1000_init_rx_addrs(hw);

    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
790
    if (hw->mac_type == e1000_82542_rev2_0) {
L
Linus Torvalds 已提交
791 792
        E1000_WRITE_REG(hw, RCTL, 0);
        E1000_WRITE_FLUSH(hw);
793 794
        msleep(1);
        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
L
Linus Torvalds 已提交
795 796 797 798 799
            e1000_pci_set_mwi(hw);
    }

    /* Zero out the Multicast HASH table */
    DEBUGOUT("Zeroing the MTA\n");
800
    mta_size = E1000_MC_TBL_SIZE;
801 802
    if (hw->mac_type == e1000_ich8lan)
        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
803
    for (i = 0; i < mta_size; i++) {
L
Linus Torvalds 已提交
804
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
805 806 807 808
        /* use write flush to prevent Memory Write Block (MWB) from
         * occuring when accessing our register space */
        E1000_WRITE_FLUSH(hw);
    }
L
Linus Torvalds 已提交
809 810 811

    /* Set the PCI priority bit correctly in the CTRL register.  This
     * determines if the adapter gives priority to receives, or if it
812 813
     * gives equal priority to transmits and receives.  Valid only on
     * 82542 and 82543 silicon.
L
Linus Torvalds 已提交
814
     */
815
    if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
L
Linus Torvalds 已提交
816 817 818 819
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
    }

820
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
821 822 823 824 825
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
        break;
    default:
        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
826
        if (hw->bus_type == e1000_bus_type_pcix) {
L
Linus Torvalds 已提交
827 828 829 830 831 832 833
            e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
            e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
                &pcix_stat_hi_word);
            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
                PCIX_COMMAND_MMRBC_SHIFT;
            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
                PCIX_STATUS_HI_MMRBC_SHIFT;
834
            if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
L
Linus Torvalds 已提交
835
                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
836
            if (cmd_mmrbc > stat_mmrbc) {
L
Linus Torvalds 已提交
837 838 839 840 841 842 843 844 845
                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
                e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
                    &pcix_cmd_word);
            }
        }
        break;
    }

846 847
    /* More time needed for PHY to initialize */
    if (hw->mac_type == e1000_ich8lan)
848
        msleep(15);
849

L
Linus Torvalds 已提交
850 851 852 853
    /* Call a subroutine to configure the link and setup flow control. */
    ret_val = e1000_setup_link(hw);

    /* Set the transmit descriptor write-back policy */
854
    if (hw->mac_type > e1000_82544) {
L
Linus Torvalds 已提交
855 856
        ctrl = E1000_READ_REG(hw, TXDCTL);
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
857 858 859
        switch (hw->mac_type) {
        default:
            break;
860 861
        case e1000_82571:
        case e1000_82572:
862
        case e1000_82573:
863
        case e1000_ich8lan:
864
        case e1000_80003es2lan:
865 866 867
            ctrl |= E1000_TXDCTL_COUNT_DESC;
            break;
        }
L
Linus Torvalds 已提交
868 869 870
        E1000_WRITE_REG(hw, TXDCTL, ctrl);
    }

871
    if (hw->mac_type == e1000_82573) {
872
        e1000_enable_tx_pkt_filtering(hw);
873 874
    }

875 876 877
    switch (hw->mac_type) {
    default:
        break;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    case e1000_80003es2lan:
        /* Enable retransmit on late collisions */
        reg_data = E1000_READ_REG(hw, TCTL);
        reg_data |= E1000_TCTL_RTLC;
        E1000_WRITE_REG(hw, TCTL, reg_data);

        /* Configure Gigabit Carry Extend Padding */
        reg_data = E1000_READ_REG(hw, TCTL_EXT);
        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);

        /* Configure Transmit Inter-Packet Gap */
        reg_data = E1000_READ_REG(hw, TIPG);
        reg_data &= ~E1000_TIPG_IPGT_MASK;
        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
        E1000_WRITE_REG(hw, TIPG, reg_data);

        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
        reg_data &= ~0x00100000;
        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
        /* Fall through */
900
    case e1000_82571:
M
Mallikarjuna R Chilakala 已提交
901
    case e1000_82572:
902
    case e1000_ich8lan:
903
        ctrl = E1000_READ_REG(hw, TXDCTL1);
904
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
905
        if (hw->mac_type >= e1000_82571)
906
            ctrl |= E1000_TXDCTL_COUNT_DESC;
907 908 909 910 911 912 913 914 915 916
        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
        break;
    }


    if (hw->mac_type == e1000_82573) {
        uint32_t gcr = E1000_READ_REG(hw, GCR);
        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
        E1000_WRITE_REG(hw, GCR, gcr);
    }
917

L
Linus Torvalds 已提交
918 919 920 921 922 923 924
    /* Clear all of the statistics registers (clear on read).  It is
     * important that we do this after we have tried to establish link
     * because the symbol error count will increment wildly if there
     * is no link.
     */
    e1000_clear_hw_cntrs(hw);

925 926 927 928 929
    /* ICH8 No-snoop bits are opposite polarity.
     * Set to snoop by default after reset. */
    if (hw->mac_type == e1000_ich8lan)
        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);

930 931 932 933 934 935 936 937 938
    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        /* Relaxed ordering must be disabled to avoid a parity
         * error crash in a PCI slot. */
        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

L
Linus Torvalds 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    return ret_val;
}

/******************************************************************************
 * Adjust SERDES output amplitude based on EEPROM setting.
 *
 * hw - Struct containing variables accessed by shared code.
 *****************************************************************************/
static int32_t
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
    uint16_t eeprom_data;
    int32_t  ret_val;

    DEBUGFUNC("e1000_adjust_serdes_amplitude");

955
    if (hw->media_type != e1000_media_type_internal_serdes)
L
Linus Torvalds 已提交
956 957
        return E1000_SUCCESS;

958
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
959 960 961 962 963 964 965 966 967 968 969 970
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
        break;
    default:
        return E1000_SUCCESS;
    }

    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
    if (ret_val) {
        return ret_val;
    }

971
    if (eeprom_data != EEPROM_RESERVED_WORD) {
L
Linus Torvalds 已提交
972
        /* Adjust SERDES output amplitude only. */
973
        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
L
Linus Torvalds 已提交
974
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
975
        if (ret_val)
L
Linus Torvalds 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            return ret_val;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Configures flow control and link settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Determines which flow control settings to use. Calls the apropriate media-
 * specific link configuration function. Configures the flow control settings.
 * Assuming the adapter has a valid link partner, a valid link should be
 * established. Assumes the hardware has previously been reset and the
 * transmitter and receiver are not enabled.
 *****************************************************************************/
int32_t
e1000_setup_link(struct e1000_hw *hw)
{
    uint32_t ctrl_ext;
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_setup_link");

1002 1003 1004 1005 1006
    /* In the case of the phy reset being blocked, we already have a link.
     * We do not have to set it up again. */
    if (e1000_check_phy_reset_block(hw))
        return E1000_SUCCESS;

L
Linus Torvalds 已提交
1007 1008 1009 1010 1011 1012 1013 1014
    /* Read and store word 0x0F of the EEPROM. This word contains bits
     * that determine the hardware's default PAUSE (flow control) mode,
     * a bit that determines whether the HW defaults to enabling or
     * disabling auto-negotiation, and the direction of the
     * SW defined pins. If there is no SW over-ride of the flow
     * control setting, then the variable hw->fc will
     * be initialized based on a value in the EEPROM.
     */
1015
    if (hw->fc == E1000_FC_DEFAULT) {
J
Jeff Kirsher 已提交
1016
        switch (hw->mac_type) {
1017
        case e1000_ich8lan:
J
Jeff Kirsher 已提交
1018
        case e1000_82573:
1019
            hw->fc = E1000_FC_FULL;
J
Jeff Kirsher 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028
            break;
        default:
            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
                                        1, &eeprom_data);
            if (ret_val) {
                DEBUGOUT("EEPROM Read Error\n");
                return -E1000_ERR_EEPROM;
            }
            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1029
                hw->fc = E1000_FC_NONE;
J
Jeff Kirsher 已提交
1030 1031
            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
                    EEPROM_WORD0F_ASM_DIR)
1032
                hw->fc = E1000_FC_TX_PAUSE;
J
Jeff Kirsher 已提交
1033
            else
1034
                hw->fc = E1000_FC_FULL;
J
Jeff Kirsher 已提交
1035 1036
            break;
        }
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042
    }

    /* We want to save off the original Flow Control configuration just
     * in case we get disconnected and then reconnected into a different
     * hub or switch with different Flow Control capabilities.
     */
1043
    if (hw->mac_type == e1000_82542_rev2_0)
1044
        hw->fc &= (~E1000_FC_TX_PAUSE);
L
Linus Torvalds 已提交
1045

1046
    if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1047
        hw->fc &= (~E1000_FC_RX_PAUSE);
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

    hw->original_fc = hw->fc;

    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);

    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
     * polarity value for the SW controlled pins, and setup the
     * Extended Device Control reg with that info.
     * This is needed because one of the SW controlled pins is used for
     * signal detection.  So this should be done before e1000_setup_pcs_link()
     * or e1000_phy_setup() is called.
     */
1060
    if (hw->mac_type == e1000_82543) {
1061 1062 1063 1064 1065 1066
        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
                                    1, &eeprom_data);
        if (ret_val) {
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
L
Linus Torvalds 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
                    SWDPIO__EXT_SHIFT);
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

    /* Call the necessary subroutine to configure the link. */
    ret_val = (hw->media_type == e1000_media_type_copper) ?
              e1000_setup_copper_link(hw) :
              e1000_setup_fiber_serdes_link(hw);

    /* Initialize the flow control address, type, and PAUSE timer
     * registers to their default values.  This is done even if flow
     * control is disabled, because it does not hurt anything to
     * initialize these registers.
     */
    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");

1084 1085 1086 1087 1088 1089
    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
    if (hw->mac_type != e1000_ich8lan) {
        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
    }
1090

L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098
    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);

    /* Set the flow control receive threshold registers.  Normally,
     * these registers will be set to a default threshold that may be
     * adjusted later by the driver's runtime code.  However, if the
     * ability to transmit pause frames in not enabled, then these
     * registers will be set to 0.
     */
1099
    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105
        E1000_WRITE_REG(hw, FCRTL, 0);
        E1000_WRITE_REG(hw, FCRTH, 0);
    } else {
        /* We need to set up the Receive Threshold high and low water marks
         * as well as (optionally) enabling the transmission of XON frames.
         */
1106
        if (hw->fc_send_xon) {
L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        } else {
            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        }
    }
    return ret_val;
}

/******************************************************************************
 * Sets up link for a fiber based or serdes based adapter
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Manipulates Physical Coding Sublayer functions in order to configure
 * link. Assumes the hardware has been previously reset and the transmitter
 * and receiver are not enabled.
 *****************************************************************************/
static int32_t
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t status;
    uint32_t txcw = 0;
    uint32_t i;
    uint32_t signal = 0;
    int32_t ret_val;

    DEBUGFUNC("e1000_setup_fiber_serdes_link");

1138 1139 1140 1141 1142 1143 1144 1145
    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
     * until explicitly turned off or a power cycle is performed.  A read to
     * the register does not indicate its status.  Therefore, we ensure
     * loopback mode is disabled during initialization.
     */
    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);

L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152
    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
     * set when the optics detect a signal. On older adapters, it will be
     * cleared when there is a signal.  This applies to fiber media only.
     * If we're on serdes media, adjust the output amplitude to value set in
     * the EEPROM.
     */
    ctrl = E1000_READ_REG(hw, CTRL);
1153
    if (hw->media_type == e1000_media_type_fiber)
L
Linus Torvalds 已提交
1154 1155 1156
        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;

    ret_val = e1000_adjust_serdes_amplitude(hw);
1157
    if (ret_val)
L
Linus Torvalds 已提交
1158 1159 1160 1161 1162 1163 1164
        return ret_val;

    /* Take the link out of reset */
    ctrl &= ~(E1000_CTRL_LRST);

    /* Adjust VCO speed to improve BER performance */
    ret_val = e1000_set_vco_speed(hw);
1165
    if (ret_val)
L
Linus Torvalds 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        return ret_val;

    e1000_config_collision_dist(hw);

    /* Check for a software override of the flow control settings, and setup
     * the device accordingly.  If auto-negotiation is enabled, then software
     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
     * auto-negotiation is disabled, then software will have to manually
     * configure the two flow control enable bits in the CTRL register.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames, but
     *          not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames but we do
     *          not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     */
    switch (hw->fc) {
1186
    case E1000_FC_NONE:
L
Linus Torvalds 已提交
1187 1188 1189
        /* Flow control is completely disabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
        break;
1190
    case E1000_FC_RX_PAUSE:
L
Linus Torvalds 已提交
1191 1192 1193 1194 1195 1196 1197 1198
        /* RX Flow control is enabled and TX Flow control is disabled by a
         * software over-ride. Since there really isn't a way to advertise
         * that we are capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE. Later, we will
         *  disable the adapter's ability to send PAUSE frames.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
1199
    case E1000_FC_TX_PAUSE:
L
Linus Torvalds 已提交
1200 1201 1202 1203 1204
        /* TX Flow control is enabled, and RX Flow control is disabled, by a
         * software over-ride.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
        break;
1205
    case E1000_FC_FULL:
L
Linus Torvalds 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
        /* Flow control (both RX and TX) is enabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
        break;
    }

    /* Since auto-negotiation is enabled, take the link out of reset (the link
     * will be in reset, because we previously reset the chip). This will
     * restart auto-negotiation.  If auto-neogtiation is successful then the
     * link-up status bit will be set and the flow control enable bits (RFCE
     * and TFCE) will be set according to their negotiated value.
     */
    DEBUGOUT("Auto-negotiation enabled\n");

    E1000_WRITE_REG(hw, TXCW, txcw);
    E1000_WRITE_REG(hw, CTRL, ctrl);
    E1000_WRITE_FLUSH(hw);

    hw->txcw = txcw;
1228
    msleep(1);
L
Linus Torvalds 已提交
1229 1230 1231 1232 1233 1234 1235

    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
     * indication in the Device Status Register.  Time-out if a link isn't
     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
     * less than 500 milliseconds even if the other end is doing it in SW).
     * For internal serdes, we just assume a signal is present, then poll.
     */
1236
    if (hw->media_type == e1000_media_type_internal_serdes ||
L
Linus Torvalds 已提交
1237 1238
       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
        DEBUGOUT("Looking for Link\n");
1239
        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1240
            msleep(10);
L
Linus Torvalds 已提交
1241
            status = E1000_READ_REG(hw, STATUS);
1242
            if (status & E1000_STATUS_LU) break;
L
Linus Torvalds 已提交
1243
        }
1244
        if (i == (LINK_UP_TIMEOUT / 10)) {
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250 1251 1252
            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
            hw->autoneg_failed = 1;
            /* AutoNeg failed to achieve a link, so we'll call
             * e1000_check_for_link. This routine will force the link up if
             * we detect a signal. This will allow us to communicate with
             * non-autonegotiating link partners.
             */
            ret_val = e1000_check_for_link(hw);
1253
            if (ret_val) {
L
Linus Torvalds 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                DEBUGOUT("Error while checking for link\n");
                return ret_val;
            }
            hw->autoneg_failed = 0;
        } else {
            hw->autoneg_failed = 0;
            DEBUGOUT("Valid Link Found\n");
        }
    } else {
        DEBUGOUT("No Signal Detected\n");
    }
    return E1000_SUCCESS;
}

/******************************************************************************
1269
* Make sure we have a valid PHY and change PHY mode before link setup.
L
Linus Torvalds 已提交
1270 1271 1272 1273
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
1274
e1000_copper_link_preconfig(struct e1000_hw *hw)
L
Linus Torvalds 已提交
1275 1276 1277 1278 1279
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t phy_data;

1280
    DEBUGFUNC("e1000_copper_link_preconfig");
L
Linus Torvalds 已提交
1281 1282 1283 1284 1285 1286

    ctrl = E1000_READ_REG(hw, CTRL);
    /* With 82543, we need to force speed and duplex on the MAC equal to what
     * the PHY speed and duplex configuration is. In addition, we need to
     * perform a hardware reset on the PHY to take it out of reset.
     */
1287
    if (hw->mac_type > e1000_82543) {
L
Linus Torvalds 已提交
1288 1289 1290 1291 1292 1293
        ctrl |= E1000_CTRL_SLU;
        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
        E1000_WRITE_REG(hw, CTRL, ctrl);
    } else {
        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
        E1000_WRITE_REG(hw, CTRL, ctrl);
1294
        ret_val = e1000_phy_hw_reset(hw);
1295
        if (ret_val)
1296
            return ret_val;
L
Linus Torvalds 已提交
1297 1298 1299 1300
    }

    /* Make sure we have a valid PHY */
    ret_val = e1000_detect_gig_phy(hw);
1301
    if (ret_val) {
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306 1307 1308
        DEBUGOUT("Error, did not detect valid phy.\n");
        return ret_val;
    }
    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);

    /* Set PHY to class A mode (if necessary) */
    ret_val = e1000_set_phy_mode(hw);
1309
    if (ret_val)
L
Linus Torvalds 已提交
1310 1311
        return ret_val;

1312
    if ((hw->mac_type == e1000_82545_rev_3) ||
L
Linus Torvalds 已提交
1313 1314 1315 1316 1317 1318
       (hw->mac_type == e1000_82546_rev_3)) {
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        phy_data |= 0x00000008;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
    }

1319 1320 1321
    if (hw->mac_type <= e1000_82543 ||
        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
L
Linus Torvalds 已提交
1322 1323
        hw->phy_reset_disable = FALSE;

1324 1325
   return E1000_SUCCESS;
}
L
Linus Torvalds 已提交
1326 1327


1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
    uint32_t led_ctrl;
    int32_t ret_val;
    uint16_t phy_data;
L
Linus Torvalds 已提交
1339

1340
    DEBUGFUNC("e1000_copper_link_igp_setup");
L
Linus Torvalds 已提交
1341

1342 1343
    if (hw->phy_reset_disable)
        return E1000_SUCCESS;
1344

1345 1346 1347 1348 1349
    ret_val = e1000_phy_reset(hw);
    if (ret_val) {
        DEBUGOUT("Error Resetting the PHY\n");
        return ret_val;
    }
L
Linus Torvalds 已提交
1350

1351
    /* Wait 15ms for MAC to configure PHY from eeprom settings */
1352
    msleep(15);
1353
    if (hw->mac_type != e1000_ich8lan) {
1354 1355 1356 1357 1358
    /* Configure activity LED after PHY reset */
    led_ctrl = E1000_READ_REG(hw, LEDCTL);
    led_ctrl &= IGP_ACTIVITY_LED_MASK;
    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1359
    }
L
Linus Torvalds 已提交
1360

1361 1362 1363 1364 1365 1366 1367 1368
    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
    if (hw->phy_type == e1000_phy_igp) {
        /* disable lplu d3 during driver init */
        ret_val = e1000_set_d3_lplu_state(hw, FALSE);
        if (ret_val) {
            DEBUGOUT("Error Disabling LPLU D3\n");
            return ret_val;
        }
1369
    }
L
Linus Torvalds 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    /* disable lplu d0 during driver init */
    ret_val = e1000_set_d0_lplu_state(hw, FALSE);
    if (ret_val) {
        DEBUGOUT("Error Disabling LPLU D0\n");
        return ret_val;
    }
    /* Configure mdi-mdix settings */
    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
    if (ret_val)
        return ret_val;
L
Linus Torvalds 已提交
1381

1382 1383 1384 1385 1386
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
        hw->dsp_config_state = e1000_dsp_config_disabled;
        /* Force MDI for earlier revs of the IGP PHY */
        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
        hw->mdix = 1;
L
Linus Torvalds 已提交
1387

1388 1389 1390
    } else {
        hw->dsp_config_state = e1000_dsp_config_enabled;
        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
L
Linus Torvalds 已提交
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        switch (hw->mdix) {
        case 1:
            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
            break;
        case 2:
            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
            break;
        case 0:
        default:
            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
            break;
        }
    }
    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1406
    if (ret_val)
1407
        return ret_val;
L
Linus Torvalds 已提交
1408

1409
    /* set auto-master slave resolution settings */
1410
    if (hw->autoneg) {
1411
        e1000_ms_type phy_ms_setting = hw->master_slave;
L
Linus Torvalds 已提交
1412

1413
        if (hw->ffe_config_state == e1000_ffe_config_active)
1414
            hw->ffe_config_state = e1000_ffe_config_enabled;
L
Linus Torvalds 已提交
1415

1416
        if (hw->dsp_config_state == e1000_dsp_config_activated)
1417
            hw->dsp_config_state = e1000_dsp_config_enabled;
L
Linus Torvalds 已提交
1418

1419 1420 1421
        /* when autonegotiation advertisment is only 1000Mbps then we
          * should disable SmartSpeed and enable Auto MasterSlave
          * resolution as hardware default. */
1422
        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1423
            /* Disable SmartSpeed */
1424 1425 1426
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
            if (ret_val)
L
Linus Torvalds 已提交
1427
                return ret_val;
1428
            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1429 1430 1431
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
            if (ret_val)
L
Linus Torvalds 已提交
1432
                return ret_val;
1433 1434
            /* Set auto Master/Slave resolution process */
            ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1435
            if (ret_val)
1436 1437 1438
                return ret_val;
            phy_data &= ~CR_1000T_MS_ENABLE;
            ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1439
            if (ret_val)
1440 1441
                return ret_val;
        }
L
Linus Torvalds 已提交
1442

1443
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1444
        if (ret_val)
1445
            return ret_val;
L
Linus Torvalds 已提交
1446

1447 1448 1449 1450 1451 1452
        /* load defaults for future use */
        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
                                        ((phy_data & CR_1000T_MS_VALUE) ?
                                         e1000_ms_force_master :
                                         e1000_ms_force_slave) :
                                         e1000_ms_auto;
L
Linus Torvalds 已提交
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        switch (phy_ms_setting) {
        case e1000_ms_force_master:
            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
            break;
        case e1000_ms_force_slave:
            phy_data |= CR_1000T_MS_ENABLE;
            phy_data &= ~(CR_1000T_MS_VALUE);
            break;
        case e1000_ms_auto:
            phy_data &= ~CR_1000T_MS_ENABLE;
            default:
            break;
        }
        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1468
        if (ret_val)
1469
            return ret_val;
1470
    }
L
Linus Torvalds 已提交
1471

1472
    return E1000_SUCCESS;
1473
}
L
Linus Torvalds 已提交
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/********************************************************************
* Copper link setup for e1000_phy_gg82563 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;
    uint32_t reg_data;

    DEBUGFUNC("e1000_copper_link_ggp_setup");

1489
    if (!hw->phy_reset_disable) {
1490

1491 1492 1493
        /* Enable CRS on TX for half-duplex operation. */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
                                     &phy_data);
1494
        if (ret_val)
1495 1496 1497 1498 1499 1500 1501 1502
            return ret_val;

        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;

        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
                                      phy_data);
1503
        if (ret_val)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
            return ret_val;

        /* Options:
         *   MDI/MDI-X = 0 (default)
         *   0 - Auto for all speeds
         *   1 - MDI mode
         *   2 - MDI-X mode
         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
         */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1514
        if (ret_val)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
            return ret_val;

        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

        switch (hw->mdix) {
        case 1:
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
            break;
        case 2:
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
            break;
        case 0:
        default:
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
            break;
        }

        /* Options:
         *   disable_polarity_correction = 0 (default)
         *       Automatic Correction for Reversed Cable Polarity
         *   0 - Disabled
         *   1 - Enabled
         */
        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1539
        if (hw->disable_polarity_correction == 1)
1540 1541 1542
            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);

1543
        if (ret_val)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            return ret_val;

        /* SW Reset the PHY so all changes take effect */
        ret_val = e1000_phy_reset(hw);
        if (ret_val) {
            DEBUGOUT("Error Resetting the PHY\n");
            return ret_val;
        }
    } /* phy_reset_disable */

    if (hw->mac_type == e1000_80003es2lan) {
        /* Bypass RX and TX FIFO's */
        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
        if (ret_val)
            return ret_val;

        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);

        if (ret_val)
            return ret_val;

        reg_data = E1000_READ_REG(hw, CTRL_EXT);
        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);

        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
                                          &phy_data);
        if (ret_val)
            return ret_val;

        /* Do not init these registers when the HW is in IAMT mode, since the
         * firmware will have already initialized them.  We only initialize
         * them if the HW is not in IAMT mode.
         */
        if (e1000_check_mng_mode(hw) == FALSE) {
            /* Enable Electrical Idle on the PHY */
            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
                                          phy_data);
            if (ret_val)
                return ret_val;

            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                                         &phy_data);
            if (ret_val)
                return ret_val;

1598
            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1599 1600
            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                                          phy_data);
1601

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
            if (ret_val)
                return ret_val;
        }

        /* Workaround: Disable padding in Kumeran interface in the MAC
         * and in the PHY to avoid CRC errors.
         */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
                                     &phy_data);
        if (ret_val)
            return ret_val;
        phy_data |= GG82563_ICR_DIS_PADDING;
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
                                      phy_data);
        if (ret_val)
            return ret_val;
    }

    return E1000_SUCCESS;
}
L
Linus Torvalds 已提交
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;
L
Linus Torvalds 已提交
1633

1634
    DEBUGFUNC("e1000_copper_link_mgp_setup");
L
Linus Torvalds 已提交
1635

1636
    if (hw->phy_reset_disable)
1637
        return E1000_SUCCESS;
1638

1639 1640
    /* Enable CRS on TX. This must be set for half-duplex operation. */
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1641
    if (ret_val)
1642
        return ret_val;
L
Linus Torvalds 已提交
1643

1644
    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
L
Linus Torvalds 已提交
1645

1646 1647 1648 1649 1650 1651 1652 1653
    /* Options:
     *   MDI/MDI-X = 0 (default)
     *   0 - Auto for all speeds
     *   1 - MDI mode
     *   2 - MDI-X mode
     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
     */
    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
L
Linus Torvalds 已提交
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    switch (hw->mdix) {
    case 1:
        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
        break;
    case 2:
        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
        break;
    case 3:
        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
        break;
    case 0:
    default:
        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
        break;
    }

    /* Options:
     *   disable_polarity_correction = 0 (default)
     *       Automatic Correction for Reversed Cable Polarity
     *   0 - Disabled
     *   1 - Enabled
L
Linus Torvalds 已提交
1676
     */
1677
    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1678
    if (hw->disable_polarity_correction == 1)
1679
        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
A
Auke Kok 已提交
1680 1681
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
    if (ret_val)
1682 1683 1684
        return ret_val;

    if (hw->phy_revision < M88E1011_I_REV_4) {
A
Auke Kok 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        /* Force TX_CLK in the Extended PHY Specific Control Register
         * to 25MHz clock.
         */
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data |= M88E1000_EPSCR_TX_CLK_25;

        if ((hw->phy_revision == E1000_REVISION_2) &&
            (hw->phy_id == M88E1111_I_PHY_ID)) {
            /* Vidalia Phy, set the downshift counter to 5x */
            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
            ret_val = e1000_write_phy_reg(hw,
                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
            if (ret_val)
                return ret_val;
        } else {
            /* Configure Master and Slave downshift values */
            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1706
                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
A
Auke Kok 已提交
1707
            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1708
                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
A
Auke Kok 已提交
1709 1710 1711 1712 1713
            ret_val = e1000_write_phy_reg(hw,
                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
            if (ret_val)
               return ret_val;
        }
1714
    }
L
Linus Torvalds 已提交
1715

1716 1717
    /* SW Reset the PHY so all changes take effect */
    ret_val = e1000_phy_reset(hw);
1718
    if (ret_val) {
1719 1720
        DEBUGOUT("Error Resetting the PHY\n");
        return ret_val;
L
Linus Torvalds 已提交
1721 1722
    }

1723
   return E1000_SUCCESS;
L
Linus Torvalds 已提交
1724 1725
}

1726 1727 1728
/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
L
Linus Torvalds 已提交
1729 1730
*
* hw - Struct containing variables accessed by shared code
1731 1732 1733
*********************************************************************/
static int32_t
e1000_copper_link_autoneg(struct e1000_hw *hw)
L
Linus Torvalds 已提交
1734 1735
{
    int32_t ret_val;
1736
    uint16_t phy_data;
L
Linus Torvalds 已提交
1737

1738
    DEBUGFUNC("e1000_copper_link_autoneg");
L
Linus Torvalds 已提交
1739

1740 1741 1742 1743 1744 1745 1746 1747
    /* Perform some bounds checking on the hw->autoneg_advertised
     * parameter.  If this variable is zero, then set it to the default.
     */
    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;

    /* If autoneg_advertised is zero, we assume it was not defaulted
     * by the calling code so we set to advertise full capability.
     */
1748
    if (hw->autoneg_advertised == 0)
1749 1750
        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;

1751 1752 1753 1754
    /* IFE phy only supports 10/100 */
    if (hw->phy_type == e1000_phy_ife)
        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;

1755 1756
    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
    ret_val = e1000_phy_setup_autoneg(hw);
1757
    if (ret_val) {
1758 1759 1760 1761 1762 1763 1764 1765 1766
        DEBUGOUT("Error Setting up Auto-Negotiation\n");
        return ret_val;
    }
    DEBUGOUT("Restarting Auto-Neg\n");

    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
     * the Auto Neg Restart bit in the PHY control register.
     */
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1767
    if (ret_val)
L
Linus Torvalds 已提交
1768 1769
        return ret_val;

1770 1771
    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1772
    if (ret_val)
L
Linus Torvalds 已提交
1773 1774
        return ret_val;

1775 1776 1777
    /* Does the user want to wait for Auto-Neg to complete here, or
     * check at a later time (for example, callback routine).
     */
1778
    if (hw->wait_autoneg_complete) {
1779
        ret_val = e1000_wait_autoneg(hw);
1780
        if (ret_val) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
            DEBUGOUT("Error while waiting for autoneg to complete\n");
            return ret_val;
        }
    }

    hw->get_link_status = TRUE;

    return E1000_SUCCESS;
}

/******************************************************************************
* Config the MAC and the PHY after link is up.
*   1) Set up the MAC to the current PHY speed/duplex
*      if we are on 82543.  If we
*      are on newer silicon, we only need to configure
*      collision distance in the Transmit Control Register.
*   2) Set up flow control on the MAC to that established with
*      the link partner.
1799
*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1800 1801 1802 1803 1804 1805 1806 1807
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_postconfig(struct e1000_hw *hw)
{
    int32_t ret_val;
    DEBUGFUNC("e1000_copper_link_postconfig");
1808

1809
    if (hw->mac_type >= e1000_82544) {
1810 1811 1812
        e1000_config_collision_dist(hw);
    } else {
        ret_val = e1000_config_mac_to_phy(hw);
1813
        if (ret_val) {
1814 1815 1816 1817 1818
            DEBUGOUT("Error configuring MAC to PHY settings\n");
            return ret_val;
        }
    }
    ret_val = e1000_config_fc_after_link_up(hw);
1819
    if (ret_val) {
1820 1821 1822 1823 1824
        DEBUGOUT("Error Configuring Flow Control\n");
        return ret_val;
    }

    /* Config DSP to improve Giga link quality */
1825
    if (hw->phy_type == e1000_phy_igp) {
1826
        ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1827
        if (ret_val) {
1828 1829 1830 1831
            DEBUGOUT("Error Configuring DSP after link up\n");
            return ret_val;
        }
    }
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    return E1000_SUCCESS;
}

/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_setup_copper_link(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t i;
    uint16_t phy_data;
1847
    uint16_t reg_data;
1848 1849 1850

    DEBUGFUNC("e1000_setup_copper_link");

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    switch (hw->mac_type) {
    case e1000_80003es2lan:
    case e1000_ich8lan:
        /* Set the mac to wait the maximum time between each
         * iteration and increase the max iterations when
         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
        if (ret_val)
            return ret_val;
        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
        if (ret_val)
            return ret_val;
        reg_data |= 0x3F;
        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
        if (ret_val)
            return ret_val;
    default:
        break;
    }

1871 1872
    /* Check if it is a valid PHY and set PHY mode if necessary. */
    ret_val = e1000_copper_link_preconfig(hw);
1873
    if (ret_val)
1874 1875
        return ret_val;

1876 1877
    switch (hw->mac_type) {
    case e1000_80003es2lan:
1878 1879
        /* Kumeran registers are written-only */
        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
                                       reg_data);
        if (ret_val)
            return ret_val;
        break;
    default:
        break;
    }

1890
    if (hw->phy_type == e1000_phy_igp ||
1891
        hw->phy_type == e1000_phy_igp_3 ||
1892 1893
        hw->phy_type == e1000_phy_igp_2) {
        ret_val = e1000_copper_link_igp_setup(hw);
1894
        if (ret_val)
1895 1896 1897
            return ret_val;
    } else if (hw->phy_type == e1000_phy_m88) {
        ret_val = e1000_copper_link_mgp_setup(hw);
1898
        if (ret_val)
1899
            return ret_val;
1900 1901
    } else if (hw->phy_type == e1000_phy_gg82563) {
        ret_val = e1000_copper_link_ggp_setup(hw);
1902
        if (ret_val)
1903
            return ret_val;
1904 1905
    }

1906
    if (hw->autoneg) {
1907 1908
        /* Setup autoneg and flow control advertisement
          * and perform autonegotiation */
1909
        ret_val = e1000_copper_link_autoneg(hw);
1910
        if (ret_val)
1911
            return ret_val;
1912 1913 1914 1915 1916
    } else {
        /* PHY will be set to 10H, 10F, 100H,or 100F
          * depending on value from forced_speed_duplex. */
        DEBUGOUT("Forcing speed and duplex\n");
        ret_val = e1000_phy_force_speed_duplex(hw);
1917
        if (ret_val) {
1918 1919 1920 1921 1922 1923 1924 1925
            DEBUGOUT("Error Forcing Speed and Duplex\n");
            return ret_val;
        }
    }

    /* Check link status. Wait up to 100 microseconds for link to become
     * valid.
     */
1926
    for (i = 0; i < 10; i++) {
1927
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1928
        if (ret_val)
1929 1930
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1931
        if (ret_val)
1932 1933
            return ret_val;

1934
        if (phy_data & MII_SR_LINK_STATUS) {
1935 1936
            /* Config the MAC and PHY after link is up */
            ret_val = e1000_copper_link_postconfig(hw);
1937
            if (ret_val)
1938
                return ret_val;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
            DEBUGOUT("Valid link established!!!\n");
            return E1000_SUCCESS;
        }
        udelay(10);
    }

    DEBUGOUT("Unable to establish link!!!\n");
    return E1000_SUCCESS;
}

1950 1951 1952 1953 1954 1955
/******************************************************************************
* Configure the MAC-to-PHY interface for 10/100Mbps
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
1956
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
{
    int32_t ret_val = E1000_SUCCESS;
    uint32_t tipg;
    uint16_t reg_data;

    DEBUGFUNC("e1000_configure_kmrn_for_10_100");

    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
                                   reg_data);
    if (ret_val)
        return ret_val;

    /* Configure Transmit Inter-Packet Gap */
    tipg = E1000_READ_REG(hw, TIPG);
    tipg &= ~E1000_TIPG_IPGT_MASK;
    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
    E1000_WRITE_REG(hw, TIPG, tipg);

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);

    if (ret_val)
        return ret_val;

    if (duplex == HALF_DUPLEX)
        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
    else
        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    return ret_val;
}

static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
{
    int32_t ret_val = E1000_SUCCESS;
    uint16_t reg_data;
    uint32_t tipg;

    DEBUGFUNC("e1000_configure_kmrn_for_1000");

    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
                                   reg_data);
    if (ret_val)
        return ret_val;

    /* Configure Transmit Inter-Packet Gap */
    tipg = E1000_READ_REG(hw, TIPG);
    tipg &= ~E1000_TIPG_IPGT_MASK;
    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
    E1000_WRITE_REG(hw, TIPG, tipg);

2012 2013 2014 2015 2016 2017 2018 2019
    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);

    if (ret_val)
        return ret_val;

    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

2020 2021 2022
    return ret_val;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_autoneg_adv_reg;
    uint16_t mii_1000t_ctrl_reg;

    DEBUGFUNC("e1000_phy_setup_autoneg");

    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2039
    if (ret_val)
2040 2041
        return ret_val;

2042 2043 2044 2045 2046 2047 2048
    if (hw->phy_type != e1000_phy_ife) {
        /* Read the MII 1000Base-T Control Register (Address 9). */
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
        if (ret_val)
            return ret_val;
    } else
        mii_1000t_ctrl_reg=0;
2049 2050 2051

    /* Need to parse both autoneg_advertised and fc and set up
     * the appropriate PHY registers.  First we will parse for
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
     * autoneg_advertised software override.  Since we can advertise
     * a plethora of combinations, we need to check each bit
     * individually.
     */

    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
     * Advertisement Register (Address 4) and the 1000 mb speed bits in
     * the  1000Base-T Control Register (Address 9).
     */
    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;

    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);

    /* Do we want to advertise 10 Mb Half Duplex? */
2067
    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072
        DEBUGOUT("Advertise 10mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
    }

    /* Do we want to advertise 10 Mb Full Duplex? */
2073
    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078
        DEBUGOUT("Advertise 10mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
    }

    /* Do we want to advertise 100 Mb Half Duplex? */
2079
    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084
        DEBUGOUT("Advertise 100mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
    }

    /* Do we want to advertise 100 Mb Full Duplex? */
2085
    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
L
Linus Torvalds 已提交
2086 2087 2088 2089 2090
        DEBUGOUT("Advertise 100mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
    }

    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2091
    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
L
Linus Torvalds 已提交
2092 2093 2094 2095
        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
    }

    /* Do we want to advertise 1000 Mb Full Duplex? */
2096
    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
L
Linus Torvalds 已提交
2097 2098
        DEBUGOUT("Advertise 1000mb Full duplex\n");
        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2099 2100 2101
        if (hw->phy_type == e1000_phy_ife) {
            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
        }
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
    }

    /* Check for a software override of the flow control settings, and
     * setup the PHY advertisement registers accordingly.  If
     * auto-negotiation is enabled, then software will have to set the
     * "PAUSE" bits to the correct value in the Auto-Negotiation
     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames
     *          but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          but we do not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     *  other:  No software override.  The flow control configuration
     *          in the EEPROM is used.
     */
    switch (hw->fc) {
2121
    case E1000_FC_NONE: /* 0 */
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126
        /* Flow control (RX & TX) is completely disabled by a
         * software over-ride.
         */
        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
2127
    case E1000_FC_RX_PAUSE: /* 1 */
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
        /* RX Flow control is enabled, and TX Flow control is
         * disabled, by a software over-ride.
         */
        /* Since there really isn't a way to advertise that we are
         * capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE.  Later
         * (in e1000_config_fc_after_link_up) we will disable the
         *hw's ability to send PAUSE frames.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
2139
    case E1000_FC_TX_PAUSE: /* 2 */
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
        /* TX Flow control is enabled, and RX Flow control is
         * disabled, by a software over-ride.
         */
        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
        break;
2146
    case E1000_FC_FULL: /* 3 */
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
        /* Flow control (both RX and TX) is enabled by a software
         * over-ride.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2158
    if (ret_val)
L
Linus Torvalds 已提交
2159 2160 2161 2162
        return ret_val;

    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

2163 2164 2165 2166 2167
    if (hw->phy_type != e1000_phy_ife) {
        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
        if (ret_val)
            return ret_val;
    }
L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

    return E1000_SUCCESS;
}

/******************************************************************************
* Force PHY speed and duplex settings to hw->forced_speed_duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t mii_ctrl_reg;
    uint16_t mii_status_reg;
    uint16_t phy_data;
    uint16_t i;

    DEBUGFUNC("e1000_phy_force_speed_duplex");

    /* Turn off Flow control if we are forcing speed and duplex. */
2190
    hw->fc = E1000_FC_NONE;
L
Linus Torvalds 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

    DEBUGOUT1("hw->fc = %d\n", hw->fc);

    /* Read the Device Control Register. */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(DEVICE_SPEED_MASK);

    /* Clear the Auto Speed Detect Enable bit. */
    ctrl &= ~E1000_CTRL_ASDE;

    /* Read the MII Control Register. */
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2206
    if (ret_val)
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213
        return ret_val;

    /* We need to disable autoneg in order to force link and duplex. */

    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;

    /* Are we forcing Full or Half Duplex? */
2214 2215
    if (hw->forced_speed_duplex == e1000_100_full ||
        hw->forced_speed_duplex == e1000_10_full) {
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        /* We want to force full duplex so we SET the full duplex bits in the
         * Device and MII Control Registers.
         */
        ctrl |= E1000_CTRL_FD;
        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
        DEBUGOUT("Full Duplex\n");
    } else {
        /* We want to force half duplex so we CLEAR the full duplex bits in
         * the Device and MII Control Registers.
         */
        ctrl &= ~E1000_CTRL_FD;
        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
        DEBUGOUT("Half Duplex\n");
    }

    /* Are we forcing 100Mbps??? */
2232
    if (hw->forced_speed_duplex == e1000_100_full ||
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
       hw->forced_speed_duplex == e1000_100_half) {
        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
        ctrl |= E1000_CTRL_SPD_100;
        mii_ctrl_reg |= MII_CR_SPEED_100;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
        DEBUGOUT("Forcing 100mb ");
    } else {
        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
        mii_ctrl_reg |= MII_CR_SPEED_10;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
        DEBUGOUT("Forcing 10mb ");
    }

    e1000_config_collision_dist(hw);

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);

2252 2253
    if ((hw->phy_type == e1000_phy_m88) ||
        (hw->phy_type == e1000_phy_gg82563)) {
L
Linus Torvalds 已提交
2254
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2255
        if (ret_val)
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262
            return ret_val;

        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
         * forced whenever speed are duplex are forced.
         */
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2263
        if (ret_val)
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269
            return ret_val;

        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);

        /* Need to reset the PHY or these changes will be ignored */
        mii_ctrl_reg |= MII_CR_RESET;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
    /* Disable MDI-X support for 10/100 */
    } else if (hw->phy_type == e1000_phy_ife) {
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &= ~IFE_PMC_AUTO_MDIX;
        phy_data &= ~IFE_PMC_FORCE_MDIX;

        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
        if (ret_val)
            return ret_val;
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286
    } else {
        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
         * forced whenever speed or duplex are forced.
         */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2287
        if (ret_val)
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292 2293
            return ret_val;

        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2294
        if (ret_val)
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299
            return ret_val;
    }

    /* Write back the modified PHY MII control register. */
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2300
    if (ret_val)
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
        return ret_val;

    udelay(1);

    /* The wait_autoneg_complete flag may be a little misleading here.
     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
     * But we do want to delay for a period while forcing only so we
     * don't generate false No Link messages.  So we will wait here
     * only if the user has set wait_autoneg_complete to 1, which is
     * the default.
     */
2312
    if (hw->wait_autoneg_complete) {
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317
        /* We will wait for autoneg to complete. */
        DEBUGOUT("Waiting for forced speed/duplex link.\n");
        mii_status_reg = 0;

        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2318
        for (i = PHY_FORCE_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
2319 2320 2321 2322
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2323
            if (ret_val)
L
Linus Torvalds 已提交
2324 2325 2326
                return ret_val;

            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2327
            if (ret_val)
L
Linus Torvalds 已提交
2328 2329
                return ret_val;

2330
            if (mii_status_reg & MII_SR_LINK_STATUS) break;
2331
            msleep(100);
L
Linus Torvalds 已提交
2332
        }
2333
        if ((i == 0) &&
2334 2335
           ((hw->phy_type == e1000_phy_m88) ||
            (hw->phy_type == e1000_phy_gg82563))) {
L
Linus Torvalds 已提交
2336 2337
            /* We didn't get link.  Reset the DSP and wait again for link. */
            ret_val = e1000_phy_reset_dsp(hw);
2338
            if (ret_val) {
L
Linus Torvalds 已提交
2339 2340 2341 2342 2343
                DEBUGOUT("Error Resetting PHY DSP\n");
                return ret_val;
            }
        }
        /* This loop will early-out if the link condition has been met.  */
2344 2345
        for (i = PHY_FORCE_TIME; i > 0; i--) {
            if (mii_status_reg & MII_SR_LINK_STATUS) break;
2346
            msleep(100);
L
Linus Torvalds 已提交
2347 2348 2349 2350
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2351
            if (ret_val)
L
Linus Torvalds 已提交
2352 2353 2354
                return ret_val;

            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2355
            if (ret_val)
L
Linus Torvalds 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
                return ret_val;
        }
    }

    if (hw->phy_type == e1000_phy_m88) {
        /* Because we reset the PHY above, we need to re-force TX_CLK in the
         * Extended PHY Specific Control Register to 25MHz clock.  This value
         * defaults back to a 2.5MHz clock when the PHY is reset.
         */
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2366
        if (ret_val)
L
Linus Torvalds 已提交
2367 2368 2369 2370
            return ret_val;

        phy_data |= M88E1000_EPSCR_TX_CLK_25;
        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2371
        if (ret_val)
L
Linus Torvalds 已提交
2372 2373 2374 2375 2376 2377
            return ret_val;

        /* In addition, because of the s/w reset above, we need to enable CRS on
         * TX.  This must be set for both full and half duplex operation.
         */
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2378
        if (ret_val)
L
Linus Torvalds 已提交
2379 2380 2381 2382
            return ret_val;

        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2383
        if (ret_val)
L
Linus Torvalds 已提交
2384 2385
            return ret_val;

2386 2387 2388
        if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
            (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
             hw->forced_speed_duplex == e1000_10_half)) {
L
Linus Torvalds 已提交
2389
            ret_val = e1000_polarity_reversal_workaround(hw);
2390
            if (ret_val)
L
Linus Torvalds 已提交
2391 2392
                return ret_val;
        }
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    } else if (hw->phy_type == e1000_phy_gg82563) {
        /* The TX_CLK of the Extended PHY Specific Control Register defaults
         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
         * we're not in a forced 10/duplex configuration. */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
        if ((hw->forced_speed_duplex == e1000_10_full) ||
            (hw->forced_speed_duplex == e1000_10_half))
            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
        else
            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;

        /* Also due to the reset, we need to enable CRS on Tx. */
        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;

        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
        if (ret_val)
            return ret_val;
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    }
    return E1000_SUCCESS;
}

/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
void
e1000_config_collision_dist(struct e1000_hw *hw)
{
2429
    uint32_t tctl, coll_dist;
L
Linus Torvalds 已提交
2430 2431 2432

    DEBUGFUNC("e1000_config_collision_dist");

2433 2434 2435 2436 2437
    if (hw->mac_type < e1000_82543)
        coll_dist = E1000_COLLISION_DISTANCE_82542;
    else
        coll_dist = E1000_COLLISION_DISTANCE;

L
Linus Torvalds 已提交
2438 2439 2440
    tctl = E1000_READ_REG(hw, TCTL);

    tctl &= ~E1000_TCTL_COLD;
2441
    tctl |= coll_dist << E1000_COLD_SHIFT;
L
Linus Torvalds 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

    E1000_WRITE_REG(hw, TCTL, tctl);
    E1000_WRITE_FLUSH(hw);
}

/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int32_t
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_config_mac_to_phy");

2465
    /* 82544 or newer MAC, Auto Speed Detection takes care of
2466 2467 2468 2469
    * MAC speed/duplex configuration.*/
    if (hw->mac_type >= e1000_82544)
        return E1000_SUCCESS;

L
Linus Torvalds 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
    /* Read the Device Control Register and set the bits to Force Speed
     * and Duplex.
     */
    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);

    /* Set up duplex in the Device Control and Transmit Control
     * registers depending on negotiated values.
     */
2480
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2481
    if (ret_val)
2482
        return ret_val;
L
Linus Torvalds 已提交
2483

2484
    if (phy_data & M88E1000_PSSR_DPLX)
2485
        ctrl |= E1000_CTRL_FD;
2486
    else
2487
        ctrl &= ~E1000_CTRL_FD;
L
Linus Torvalds 已提交
2488

2489
    e1000_config_collision_dist(hw);
L
Linus Torvalds 已提交
2490

2491 2492 2493
    /* Set up speed in the Device Control register depending on
     * negotiated values.
     */
2494
    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2495
        ctrl |= E1000_CTRL_SPD_1000;
2496
    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2497
        ctrl |= E1000_CTRL_SPD_100;
L
Linus Torvalds 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);
    return E1000_SUCCESS;
}

/******************************************************************************
 * Forces the MAC's flow control settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sets the TFCE and RFCE bits in the device control register to reflect
 * the adapter settings. TFCE and RFCE need to be explicitly set by
 * software when a Copper PHY is used because autonegotiation is managed
 * by the PHY rather than the MAC. Software must also configure these
 * bits when link is forced on a fiber connection.
 *****************************************************************************/
int32_t
e1000_force_mac_fc(struct e1000_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("e1000_force_mac_fc");

    /* Get the current configuration of the Device Control Register */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Because we didn't get link via the internal auto-negotiation
     * mechanism (we either forced link or we got link via PHY
     * auto-neg), we have to manually enable/disable transmit an
     * receive flow control.
     *
     * The "Case" statement below enables/disable flow control
     * according to the "hw->fc" parameter.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause
     *          frames but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          frames but we do not receive pause frames).
     *      3:  Both Rx and TX flow control (symmetric) is enabled.
     *  other:  No other values should be possible at this point.
     */

    switch (hw->fc) {
2544
    case E1000_FC_NONE:
L
Linus Torvalds 已提交
2545 2546
        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
        break;
2547
    case E1000_FC_RX_PAUSE:
L
Linus Torvalds 已提交
2548 2549 2550
        ctrl &= (~E1000_CTRL_TFCE);
        ctrl |= E1000_CTRL_RFCE;
        break;
2551
    case E1000_FC_TX_PAUSE:
L
Linus Torvalds 已提交
2552 2553 2554
        ctrl &= (~E1000_CTRL_RFCE);
        ctrl |= E1000_CTRL_TFCE;
        break;
2555
    case E1000_FC_FULL:
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560 2561 2562 2563
        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    /* Disable TX Flow Control for 82542 (rev 2.0) */
2564
    if (hw->mac_type == e1000_82542_rev2_0)
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
        ctrl &= (~E1000_CTRL_TFCE);

    E1000_WRITE_REG(hw, CTRL, ctrl);
    return E1000_SUCCESS;
}

/******************************************************************************
 * Configures flow control settings after link is established
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Should be called immediately after a valid link has been established.
 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 * and autonegotiation is enabled, the MAC flow control settings will be set
 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 *****************************************************************************/
2582
static int32_t
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_status_reg;
    uint16_t mii_nway_adv_reg;
    uint16_t mii_nway_lp_ability_reg;
    uint16_t speed;
    uint16_t duplex;

    DEBUGFUNC("e1000_config_fc_after_link_up");

    /* Check for the case where we have fiber media and auto-neg failed
     * so we had to force link.  In this case, we need to force the
     * configuration of the MAC to match the "fc" parameter.
     */
2598 2599 2600 2601
    if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
        ((hw->media_type == e1000_media_type_internal_serdes) &&
         (hw->autoneg_failed)) ||
        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
L
Linus Torvalds 已提交
2602
        ret_val = e1000_force_mac_fc(hw);
2603
        if (ret_val) {
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
            DEBUGOUT("Error forcing flow control settings\n");
            return ret_val;
        }
    }

    /* Check for the case where we have copper media and auto-neg is
     * enabled.  In this case, we need to check and see if Auto-Neg
     * has completed, and if so, how the PHY and link partner has
     * flow control configured.
     */
2614
    if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619
        /* Read the MII Status Register and check to see if AutoNeg
         * has completed.  We read this twice because this reg has
         * some "sticky" (latched) bits.
         */
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2620
        if (ret_val)
L
Linus Torvalds 已提交
2621 2622
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2623
        if (ret_val)
L
Linus Torvalds 已提交
2624 2625
            return ret_val;

2626
        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
L
Linus Torvalds 已提交
2627 2628 2629 2630 2631 2632 2633 2634
            /* The AutoNeg process has completed, so we now need to
             * read both the Auto Negotiation Advertisement Register
             * (Address 4) and the Auto_Negotiation Base Page Ability
             * Register (Address 5) to determine how flow control was
             * negotiated.
             */
            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
                                         &mii_nway_adv_reg);
2635
            if (ret_val)
L
Linus Torvalds 已提交
2636 2637 2638
                return ret_val;
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
                                         &mii_nway_lp_ability_reg);
2639
            if (ret_val)
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
                return ret_val;

            /* Two bits in the Auto Negotiation Advertisement Register
             * (Address 4) and two bits in the Auto Negotiation Base
             * Page Ability Register (Address 5) determine flow control
             * for both the PHY and the link partner.  The following
             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
             * 1999, describes these PAUSE resolution bits and how flow
             * control is determined based upon these settings.
             * NOTE:  DC = Don't Care
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
             *-------|---------|-------|---------|--------------------
2654 2655 2656 2657 2658 2659 2660 2661
             *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
             *   0   |    1    |   0   |   DC    | E1000_FC_NONE
             *   0   |    1    |   1   |    0    | E1000_FC_NONE
             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
             *   1   |    0    |   0   |   DC    | E1000_FC_NONE
             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
             *   1   |    1    |   0   |    0    | E1000_FC_NONE
             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
L
Linus Torvalds 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
             *
             */
            /* Are both PAUSE bits set to 1?  If so, this implies
             * Symmetric Flow Control is enabled at both ends.  The
             * ASM_DIR bits are irrelevant per the spec.
             *
             * For Symmetric Flow Control:
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
2673
             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
L
Linus Torvalds 已提交
2674 2675
             *
             */
2676 2677
            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
L
Linus Torvalds 已提交
2678 2679 2680 2681 2682 2683
                /* Now we need to check if the user selected RX ONLY
                 * of pause frames.  In this case, we had to advertise
                 * FULL flow control because we could not advertise RX
                 * ONLY. Hence, we must now check to see if we need to
                 * turn OFF  the TRANSMISSION of PAUSE frames.
                 */
2684 2685
                if (hw->original_fc == E1000_FC_FULL) {
                    hw->fc = E1000_FC_FULL;
2686
                    DEBUGOUT("Flow Control = FULL.\n");
L
Linus Torvalds 已提交
2687
                } else {
2688
                    hw->fc = E1000_FC_RX_PAUSE;
2689
                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694 2695 2696
                }
            }
            /* For receiving PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
2697
             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
L
Linus Torvalds 已提交
2698 2699
             *
             */
2700 2701 2702 2703
            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2704
                hw->fc = E1000_FC_TX_PAUSE;
2705
                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710 2711
            }
            /* For transmitting PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
2712
             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
L
Linus Torvalds 已提交
2713 2714
             *
             */
2715 2716 2717 2718
            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2719
                hw->fc = E1000_FC_RX_PAUSE;
2720
                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
            }
            /* Per the IEEE spec, at this point flow control should be
             * disabled.  However, we want to consider that we could
             * be connected to a legacy switch that doesn't advertise
             * desired flow control, but can be forced on the link
             * partner.  So if we advertised no flow control, that is
             * what we will resolve to.  If we advertised some kind of
             * receive capability (Rx Pause Only or Full Flow Control)
             * and the link partner advertised none, we will configure
             * ourselves to enable Rx Flow Control only.  We can do
             * this safely for two reasons:  If the link partner really
             * didn't want flow control enabled, and we enable Rx, no
             * harm done since we won't be receiving any PAUSE frames
             * anyway.  If the intent on the link partner was to have
             * flow control enabled, then by us enabling RX only, we
             * can at least receive pause frames and process them.
             * This is a good idea because in most cases, since we are
             * predominantly a server NIC, more times than not we will
             * be asked to delay transmission of packets than asking
             * our link partner to pause transmission of frames.
             */
2742 2743
            else if ((hw->original_fc == E1000_FC_NONE ||
                      hw->original_fc == E1000_FC_TX_PAUSE) ||
2744
                      hw->fc_strict_ieee) {
2745
                hw->fc = E1000_FC_NONE;
2746
                DEBUGOUT("Flow Control = NONE.\n");
L
Linus Torvalds 已提交
2747
            } else {
2748
                hw->fc = E1000_FC_RX_PAUSE;
2749
                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754 2755 2756
            }

            /* Now we need to do one last check...  If we auto-
             * negotiated to HALF DUPLEX, flow control should not be
             * enabled per IEEE 802.3 spec.
             */
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2757
            if (ret_val) {
L
Linus Torvalds 已提交
2758 2759 2760 2761
                DEBUGOUT("Error getting link speed and duplex\n");
                return ret_val;
            }

2762
            if (duplex == HALF_DUPLEX)
2763
                hw->fc = E1000_FC_NONE;
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768

            /* Now we call a subroutine to actually force the MAC
             * controller to use the correct flow control settings.
             */
            ret_val = e1000_force_mac_fc(hw);
2769
            if (ret_val) {
L
Linus Torvalds 已提交
2770 2771 2772 2773
                DEBUGOUT("Error forcing flow control settings\n");
                return ret_val;
            }
        } else {
2774
            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
        }
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
int32_t
e1000_check_for_link(struct e1000_hw *hw)
{
    uint32_t rxcw = 0;
    uint32_t ctrl;
    uint32_t status;
    uint32_t rctl;
    uint32_t icr;
    uint32_t signal = 0;
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_for_link");

    ctrl = E1000_READ_REG(hw, CTRL);
    status = E1000_READ_REG(hw, STATUS);

    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
     * set when the optics detect a signal. On older adapters, it will be
     * cleared when there is a signal.  This applies to fiber media only.
     */
2808 2809
    if ((hw->media_type == e1000_media_type_fiber) ||
        (hw->media_type == e1000_media_type_internal_serdes)) {
L
Linus Torvalds 已提交
2810 2811
        rxcw = E1000_READ_REG(hw, RXCW);

2812
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
2813
            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2814
            if (status & E1000_STATUS_LU)
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
                hw->get_link_status = FALSE;
        }
    }

    /* If we have a copper PHY then we only want to go out to the PHY
     * registers to see if Auto-Neg has completed and/or if our link
     * status has changed.  The get_link_status flag will be set if we
     * receive a Link Status Change interrupt or we have Rx Sequence
     * Errors.
     */
2825
    if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831
        /* First we want to see if the MII Status Register reports
         * link.  If so, then we want to get the current speed/duplex
         * of the PHY.
         * Read the register twice since the link bit is sticky.
         */
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2832
        if (ret_val)
L
Linus Torvalds 已提交
2833 2834
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2835
        if (ret_val)
L
Linus Torvalds 已提交
2836 2837
            return ret_val;

2838
        if (phy_data & MII_SR_LINK_STATUS) {
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
            hw->get_link_status = FALSE;
            /* Check if there was DownShift, must be checked immediately after
             * link-up */
            e1000_check_downshift(hw);

            /* If we are on 82544 or 82543 silicon and speed/duplex
             * are forced to 10H or 10F, then we will implement the polarity
             * reversal workaround.  We disable interrupts first, and upon
             * returning, place the devices interrupt state to its previous
             * value except for the link status change interrupt which will
             * happen due to the execution of this workaround.
             */

2852 2853 2854 2855
            if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
                (!hw->autoneg) &&
                (hw->forced_speed_duplex == e1000_10_full ||
                 hw->forced_speed_duplex == e1000_10_half)) {
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
                E1000_WRITE_REG(hw, IMC, 0xffffffff);
                ret_val = e1000_polarity_reversal_workaround(hw);
                icr = E1000_READ_REG(hw, ICR);
                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
            }

        } else {
            /* No link detected */
            e1000_config_dsp_after_link_change(hw, FALSE);
            return 0;
        }

        /* If we are forcing speed/duplex, then we simply return since
         * we have already determined whether we have link or not.
         */
2872
        if (!hw->autoneg) return -E1000_ERR_CONFIG;
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

        /* optimize the dsp settings for the igp phy */
        e1000_config_dsp_after_link_change(hw, TRUE);

        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
         * have Si on board that is 82544 or newer, Auto
         * Speed Detection takes care of MAC speed/duplex
         * configuration.  So we only need to configure Collision
         * Distance in the MAC.  Otherwise, we need to force
         * speed/duplex on the MAC to the current PHY speed/duplex
         * settings.
         */
2885
        if (hw->mac_type >= e1000_82544)
L
Linus Torvalds 已提交
2886 2887 2888
            e1000_config_collision_dist(hw);
        else {
            ret_val = e1000_config_mac_to_phy(hw);
2889
            if (ret_val) {
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
                DEBUGOUT("Error configuring MAC to PHY settings\n");
                return ret_val;
            }
        }

        /* Configure Flow Control now that Auto-Neg has completed. First, we
         * need to restore the desired flow control settings because we may
         * have had to re-autoneg with a different link partner.
         */
        ret_val = e1000_config_fc_after_link_up(hw);
2900
        if (ret_val) {
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }

        /* At this point we know that we are on copper and we have
         * auto-negotiated link.  These are conditions for checking the link
         * partner capability register.  We use the link speed to determine if
         * TBI compatibility needs to be turned on or off.  If the link is not
         * at gigabit speed, then TBI compatibility is not needed.  If we are
         * at gigabit speed, we turn on TBI compatibility.
         */
2912
        if (hw->tbi_compatibility_en) {
L
Linus Torvalds 已提交
2913
            uint16_t speed, duplex;
2914 2915 2916 2917 2918 2919
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
            if (ret_val) {
                DEBUGOUT("Error getting link speed and duplex\n");
                return ret_val;
            }
            if (speed != SPEED_1000) {
L
Linus Torvalds 已提交
2920 2921 2922
                /* If link speed is not set to gigabit speed, we do not need
                 * to enable TBI compatibility.
                 */
2923
                if (hw->tbi_compatibility_on) {
L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
                    /* If we previously were in the mode, turn it off. */
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl &= ~E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                    hw->tbi_compatibility_on = FALSE;
                }
            } else {
                /* If TBI compatibility is was previously off, turn it on. For
                 * compatibility with a TBI link partner, we will store bad
                 * packets. Some frames have an additional byte on the end and
                 * will look like CRC errors to to the hardware.
                 */
2936
                if (!hw->tbi_compatibility_on) {
L
Linus Torvalds 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
                    hw->tbi_compatibility_on = TRUE;
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl |= E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                }
            }
        }
    }
    /* If we don't have link (auto-negotiation failed or link partner cannot
     * auto-negotiate), the cable is plugged in (we have signal), and our
     * link partner is not trying to auto-negotiate with us (we are receiving
     * idles or data), we need to force link up. We also need to give
     * auto-negotiation time to complete, in case the cable was just plugged
     * in. The autoneg_failed flag does this.
     */
2952
    else if ((((hw->media_type == e1000_media_type_fiber) &&
L
Linus Torvalds 已提交
2953
              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2954 2955 2956 2957
              (hw->media_type == e1000_media_type_internal_serdes)) &&
              (!(status & E1000_STATUS_LU)) &&
              (!(rxcw & E1000_RXCW_C))) {
        if (hw->autoneg_failed == 0) {
L
Linus Torvalds 已提交
2958 2959 2960
            hw->autoneg_failed = 1;
            return 0;
        }
2961
        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
L
Linus Torvalds 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

        /* Disable auto-negotiation in the TXCW register */
        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));

        /* Force link-up and also force full-duplex. */
        ctrl = E1000_READ_REG(hw, CTRL);
        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
        E1000_WRITE_REG(hw, CTRL, ctrl);

        /* Configure Flow Control after forcing link up. */
        ret_val = e1000_config_fc_after_link_up(hw);
2973
        if (ret_val) {
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }
    }
    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
     * auto-negotiation in the TXCW register and disable forced link in the
     * Device Control register in an attempt to auto-negotiate with our link
     * partner.
     */
2983 2984 2985
    else if (((hw->media_type == e1000_media_type_fiber) ||
              (hw->media_type == e1000_media_type_internal_serdes)) &&
              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2986
        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992 2993 2994
        E1000_WRITE_REG(hw, TXCW, hw->txcw);
        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));

        hw->serdes_link_down = FALSE;
    }
    /* If we force link for non-auto-negotiation switch, check link status
     * based on MAC synchronization for internal serdes media type.
     */
2995 2996
    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
L
Linus Torvalds 已提交
2997 2998
        /* SYNCH bit and IV bit are sticky. */
        udelay(10);
2999 3000
        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
            if (!(rxcw & E1000_RXCW_IV)) {
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005 3006 3007 3008
                hw->serdes_link_down = FALSE;
                DEBUGOUT("SERDES: Link is up.\n");
            }
        } else {
            hw->serdes_link_down = TRUE;
            DEBUGOUT("SERDES: Link is down.\n");
        }
    }
3009 3010
    if ((hw->media_type == e1000_media_type_internal_serdes) &&
        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
L
Linus Torvalds 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 *****************************************************************************/
int32_t
e1000_get_speed_and_duplex(struct e1000_hw *hw,
                           uint16_t *speed,
                           uint16_t *duplex)
{
    uint32_t status;
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_get_speed_and_duplex");

3034
    if (hw->mac_type >= e1000_82543) {
L
Linus Torvalds 已提交
3035
        status = E1000_READ_REG(hw, STATUS);
3036
        if (status & E1000_STATUS_SPEED_1000) {
L
Linus Torvalds 已提交
3037 3038
            *speed = SPEED_1000;
            DEBUGOUT("1000 Mbs, ");
3039
        } else if (status & E1000_STATUS_SPEED_100) {
L
Linus Torvalds 已提交
3040 3041 3042 3043 3044 3045 3046
            *speed = SPEED_100;
            DEBUGOUT("100 Mbs, ");
        } else {
            *speed = SPEED_10;
            DEBUGOUT("10 Mbs, ");
        }

3047
        if (status & E1000_STATUS_FD) {
L
Linus Torvalds 已提交
3048
            *duplex = FULL_DUPLEX;
3049
            DEBUGOUT("Full Duplex\n");
L
Linus Torvalds 已提交
3050 3051
        } else {
            *duplex = HALF_DUPLEX;
3052
            DEBUGOUT(" Half Duplex\n");
L
Linus Torvalds 已提交
3053 3054
        }
    } else {
3055
        DEBUGOUT("1000 Mbs, Full Duplex\n");
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061 3062 3063
        *speed = SPEED_1000;
        *duplex = FULL_DUPLEX;
    }

    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
     * if it is operating at half duplex.  Here we set the duplex settings to
     * match the duplex in the link partner's capabilities.
     */
3064
    if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
L
Linus Torvalds 已提交
3065
        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3066
        if (ret_val)
L
Linus Torvalds 已提交
3067 3068
            return ret_val;

3069
        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
L
Linus Torvalds 已提交
3070 3071 3072
            *duplex = HALF_DUPLEX;
        else {
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3073
            if (ret_val)
L
Linus Torvalds 已提交
3074
                return ret_val;
3075
            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
L
Linus Torvalds 已提交
3076 3077 3078 3079 3080
               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
                *duplex = HALF_DUPLEX;
        }
    }

3081
    if ((hw->mac_type == e1000_80003es2lan) &&
3082 3083 3084 3085
        (hw->media_type == e1000_media_type_copper)) {
        if (*speed == SPEED_1000)
            ret_val = e1000_configure_kmrn_for_1000(hw);
        else
3086 3087 3088 3089 3090 3091 3092
            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
        if (ret_val)
            return ret_val;
    }

    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
        ret_val = e1000_kumeran_lock_loss_workaround(hw);
3093 3094 3095 3096
        if (ret_val)
            return ret_val;
    }

L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102 3103 3104
    return E1000_SUCCESS;
}

/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
3105
static int32_t
L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
e1000_wait_autoneg(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t i;
    uint16_t phy_data;

    DEBUGFUNC("e1000_wait_autoneg");
    DEBUGOUT("Waiting for Auto-Neg to complete.\n");

    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3116
    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
3117 3118 3119 3120
        /* Read the MII Status Register and wait for Auto-Neg
         * Complete bit to be set.
         */
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3121
        if (ret_val)
L
Linus Torvalds 已提交
3122 3123
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3124
        if (ret_val)
L
Linus Torvalds 已提交
3125
            return ret_val;
3126
        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
L
Linus Torvalds 已提交
3127 3128
            return E1000_SUCCESS;
        }
3129
        msleep(100);
L
Linus Torvalds 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
    }
    return E1000_SUCCESS;
}

/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw,
                    uint32_t *ctrl)
{
    /* Raise the clock input to the Management Data Clock (by setting the MDC
     * bit), and then delay 10 microseconds.
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
    E1000_WRITE_FLUSH(hw);
    udelay(10);
}

/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw,
                    uint32_t *ctrl)
{
    /* Lower the clock input to the Management Data Clock (by clearing the MDC
     * bit), and then delay 10 microseconds.
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
    E1000_WRITE_FLUSH(hw);
    udelay(10);
}

/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
                         uint32_t data,
                         uint16_t count)
{
    uint32_t ctrl;
    uint32_t mask;

    /* We need to shift "count" number of bits out to the PHY. So, the value
     * in the "data" parameter will be shifted out to the PHY one bit at a
     * time. In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01;
    mask <<= (count - 1);

    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

3199
    while (mask) {
L
Linus Torvalds 已提交
3200 3201 3202 3203 3204
        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
         * then raising and lowering the Management Data Clock. A "0" is
         * shifted out to the PHY by setting the MDIO bit to "0" and then
         * raising and lowering the clock.
         */
3205 3206 3207 3208
        if (data & mask)
            ctrl |= E1000_CTRL_MDIO;
        else
            ctrl &= ~E1000_CTRL_MDIO;
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

        E1000_WRITE_REG(hw, CTRL, ctrl);
        E1000_WRITE_FLUSH(hw);

        udelay(10);

        e1000_raise_mdi_clk(hw, &ctrl);
        e1000_lower_mdi_clk(hw, &ctrl);

        mask = mask >> 1;
    }
}

/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint16_t data = 0;
    uint8_t i;

    /* In order to read a register from the PHY, we need to shift in a total
     * of 18 bits from the PHY. The first two bit (turnaround) times are used
     * to avoid contention on the MDIO pin when a read operation is performed.
     * These two bits are ignored by us and thrown away. Bits are "shifted in"
     * by raising the input to the Management Data Clock (setting the MDC bit),
     * and then reading the value of the MDIO bit.
     */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
    ctrl &= ~E1000_CTRL_MDIO_DIR;
    ctrl &= ~E1000_CTRL_MDIO;

    E1000_WRITE_REG(hw, CTRL, ctrl);
    E1000_WRITE_FLUSH(hw);

    /* Raise and Lower the clock before reading in the data. This accounts for
     * the turnaround bits. The first clock occurred when we clocked out the
     * last bit of the Register Address.
     */
    e1000_raise_mdi_clk(hw, &ctrl);
    e1000_lower_mdi_clk(hw, &ctrl);

3259
    for (data = 0, i = 0; i < 16; i++) {
L
Linus Torvalds 已提交
3260 3261 3262 3263
        data = data << 1;
        e1000_raise_mdi_clk(hw, &ctrl);
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Check to see if we shifted in a "1". */
3264 3265
        if (ctrl & E1000_CTRL_MDIO)
            data |= 1;
L
Linus Torvalds 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274
        e1000_lower_mdi_clk(hw, &ctrl);
    }

    e1000_raise_mdi_clk(hw, &ctrl);
    e1000_lower_mdi_clk(hw, &ctrl);

    return data;
}

3275
static int32_t
3276 3277 3278 3279 3280 3281 3282 3283 3284
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
{
    uint32_t swfw_sync = 0;
    uint32_t swmask = mask;
    uint32_t fwmask = mask << 16;
    int32_t timeout = 200;

    DEBUGFUNC("e1000_swfw_sync_acquire");

3285 3286 3287
    if (hw->swfwhw_semaphore_present)
        return e1000_get_software_flag(hw);

3288 3289 3290
    if (!hw->swfw_sync_present)
        return e1000_get_hw_eeprom_semaphore(hw);

3291
    while (timeout) {
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
            if (e1000_get_hw_eeprom_semaphore(hw))
                return -E1000_ERR_SWFW_SYNC;

            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
            if (!(swfw_sync & (fwmask | swmask))) {
                break;
            }

            /* firmware currently using resource (fwmask) */
            /* or other software thread currently using resource (swmask) */
            e1000_put_hw_eeprom_semaphore(hw);
3303
            mdelay(5);
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
            timeout--;
    }

    if (!timeout) {
        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
        return -E1000_ERR_SWFW_SYNC;
    }

    swfw_sync |= swmask;
    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);

    e1000_put_hw_eeprom_semaphore(hw);
    return E1000_SUCCESS;
}

3319
static void
3320 3321 3322 3323 3324 3325 3326
e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
{
    uint32_t swfw_sync;
    uint32_t swmask = mask;

    DEBUGFUNC("e1000_swfw_sync_release");

3327 3328 3329 3330 3331
    if (hw->swfwhw_semaphore_present) {
        e1000_release_software_flag(hw);
        return;
    }

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
    if (!hw->swfw_sync_present) {
        e1000_put_hw_eeprom_semaphore(hw);
        return;
    }

    /* if (e1000_get_hw_eeprom_semaphore(hw))
     *    return -E1000_ERR_SWFW_SYNC; */
    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
        /* empty */

    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
    swfw_sync &= ~swmask;
    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);

    e1000_put_hw_eeprom_semaphore(hw);
}

L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
/*****************************************************************************
* Reads the value from a PHY register, if the value is on a specific non zero
* page, sets the page first.
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
int32_t
e1000_read_phy_reg(struct e1000_hw *hw,
                   uint32_t reg_addr,
                   uint16_t *phy_data)
{
    uint32_t ret_val;
3361
    uint16_t swfw;
L
Linus Torvalds 已提交
3362 3363 3364

    DEBUGFUNC("e1000_read_phy_reg");

3365 3366 3367 3368 3369 3370 3371 3372 3373
    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

3374 3375
    if ((hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
3376
        hw->phy_type == e1000_phy_igp_2) &&
L
Linus Torvalds 已提交
3377 3378 3379
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                                         (uint16_t)reg_addr);
3380
        if (ret_val) {
3381
            e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3382 3383
            return ret_val;
        }
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
    } else if (hw->phy_type == e1000_phy_gg82563) {
        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
            (hw->mac_type == e1000_80003es2lan)) {
            /* Select Configuration Page */
            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            } else {
                /* Use Alternative Page Select register to access
                 * registers 30 and 31
                 */
                ret_val = e1000_write_phy_reg_ex(hw,
                                                 GG82563_PHY_PAGE_SELECT_ALT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            }

            if (ret_val) {
                e1000_swfw_sync_release(hw, swfw);
                return ret_val;
            }
        }
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409
    }

    ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                                    phy_data);

3410
    e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3411 3412 3413
    return ret_val;
}

3414 3415
static int32_t
e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
L
Linus Torvalds 已提交
3416 3417 3418 3419 3420 3421 3422 3423
                      uint16_t *phy_data)
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("e1000_read_phy_reg_ex");

3424
    if (reg_addr > MAX_PHY_REG_ADDRESS) {
L
Linus Torvalds 已提交
3425 3426 3427 3428
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

3429
    if (hw->mac_type > e1000_82543) {
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
        /* Set up Op-code, Phy Address, and register address in the MDI
         * Control register.  The MAC will take care of interfacing with the
         * PHY to retrieve the desired data.
         */
        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
                (E1000_MDIC_OP_READ));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
3441
        for (i = 0; i < 64; i++) {
L
Linus Torvalds 已提交
3442 3443
            udelay(50);
            mdic = E1000_READ_REG(hw, MDIC);
3444
            if (mdic & E1000_MDIC_READY) break;
L
Linus Torvalds 已提交
3445
        }
3446
        if (!(mdic & E1000_MDIC_READY)) {
L
Linus Torvalds 已提交
3447 3448 3449
            DEBUGOUT("MDI Read did not complete\n");
            return -E1000_ERR_PHY;
        }
3450
        if (mdic & E1000_MDIC_ERROR) {
L
Linus Torvalds 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
            DEBUGOUT("MDI Error\n");
            return -E1000_ERR_PHY;
        }
        *phy_data = (uint16_t) mdic;
    } else {
        /* We must first send a preamble through the MDIO pin to signal the
         * beginning of an MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the next few fields that are required for a read
         * operation.  We use this method instead of calling the
         * e1000_shift_out_mdi_bits routine five different times. The format of
         * a MII read instruction consists of a shift out of 14 bits and is
         * defined as follows:
         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
         * followed by a shift in of 18 bits.  This first two bits shifted in
         * are TurnAround bits used to avoid contention on the MDIO pin when a
         * READ operation is performed.  These two bits are thrown away
         * followed by a shift in of 16 bits which contains the desired data.
         */
        mdic = ((reg_addr) | (phy_addr << 5) |
                (PHY_OP_READ << 10) | (PHY_SOF << 12));

        e1000_shift_out_mdi_bits(hw, mdic, 14);

        /* Now that we've shifted out the read command to the MII, we need to
         * "shift in" the 16-bit value (18 total bits) of the requested PHY
         * register address.
         */
        *phy_data = e1000_shift_in_mdi_bits(hw);
    }
    return E1000_SUCCESS;
}

/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
int32_t
3495
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
L
Linus Torvalds 已提交
3496 3497 3498
                    uint16_t phy_data)
{
    uint32_t ret_val;
3499
    uint16_t swfw;
L
Linus Torvalds 已提交
3500 3501 3502

    DEBUGFUNC("e1000_write_phy_reg");

3503 3504 3505 3506 3507 3508 3509 3510 3511
    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

3512 3513
    if ((hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
3514
        hw->phy_type == e1000_phy_igp_2) &&
L
Linus Torvalds 已提交
3515 3516 3517
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                                         (uint16_t)reg_addr);
3518
        if (ret_val) {
3519
            e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3520 3521
            return ret_val;
        }
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
    } else if (hw->phy_type == e1000_phy_gg82563) {
        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
            (hw->mac_type == e1000_80003es2lan)) {
            /* Select Configuration Page */
            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            } else {
                /* Use Alternative Page Select register to access
                 * registers 30 and 31
                 */
                ret_val = e1000_write_phy_reg_ex(hw,
                                                 GG82563_PHY_PAGE_SELECT_ALT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            }

            if (ret_val) {
                e1000_swfw_sync_release(hw, swfw);
                return ret_val;
            }
        }
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547
    }

    ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                                     phy_data);

3548
    e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3549 3550 3551
    return ret_val;
}

3552 3553 3554
static int32_t
e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
                       uint16_t phy_data)
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("e1000_write_phy_reg_ex");

3562
    if (reg_addr > MAX_PHY_REG_ADDRESS) {
L
Linus Torvalds 已提交
3563 3564 3565 3566
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

3567
    if (hw->mac_type > e1000_82543) {
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
        /* Set up Op-code, Phy Address, register address, and data intended
         * for the PHY register in the MDI Control register.  The MAC will take
         * care of interfacing with the PHY to send the desired data.
         */
        mdic = (((uint32_t) phy_data) |
                (reg_addr << E1000_MDIC_REG_SHIFT) |
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
                (E1000_MDIC_OP_WRITE));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
3580
        for (i = 0; i < 641; i++) {
L
Linus Torvalds 已提交
3581 3582
            udelay(5);
            mdic = E1000_READ_REG(hw, MDIC);
3583
            if (mdic & E1000_MDIC_READY) break;
L
Linus Torvalds 已提交
3584
        }
3585
        if (!(mdic & E1000_MDIC_READY)) {
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
            DEBUGOUT("MDI Write did not complete\n");
            return -E1000_ERR_PHY;
        }
    } else {
        /* We'll need to use the SW defined pins to shift the write command
         * out to the PHY. We first send a preamble to the PHY to signal the
         * beginning of the MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the remaining required fields that will indicate a
         * write operation. We use this method instead of calling the
         * e1000_shift_out_mdi_bits routine for each field in the command. The
         * format of a MII write instruction is as follows:
         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
         */
        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
        mdic <<= 16;
        mdic |= (uint32_t) phy_data;

        e1000_shift_out_mdi_bits(hw, mdic, 32);
    }

    return E1000_SUCCESS;
}

3614
static int32_t
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
e1000_read_kmrn_reg(struct e1000_hw *hw,
                    uint32_t reg_addr,
                    uint16_t *data)
{
    uint32_t reg_val;
    uint16_t swfw;
    DEBUGFUNC("e1000_read_kmrn_reg");

    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

    /* Write register address */
    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
              E1000_KUMCTRLSTA_OFFSET) |
              E1000_KUMCTRLSTA_REN;
    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
    udelay(2);

    /* Read the data returned */
    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
    *data = (uint16_t)reg_val;

    e1000_swfw_sync_release(hw, swfw);
    return E1000_SUCCESS;
}

3647
static int32_t
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
e1000_write_kmrn_reg(struct e1000_hw *hw,
                     uint32_t reg_addr,
                     uint16_t data)
{
    uint32_t reg_val;
    uint16_t swfw;
    DEBUGFUNC("e1000_write_kmrn_reg");

    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
              E1000_KUMCTRLSTA_OFFSET) | data;
    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
    udelay(2);

    e1000_swfw_sync_release(hw, swfw);
    return E1000_SUCCESS;
}
3673

L
Linus Torvalds 已提交
3674 3675 3676 3677 3678
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
3679
int32_t
L
Linus Torvalds 已提交
3680 3681 3682 3683
e1000_phy_hw_reset(struct e1000_hw *hw)
{
    uint32_t ctrl, ctrl_ext;
    uint32_t led_ctrl;
3684
    int32_t ret_val;
3685
    uint16_t swfw;
L
Linus Torvalds 已提交
3686 3687 3688

    DEBUGFUNC("e1000_phy_hw_reset");

3689 3690 3691 3692 3693 3694
    /* In the case of the phy reset being blocked, it's not an error, we
     * simply return success without performing the reset. */
    ret_val = e1000_check_phy_reset_block(hw);
    if (ret_val)
        return E1000_SUCCESS;

L
Linus Torvalds 已提交
3695 3696
    DEBUGOUT("Resetting Phy...\n");

3697
    if (hw->mac_type > e1000_82543) {
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
        if ((hw->mac_type == e1000_80003es2lan) &&
            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
            swfw = E1000_SWFW_PHY1_SM;
        } else {
            swfw = E1000_SWFW_PHY0_SM;
        }
        if (e1000_swfw_sync_acquire(hw, swfw)) {
            e1000_release_software_semaphore(hw);
            return -E1000_ERR_SWFW_SYNC;
        }
L
Linus Torvalds 已提交
3708 3709
        /* Read the device control register and assert the E1000_CTRL_PHY_RST
         * bit. Then, take it out of reset.
3710
         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
J
Jeff Kirsher 已提交
3711
         * and deassert.  For e1000_82571 hardware and later, we instead delay
3712
         * for 50us between and 10ms after the deassertion.
L
Linus Torvalds 已提交
3713 3714 3715 3716
         */
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
        E1000_WRITE_FLUSH(hw);
3717 3718

        if (hw->mac_type < e1000_82571)
3719
            msleep(10);
3720 3721
        else
            udelay(100);
3722

L
Linus Torvalds 已提交
3723 3724
        E1000_WRITE_REG(hw, CTRL, ctrl);
        E1000_WRITE_FLUSH(hw);
3725

J
Jeff Kirsher 已提交
3726
        if (hw->mac_type >= e1000_82571)
3727
            mdelay(10);
3728

3729
        e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738
    } else {
        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
         * bit to put the PHY into reset. Then, take it out of reset.
         */
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
3739
        msleep(10);
L
Linus Torvalds 已提交
3740 3741 3742 3743 3744 3745
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
    }
    udelay(150);

3746
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752
        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }
3753 3754 3755

    /* Wait for FW to finish PHY configuration. */
    ret_val = e1000_get_phy_cfg_done(hw);
3756 3757
    if (ret_val != E1000_SUCCESS)
        return ret_val;
3758
    e1000_release_software_semaphore(hw);
3759

3760 3761 3762
    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
        ret_val = e1000_init_lcd_from_nvm(hw);

3763
    return ret_val;
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
}

/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_phy_reset");

3781 3782 3783 3784 3785 3786 3787 3788
    /* In the case of the phy reset being blocked, it's not an error, we
     * simply return success without performing the reset. */
    ret_val = e1000_check_phy_reset_block(hw);
    if (ret_val)
        return E1000_SUCCESS;

    switch (hw->mac_type) {
    case e1000_82541_rev_2:
3789 3790
    case e1000_82571:
    case e1000_82572:
3791
    case e1000_ich8lan:
3792
        ret_val = e1000_phy_hw_reset(hw);
3793
        if (ret_val)
3794 3795 3796
            return ret_val;
        break;
    default:
L
Linus Torvalds 已提交
3797
        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3798
        if (ret_val)
L
Linus Torvalds 已提交
3799 3800 3801 3802
            return ret_val;

        phy_data |= MII_CR_RESET;
        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3803
        if (ret_val)
L
Linus Torvalds 已提交
3804 3805 3806
            return ret_val;

        udelay(1);
3807 3808
        break;
    }
L
Linus Torvalds 已提交
3809

3810
    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
L
Linus Torvalds 已提交
3811 3812 3813 3814 3815
        e1000_phy_init_script(hw);

    return E1000_SUCCESS;
}

A
Auke Kok 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
/******************************************************************************
* Work-around for 82566 power-down: on D3 entry-
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* if successful continue, else issue LCD reset and repeat
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_powerdown_workaround(struct e1000_hw *hw)
{
    int32_t reg;
    uint16_t phy_data;
    int32_t retry = 0;

    DEBUGFUNC("e1000_phy_powerdown_workaround");

    if (hw->phy_type != e1000_phy_igp_3)
        return;

    do {
        /* Disable link */
        reg = E1000_READ_REG(hw, PHY_CTRL);
        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);

        /* Write VR power-down enable */
        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
                            IGP3_VR_CTRL_MODE_SHUT);

        /* Read it back and test */
        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
        if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
            break;

        /* Issue PHY reset and repeat at most one more time */
        reg = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
        retry++;
    } while (retry);

    return;

}

/******************************************************************************
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
3877
static int32_t
A
Auke Kok 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
{
    int32_t ret_val;
    int32_t reg;
    int32_t cnt;
    uint16_t phy_data;

    if (hw->kmrn_lock_loss_workaround_disabled)
        return E1000_SUCCESS;

3888 3889
    /* Make sure link is up before proceeding.  If not just return.
     * Attempting this while link is negotiating fouled up link
A
Auke Kok 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
     * stability */
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);

    if (phy_data & MII_SR_LINK_STATUS) {
        for (cnt = 0; cnt < 10; cnt++) {
            /* read once to clear */
            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
            if (ret_val)
                return ret_val;
            /* and again to get new status */
            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
            if (ret_val)
                return ret_val;

            /* check for PCS lock */
            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
                return E1000_SUCCESS;

            /* Issue PHY reset */
            e1000_phy_hw_reset(hw);
3911
            mdelay(5);
A
Auke Kok 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
        }
        /* Disable GigE link negotiation */
        reg = E1000_READ_REG(hw, PHY_CTRL);
        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);

        /* unable to acquire PCS lock */
        return E1000_ERR_PHY;
    }

    return E1000_SUCCESS;
}

L
Linus Torvalds 已提交
3925 3926 3927 3928 3929
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
3930
static int32_t
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937 3938
e1000_detect_gig_phy(struct e1000_hw *hw)
{
    int32_t phy_init_status, ret_val;
    uint16_t phy_id_high, phy_id_low;
    boolean_t match = FALSE;

    DEBUGFUNC("e1000_detect_gig_phy");

3939 3940 3941
    /* The 82571 firmware may still be configuring the PHY.  In this
     * case, we cannot access the PHY until the configuration is done.  So
     * we explicitly set the PHY values. */
3942 3943
    if (hw->mac_type == e1000_82571 ||
        hw->mac_type == e1000_82572) {
3944 3945 3946 3947 3948
        hw->phy_id = IGP01E1000_I_PHY_ID;
        hw->phy_type = e1000_phy_igp_2;
        return E1000_SUCCESS;
    }

3949 3950 3951 3952 3953 3954 3955 3956 3957
    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
     * around that forces PHY page 0 to be set or the reads fail.  The rest of
     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
     * So for ESB-2 we need to have this set so our reads won't fail.  If the
     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
     * this out as well. */
    if (hw->mac_type == e1000_80003es2lan)
        hw->phy_type = e1000_phy_gg82563;

L
Linus Torvalds 已提交
3958 3959
    /* Read the PHY ID Registers to identify which PHY is onboard. */
    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3960
    if (ret_val)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965
        return ret_val;

    hw->phy_id = (uint32_t) (phy_id_high << 16);
    udelay(20);
    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3966
    if (ret_val)
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971
        return ret_val;

    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;

3972
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
3973
    case e1000_82543:
3974
        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3975 3976
        break;
    case e1000_82544:
3977
        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3978 3979 3980 3981 3982 3983
        break;
    case e1000_82540:
    case e1000_82545:
    case e1000_82545_rev_3:
    case e1000_82546:
    case e1000_82546_rev_3:
3984
        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989
        break;
    case e1000_82541:
    case e1000_82541_rev_2:
    case e1000_82547:
    case e1000_82547_rev_2:
3990
        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3991
        break;
3992
    case e1000_82573:
3993
        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
3994
        break;
3995 3996 3997
    case e1000_80003es2lan:
        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
        break;
3998 3999 4000 4001 4002 4003
    case e1000_ich8lan:
        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
        break;
L
Linus Torvalds 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
    default:
        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
        return -E1000_ERR_CONFIG;
    }
    phy_init_status = e1000_set_phy_type(hw);

    if ((match) && (phy_init_status == E1000_SUCCESS)) {
        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
        return E1000_SUCCESS;
    }
    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
    return -E1000_ERR_PHY;
}

/******************************************************************************
* Resets the PHY's DSP
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_reset_dsp(struct e1000_hw *hw)
{
    int32_t ret_val;
    DEBUGFUNC("e1000_phy_reset_dsp");

    do {
4030 4031
        if (hw->phy_type != e1000_phy_gg82563) {
            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4032
            if (ret_val) break;
4033
        }
L
Linus Torvalds 已提交
4034
        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4035
        if (ret_val) break;
L
Linus Torvalds 已提交
4036
        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4037
        if (ret_val) break;
L
Linus Torvalds 已提交
4038
        ret_val = E1000_SUCCESS;
4039
    } while (0);
L
Linus Torvalds 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049

    return ret_val;
}

/******************************************************************************
* Get PHY information from various PHY registers for igp PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
4050
static int32_t
L
Linus Torvalds 已提交
4051 4052 4053 4054
e1000_phy_igp_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
4055 4056
    uint16_t phy_data, min_length, max_length, average;
    e1000_rev_polarity polarity;
L
Linus Torvalds 已提交
4057 4058 4059 4060 4061

    DEBUGFUNC("e1000_phy_igp_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
4062
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071

    /* IGP01E1000 does not need to support it. */
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;

    /* IGP01E1000 always correct polarity reversal */
    phy_info->polarity_correction = e1000_polarity_reversal_enabled;

    /* Check polarity status */
    ret_val = e1000_check_polarity(hw, &polarity);
4072
    if (ret_val)
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077
        return ret_val;

    phy_info->cable_polarity = polarity;

    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4078
    if (ret_val)
L
Linus Torvalds 已提交
4079 4080
        return ret_val;

4081 4082
    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
                          IGP01E1000_PSSR_MDIX_SHIFT);
L
Linus Torvalds 已提交
4083

4084
    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
L
Linus Torvalds 已提交
4085 4086 4087
       IGP01E1000_PSSR_SPEED_1000MBPS) {
        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4088
        if (ret_val)
L
Linus Torvalds 已提交
4089 4090
            return ret_val;

4091 4092 4093 4094 4095 4096
        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
L
Linus Torvalds 已提交
4097 4098 4099

        /* Get cable length */
        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4100
        if (ret_val)
L
Linus Torvalds 已提交
4101 4102
            return ret_val;

4103
        /* Translate to old method */
L
Linus Torvalds 已提交
4104 4105
        average = (max_length + min_length) / 2;

4106
        if (average <= e1000_igp_cable_length_50)
L
Linus Torvalds 已提交
4107
            phy_info->cable_length = e1000_cable_length_50;
4108
        else if (average <= e1000_igp_cable_length_80)
L
Linus Torvalds 已提交
4109
            phy_info->cable_length = e1000_cable_length_50_80;
4110
        else if (average <= e1000_igp_cable_length_110)
L
Linus Torvalds 已提交
4111
            phy_info->cable_length = e1000_cable_length_80_110;
4112
        else if (average <= e1000_igp_cable_length_140)
L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120
            phy_info->cable_length = e1000_cable_length_110_140;
        else
            phy_info->cable_length = e1000_cable_length_140;
    }

    return E1000_SUCCESS;
}

A
Auke Kok 已提交
4121 4122 4123 4124 4125 4126
/******************************************************************************
* Get PHY information from various PHY registers for ife PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
4127
static int32_t
A
Auke Kok 已提交
4128 4129 4130 4131
e1000_phy_ife_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
4132 4133
    uint16_t phy_data;
    e1000_rev_polarity polarity;
A
Auke Kok 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

    DEBUGFUNC("e1000_phy_ife_get_info");

    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;

    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
    if (ret_val)
        return ret_val;
    phy_info->polarity_correction =
4144 4145 4146
                        ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
                        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
A
Auke Kok 已提交
4147 4148 4149 4150 4151 4152 4153

    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
        ret_val = e1000_check_polarity(hw, &polarity);
        if (ret_val)
            return ret_val;
    } else {
        /* Polarity is forced. */
4154 4155 4156
        polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
                     IFE_PSC_FORCE_POLARITY_SHIFT) ?
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
A
Auke Kok 已提交
4157 4158 4159 4160 4161 4162 4163
    }
    phy_info->cable_polarity = polarity;

    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
    if (ret_val)
        return ret_val;

4164 4165 4166
    phy_info->mdix_mode = (e1000_auto_x_mode)
                     ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
                     IFE_PMC_MDIX_MODE_SHIFT);
A
Auke Kok 已提交
4167 4168 4169 4170

    return E1000_SUCCESS;
}

L
Linus Torvalds 已提交
4171 4172 4173 4174 4175 4176
/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
4177
static int32_t
L
Linus Torvalds 已提交
4178 4179 4180 4181
e1000_phy_m88_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
4182 4183
    uint16_t phy_data;
    e1000_rev_polarity polarity;
L
Linus Torvalds 已提交
4184 4185 4186 4187 4188

    DEBUGFUNC("e1000_phy_m88_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
4189
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
L
Linus Torvalds 已提交
4190 4191

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4192
    if (ret_val)
L
Linus Torvalds 已提交
4193 4194 4195
        return ret_val;

    phy_info->extended_10bt_distance =
4196 4197 4198 4199
        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;

L
Linus Torvalds 已提交
4200
    phy_info->polarity_correction =
4201 4202 4203
        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
L
Linus Torvalds 已提交
4204 4205 4206

    /* Check polarity status */
    ret_val = e1000_check_polarity(hw, &polarity);
4207
    if (ret_val)
4208
        return ret_val;
L
Linus Torvalds 已提交
4209 4210 4211
    phy_info->cable_polarity = polarity;

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4212
    if (ret_val)
L
Linus Torvalds 已提交
4213 4214
        return ret_val;

4215 4216
    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
                          M88E1000_PSSR_MDIX_SHIFT);
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221

    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
        /* Cable Length Estimation and Local/Remote Receiver Information
         * are only valid at 1000 Mbps.
         */
4222
        if (hw->phy_type != e1000_phy_gg82563) {
4223
            phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4224 4225 4226 4227 4228 4229 4230
                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
        } else {
            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
                                         &phy_data);
            if (ret_val)
                return ret_val;

4231
            phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4232
        }
L
Linus Torvalds 已提交
4233 4234

        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4235
        if (ret_val)
L
Linus Torvalds 已提交
4236 4237
            return ret_val;

4238 4239 4240 4241 4242 4243
        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
L
Linus Torvalds 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

    }

    return E1000_SUCCESS;
}

/******************************************************************************
* Get PHY information from various PHY registers
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_get_info(struct e1000_hw *hw,
                   struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_phy_get_info");

    phy_info->cable_length = e1000_cable_length_undefined;
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
    phy_info->cable_polarity = e1000_rev_polarity_undefined;
    phy_info->downshift = e1000_downshift_undefined;
    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
    phy_info->local_rx = e1000_1000t_rx_status_undefined;
    phy_info->remote_rx = e1000_1000t_rx_status_undefined;

4274
    if (hw->media_type != e1000_media_type_copper) {
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279
        DEBUGOUT("PHY info is only valid for copper media\n");
        return -E1000_ERR_CONFIG;
    }

    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4280
    if (ret_val)
L
Linus Torvalds 已提交
4281 4282 4283
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4284
    if (ret_val)
L
Linus Torvalds 已提交
4285 4286
        return ret_val;

4287
    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
L
Linus Torvalds 已提交
4288 4289 4290 4291
        DEBUGOUT("PHY info is only valid if link is up\n");
        return -E1000_ERR_CONFIG;
    }

4292 4293
    if (hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
4294
        hw->phy_type == e1000_phy_igp_2)
L
Linus Torvalds 已提交
4295
        return e1000_phy_igp_get_info(hw, phy_info);
4296 4297
    else if (hw->phy_type == e1000_phy_ife)
        return e1000_phy_ife_get_info(hw, phy_info);
L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306
    else
        return e1000_phy_m88_get_info(hw, phy_info);
}

int32_t
e1000_validate_mdi_setting(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_validate_mdi_settings");

4307
    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
L
Linus Torvalds 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
        DEBUGOUT("Invalid MDI setting detected\n");
        hw->mdix = 1;
        return -E1000_ERR_CONFIG;
    }
    return E1000_SUCCESS;
}


/******************************************************************************
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
4318 4319
 * is configured.  Additionally, if this is ICH8, the flash controller GbE
 * registers must be mapped, or this will crash.
L
Linus Torvalds 已提交
4320 4321 4322
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
4323
int32_t
L
Linus Torvalds 已提交
4324 4325 4326 4327
e1000_init_eeprom_params(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd = E1000_READ_REG(hw, EECD);
4328
    int32_t ret_val = E1000_SUCCESS;
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
    uint16_t eeprom_size;

    DEBUGFUNC("e1000_init_eeprom_params");

    switch (hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        eeprom->type = e1000_eeprom_microwire;
        eeprom->word_size = 64;
        eeprom->opcode_bits = 3;
        eeprom->address_bits = 6;
        eeprom->delay_usec = 50;
4343 4344
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353
        break;
    case e1000_82540:
    case e1000_82545:
    case e1000_82545_rev_3:
    case e1000_82546:
    case e1000_82546_rev_3:
        eeprom->type = e1000_eeprom_microwire;
        eeprom->opcode_bits = 3;
        eeprom->delay_usec = 50;
4354
        if (eecd & E1000_EECD_SIZE) {
L
Linus Torvalds 已提交
4355 4356 4357 4358 4359 4360
            eeprom->word_size = 256;
            eeprom->address_bits = 8;
        } else {
            eeprom->word_size = 64;
            eeprom->address_bits = 6;
        }
4361 4362
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
        break;
    case e1000_82541:
    case e1000_82541_rev_2:
    case e1000_82547:
    case e1000_82547_rev_2:
        if (eecd & E1000_EECD_TYPE) {
            eeprom->type = e1000_eeprom_spi;
            eeprom->opcode_bits = 8;
            eeprom->delay_usec = 1;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->page_size = 32;
                eeprom->address_bits = 16;
            } else {
                eeprom->page_size = 8;
                eeprom->address_bits = 8;
            }
        } else {
            eeprom->type = e1000_eeprom_microwire;
            eeprom->opcode_bits = 3;
            eeprom->delay_usec = 50;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->word_size = 256;
                eeprom->address_bits = 8;
            } else {
                eeprom->word_size = 64;
                eeprom->address_bits = 6;
            }
        }
4391 4392 4393
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
        break;
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    case e1000_82571:
    case e1000_82572:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
        break;
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
    case e1000_82573:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        eeprom->use_eerd = TRUE;
        eeprom->use_eewr = TRUE;
4422
        if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4423 4424 4425 4426 4427 4428 4429 4430
            eeprom->type = e1000_eeprom_flash;
            eeprom->word_size = 2048;

            /* Ensure that the Autonomous FLASH update bit is cleared due to
             * Flash update issue on parts which use a FLASH for NVM. */
            eecd &= ~E1000_EECD_AUPDEN;
            E1000_WRITE_REG(hw, EECD, eecd);
        }
L
Linus Torvalds 已提交
4431
        break;
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
    case e1000_80003es2lan:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        eeprom->use_eerd = TRUE;
        eeprom->use_eewr = FALSE;
        break;
4446
    case e1000_ich8lan:
4447
        {
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
        int32_t  i = 0;
        uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);

        eeprom->type = e1000_eeprom_ich8;
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
        eeprom->word_size = E1000_SHADOW_RAM_WORDS;

        /* Zero the shadow RAM structure. But don't load it from NVM
         * so as to save time for driver init */
        if (hw->eeprom_shadow_ram != NULL) {
            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                hw->eeprom_shadow_ram[i].modified = FALSE;
                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
            }
        }

        hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
                              ICH8_FLASH_SECTOR_SIZE;

        hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
        hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
        hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
        hw->flash_bank_size /= 2 * sizeof(uint16_t);

        break;
4474
        }
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479
    default:
        break;
    }

    if (eeprom->type == e1000_eeprom_spi) {
4480 4481 4482
        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
         * 32KB (incremented by powers of 2).
         */
4483
        if (hw->mac_type <= e1000_82547_rev_2) {
4484 4485 4486
            /* Set to default value for initial eeprom read. */
            eeprom->word_size = 64;
            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4487
            if (ret_val)
4488 4489 4490 4491 4492
                return ret_val;
            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
            /* 256B eeprom size was not supported in earlier hardware, so we
             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
             * is never the result used in the shifting logic below. */
4493
            if (eeprom_size)
4494 4495 4496 4497
                eeprom_size++;
        } else {
            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
                          E1000_EECD_SIZE_EX_SHIFT);
L
Linus Torvalds 已提交
4498
        }
4499 4500

        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
L
Linus Torvalds 已提交
4501
    }
4502
    return ret_val;
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
}

/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
e1000_raise_ee_clk(struct e1000_hw *hw,
                   uint32_t *eecd)
{
    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
     * wait <delay> microseconds.
     */
    *eecd = *eecd | E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
    E1000_WRITE_FLUSH(hw);
    udelay(hw->eeprom.delay_usec);
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
e1000_lower_ee_clk(struct e1000_hw *hw,
                   uint32_t *eecd)
{
    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
     * wait 50 microseconds.
     */
    *eecd = *eecd & ~E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
    E1000_WRITE_FLUSH(hw);
    udelay(hw->eeprom.delay_usec);
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw,
                        uint16_t data,
                        uint16_t count)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint32_t mask;

    /* We need to shift "count" bits out to the EEPROM. So, value in the
     * "data" parameter will be shifted out to the EEPROM one bit at a time.
     * In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01 << (count - 1);
    eecd = E1000_READ_REG(hw, EECD);
    if (eeprom->type == e1000_eeprom_microwire) {
        eecd &= ~E1000_EECD_DO;
    } else if (eeprom->type == e1000_eeprom_spi) {
        eecd |= E1000_EECD_DO;
    }
    do {
        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
         * and then raising and then lowering the clock (the SK bit controls
         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
         * by setting "DI" to "0" and then raising and then lowering the clock.
         */
        eecd &= ~E1000_EECD_DI;

4578
        if (data & mask)
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
            eecd |= E1000_EECD_DI;

        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);

        udelay(eeprom->delay_usec);

        e1000_raise_ee_clk(hw, &eecd);
        e1000_lower_ee_clk(hw, &eecd);

        mask = mask >> 1;

4591
    } while (mask);
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622

    /* We leave the "DI" bit set to "0" when we leave this routine. */
    eecd &= ~E1000_EECD_DI;
    E1000_WRITE_REG(hw, EECD, eecd);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw,
                       uint16_t count)
{
    uint32_t eecd;
    uint32_t i;
    uint16_t data;

    /* In order to read a register from the EEPROM, we need to shift 'count'
     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
     * input to the EEPROM (setting the SK bit), and then reading the value of
     * the "DO" bit.  During this "shifting in" process the "DI" bit should
     * always be clear.
     */

    eecd = E1000_READ_REG(hw, EECD);

    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
    data = 0;

4623
    for (i = 0; i < count; i++) {
L
Linus Torvalds 已提交
4624 4625 4626 4627 4628 4629
        data = data << 1;
        e1000_raise_ee_clk(hw, &eecd);

        eecd = E1000_READ_REG(hw, EECD);

        eecd &= ~(E1000_EECD_DI);
4630
        if (eecd & E1000_EECD_DO)
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
            data |= 1;

        e1000_lower_ee_clk(hw, &eecd);
    }

    return data;
}

/******************************************************************************
 * Prepares EEPROM for access
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 * function should be called before issuing a command to the EEPROM.
 *****************************************************************************/
static int32_t
e1000_acquire_eeprom(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd, i=0;

    DEBUGFUNC("e1000_acquire_eeprom");

4655 4656
    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
        return -E1000_ERR_SWFW_SYNC;
L
Linus Torvalds 已提交
4657 4658
    eecd = E1000_READ_REG(hw, EECD);

4659
    if (hw->mac_type != e1000_82573) {
4660
        /* Request EEPROM Access */
4661
        if (hw->mac_type > e1000_82544) {
4662
            eecd |= E1000_EECD_REQ;
L
Linus Torvalds 已提交
4663
            E1000_WRITE_REG(hw, EECD, eecd);
4664
            eecd = E1000_READ_REG(hw, EECD);
4665
            while ((!(eecd & E1000_EECD_GNT)) &&
4666 4667 4668 4669 4670
                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
                i++;
                udelay(5);
                eecd = E1000_READ_REG(hw, EECD);
            }
4671
            if (!(eecd & E1000_EECD_GNT)) {
4672 4673 4674
                eecd &= ~E1000_EECD_REQ;
                E1000_WRITE_REG(hw, EECD, eecd);
                DEBUGOUT("Could not acquire EEPROM grant\n");
4675
                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4676 4677
                return -E1000_ERR_EEPROM;
            }
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
        }
    }

    /* Setup EEPROM for Read/Write */

    if (eeprom->type == e1000_eeprom_microwire) {
        /* Clear SK and DI */
        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);

        /* Set CS */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
    } else if (eeprom->type == e1000_eeprom_spi) {
        /* Clear SK and CS */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        udelay(1);
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_standby_eeprom(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;

    eecd = E1000_READ_REG(hw, EECD);

4714
    if (eeprom->type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);

        /* Clock high */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);

        /* Select EEPROM */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);

        /* Clock low */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
4737
    } else if (eeprom->type == e1000_eeprom_spi) {
L
Linus Torvalds 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
        /* Toggle CS to flush commands */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
        eecd &= ~E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
    }
}

/******************************************************************************
 * Terminates a command by inverting the EEPROM's chip select pin
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_release_eeprom(struct e1000_hw *hw)
{
    uint32_t eecd;

    DEBUGFUNC("e1000_release_eeprom");

    eecd = E1000_READ_REG(hw, EECD);

    if (hw->eeprom.type == e1000_eeprom_spi) {
        eecd |= E1000_EECD_CS;  /* Pull CS high */
        eecd &= ~E1000_EECD_SK; /* Lower SCK */

        E1000_WRITE_REG(hw, EECD, eecd);

        udelay(hw->eeprom.delay_usec);
4771
    } else if (hw->eeprom.type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
        /* cleanup eeprom */

        /* CS on Microwire is active-high */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);

        E1000_WRITE_REG(hw, EECD, eecd);

        /* Rising edge of clock */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(hw->eeprom.delay_usec);

        /* Falling edge of clock */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(hw->eeprom.delay_usec);
    }

    /* Stop requesting EEPROM access */
4793
    if (hw->mac_type > e1000_82544) {
L
Linus Torvalds 已提交
4794 4795 4796
        eecd &= ~E1000_EECD_REQ;
        E1000_WRITE_REG(hw, EECD, eecd);
    }
4797

4798
    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803 4804 4805
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
4806
static int32_t
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
    uint16_t retry_count = 0;
    uint8_t spi_stat_reg;

    DEBUGFUNC("e1000_spi_eeprom_ready");

    /* Read "Status Register" repeatedly until the LSB is cleared.  The
     * EEPROM will signal that the command has been completed by clearing
     * bit 0 of the internal status register.  If it's not cleared within
     * 5 milliseconds, then error out.
     */
    retry_count = 0;
    do {
        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
                                hw->eeprom.opcode_bits);
        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
            break;

        udelay(5);
        retry_count += 5;

        e1000_standby_eeprom(hw);
4831
    } while (retry_count < EEPROM_MAX_RETRY_SPI);
L
Linus Torvalds 已提交
4832 4833 4834 4835

    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
     * only 0-5mSec on 5V devices)
     */
4836
    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
L
Linus Torvalds 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
        DEBUGOUT("SPI EEPROM Status error\n");
        return -E1000_ERR_EEPROM;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
int32_t
e1000_read_eeprom(struct e1000_hw *hw,
                  uint16_t offset,
                  uint16_t words,
                  uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t i = 0;
4860
    int32_t ret_val;
L
Linus Torvalds 已提交
4861 4862

    DEBUGFUNC("e1000_read_eeprom");
4863

L
Linus Torvalds 已提交
4864 4865 4866
    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
4867
    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
L
Linus Torvalds 已提交
4868 4869 4870 4871 4872
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
    }

4873 4874
    /* FLASH reads without acquiring the semaphore are safe */
    if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4875
        hw->eeprom.use_eerd == FALSE) {
4876
        switch (hw->mac_type) {
4877 4878
        case e1000_80003es2lan:
            break;
4879 4880 4881 4882 4883 4884
        default:
            /* Prepare the EEPROM for reading  */
            if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
                return -E1000_ERR_EEPROM;
            break;
        }
4885 4886
    }

J
Jesse Brandeburg 已提交
4887
    if (eeprom->use_eerd == TRUE) {
4888 4889 4890 4891 4892 4893
        ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
        if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
            (hw->mac_type != e1000_82573))
            e1000_release_eeprom(hw);
        return ret_val;
    }
L
Linus Torvalds 已提交
4894

4895 4896 4897 4898
    if (eeprom->type == e1000_eeprom_ich8)
        return e1000_read_eeprom_ich8(hw, offset, words, data);

    if (eeprom->type == e1000_eeprom_spi) {
L
Linus Torvalds 已提交
4899 4900 4901
        uint16_t word_in;
        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;

4902
        if (e1000_spi_eeprom_ready(hw)) {
L
Linus Torvalds 已提交
4903 4904 4905 4906 4907 4908 4909
            e1000_release_eeprom(hw);
            return -E1000_ERR_EEPROM;
        }

        e1000_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4910
        if ((eeprom->address_bits == 8) && (offset >= 128))
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
            read_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the READ command (opcode + addr)  */
        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);

        /* Read the data.  The address of the eeprom internally increments with
         * each byte (spi) being read, saving on the overhead of eeprom setup
         * and tear-down.  The address counter will roll over if reading beyond
         * the size of the eeprom, thus allowing the entire memory to be read
         * starting from any offset. */
        for (i = 0; i < words; i++) {
            word_in = e1000_shift_in_ee_bits(hw, 16);
            data[i] = (word_in >> 8) | (word_in << 8);
        }
4926
    } else if (eeprom->type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
        for (i = 0; i < words; i++) {
            /* Send the READ command (opcode + addr)  */
            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
                                    eeprom->opcode_bits);
            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
                                    eeprom->address_bits);

            /* Read the data.  For microwire, each word requires the overhead
             * of eeprom setup and tear-down. */
            data[i] = e1000_shift_in_ee_bits(hw, 16);
            e1000_standby_eeprom(hw);
        }
    }

    /* End this read operation */
    e1000_release_eeprom(hw);

    return E1000_SUCCESS;
}

/******************************************************************************
4948
 * Reads a 16 bit word from the EEPROM using the EERD register.
L
Linus Torvalds 已提交
4949 4950
 *
 * hw - Struct containing variables accessed by shared code
4951 4952 4953
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
L
Linus Torvalds 已提交
4954
 *****************************************************************************/
4955
static int32_t
4956 4957 4958 4959
e1000_read_eeprom_eerd(struct e1000_hw *hw,
                  uint16_t offset,
                  uint16_t words,
                  uint16_t *data)
L
Linus Torvalds 已提交
4960
{
4961 4962
    uint32_t i, eerd = 0;
    int32_t error = 0;
L
Linus Torvalds 已提交
4963

4964 4965 4966
    for (i = 0; i < words; i++) {
        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
                         E1000_EEPROM_RW_REG_START;
L
Linus Torvalds 已提交
4967

4968 4969
        E1000_WRITE_REG(hw, EERD, eerd);
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
4970

4971
        if (error) {
4972
            break;
L
Linus Torvalds 已提交
4973
        }
4974
        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
4975

L
Linus Torvalds 已提交
4976
    }
4977

4978
    return error;
L
Linus Torvalds 已提交
4979 4980 4981
}

/******************************************************************************
4982
 * Writes a 16 bit word from the EEPROM using the EEWR register.
L
Linus Torvalds 已提交
4983 4984
 *
 * hw - Struct containing variables accessed by shared code
4985 4986 4987
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
L
Linus Torvalds 已提交
4988
 *****************************************************************************/
4989
static int32_t
4990 4991 4992 4993
e1000_write_eeprom_eewr(struct e1000_hw *hw,
                   uint16_t offset,
                   uint16_t words,
                   uint16_t *data)
L
Linus Torvalds 已提交
4994
{
4995 4996 4997
    uint32_t    register_value = 0;
    uint32_t    i              = 0;
    int32_t     error          = 0;
L
Linus Torvalds 已提交
4998

4999 5000 5001
    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
        return -E1000_ERR_SWFW_SYNC;

5002
    for (i = 0; i < words; i++) {
5003 5004
        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5005
                         E1000_EEPROM_RW_REG_START;
L
Linus Torvalds 已提交
5006

5007
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5008
        if (error) {
5009
            break;
5010
        }
5011 5012

        E1000_WRITE_REG(hw, EEWR, register_value);
5013

5014
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5015

5016
        if (error) {
5017
            break;
5018
        }
5019
    }
5020

5021
    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5022 5023 5024 5025 5026 5027 5028 5029
    return error;
}

/******************************************************************************
 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
5030
static int32_t
5031 5032 5033 5034 5035 5036
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
    uint32_t attempts = 100000;
    uint32_t i, reg = 0;
    int32_t done = E1000_ERR_EEPROM;

5037 5038
    for (i = 0; i < attempts; i++) {
        if (eerd == E1000_EEPROM_POLL_READ)
5039
            reg = E1000_READ_REG(hw, EERD);
5040
        else
5041 5042
            reg = E1000_READ_REG(hw, EEWR);

5043
        if (reg & E1000_EEPROM_RW_REG_DONE) {
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
            done = E1000_SUCCESS;
            break;
        }
        udelay(5);
    }

    return done;
}

/***************************************************************************
* Description:     Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
5058
static boolean_t
5059 5060 5061 5062
e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
    uint32_t eecd = 0;

5063 5064
    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");

5065 5066 5067 5068
    if (hw->mac_type == e1000_ich8lan)
        return FALSE;

    if (hw->mac_type == e1000_82573) {
5069 5070 5071 5072 5073 5074
        eecd = E1000_READ_REG(hw, EECD);

        /* Isolate bits 15 & 16 */
        eecd = ((eecd >> 15) & 0x03);

        /* If both bits are set, device is Flash type */
5075
        if (eecd == 0x03) {
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
            return FALSE;
        }
    }
    return TRUE;
}

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *****************************************************************************/
int32_t
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("e1000_validate_eeprom_checksum");

    if ((hw->mac_type == e1000_82573) &&
        (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
         * 10h-12h.  Checksum may need to be fixed. */
        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
        if ((eeprom_data & 0x10) == 0) {
            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
             * has already been fixed.  If the checksum is still wrong and this
             * bit is a 1, we need to return bad checksum.  Otherwise, we need
             * to set this bit to a 1 and update the checksum. */
            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
            if ((eeprom_data & 0x8000) == 0) {
                eeprom_data |= 0x8000;
                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
                e1000_update_eeprom_checksum(hw);
            }
        }
    }

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
    if (hw->mac_type == e1000_ich8lan) {
        /* Drivers must allocate the shadow ram structure for the
         * EEPROM checksum to be updated.  Otherwise, this bit as well
         * as the checksum must both be set correctly for this
         * validation to pass.
         */
        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
        if ((eeprom_data & 0x40) == 0) {
            eeprom_data |= 0x40;
            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
            e1000_update_eeprom_checksum(hw);
        }
    }

    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5134 5135 5136 5137 5138 5139
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }

5140
    if (checksum == (uint16_t) EEPROM_SUM)
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
        return E1000_SUCCESS;
    else {
        DEBUGOUT("EEPROM Checksum Invalid\n");
        return -E1000_ERR_EEPROM;
    }
}

/******************************************************************************
 * Calculates the EEPROM checksum and writes it to the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
 * Writes the difference to word offset 63 of the EEPROM.
 *****************************************************************************/
int32_t
e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
5159
    uint32_t ctrl_ext;
5160 5161 5162 5163 5164
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("e1000_update_eeprom_checksum");

5165 5166
    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5167 5168 5169 5170 5171 5172
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }
    checksum = (uint16_t) EEPROM_SUM - checksum;
5173
    if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
L
Linus Torvalds 已提交
5174 5175
        DEBUGOUT("EEPROM Write Error\n");
        return -E1000_ERR_EEPROM;
5176 5177
    } else if (hw->eeprom.type == e1000_eeprom_flash) {
        e1000_commit_shadow_ram(hw);
5178 5179 5180 5181 5182 5183 5184
    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
        e1000_commit_shadow_ram(hw);
        /* Reload the EEPROM, or else modifications will not appear
         * until after next adapter reset. */
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5185
        msleep(10);
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Parent function for writing words to the different EEPROM types.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - 16 bit word to be written to the EEPROM
 *
 * If e1000_update_eeprom_checksum is not called after this function, the
 * EEPROM will most likely contain an invalid checksum.
 *****************************************************************************/
int32_t
e1000_write_eeprom(struct e1000_hw *hw,
                   uint16_t offset,
                   uint16_t words,
                   uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    int32_t status = 0;

    DEBUGFUNC("e1000_write_eeprom");

    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
5215
    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
    }

5221
    /* 82573 writes only through eewr */
5222
    if (eeprom->use_eewr == TRUE)
5223 5224
        return e1000_write_eeprom_eewr(hw, offset, words, data);

5225 5226 5227
    if (eeprom->type == e1000_eeprom_ich8)
        return e1000_write_eeprom_ich8(hw, offset, words, data);

L
Linus Torvalds 已提交
5228 5229 5230 5231
    /* Prepare the EEPROM for writing  */
    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
        return -E1000_ERR_EEPROM;

5232
    if (eeprom->type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
5233 5234 5235
        status = e1000_write_eeprom_microwire(hw, offset, words, data);
    } else {
        status = e1000_write_eeprom_spi(hw, offset, words, data);
5236
        msleep(10);
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
    }

    /* Done with writing */
    e1000_release_eeprom(hw);

    return status;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in an SPI EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 8 bit words to be written to the EEPROM
 *
 *****************************************************************************/
5254
static int32_t
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
e1000_write_eeprom_spi(struct e1000_hw *hw,
                       uint16_t offset,
                       uint16_t words,
                       uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint16_t widx = 0;

    DEBUGFUNC("e1000_write_eeprom_spi");

    while (widx < words) {
        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;

5268
        if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
L
Linus Torvalds 已提交
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

        e1000_standby_eeprom(hw);

        /*  Send the WRITE ENABLE command (8 bit opcode )  */
        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
                                    eeprom->opcode_bits);

        e1000_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5279
        if ((eeprom->address_bits == 8) && (offset >= 128))
L
Linus Torvalds 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
            write_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the Write command (8-bit opcode + addr) */
        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);

        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
                                eeprom->address_bits);

        /* Send the data */

        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
        while (widx < words) {
            uint16_t word_out = data[widx];
            word_out = (word_out >> 8) | (word_out << 8);
            e1000_shift_out_ee_bits(hw, word_out, 16);
            widx++;

            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
             * operation, while the smaller eeproms are capable of an 8-byte
             * PAGE WRITE operation.  Break the inner loop to pass new address
             */
5301
            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
L
Linus Torvalds 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
                e1000_standby_eeprom(hw);
                break;
            }
        }
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 16 bit words to be written to the EEPROM
 *
 *****************************************************************************/
5320
static int32_t
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
e1000_write_eeprom_microwire(struct e1000_hw *hw,
                             uint16_t offset,
                             uint16_t words,
                             uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint16_t words_written = 0;
    uint16_t i = 0;

    DEBUGFUNC("e1000_write_eeprom_microwire");

    /* Send the write enable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 11).  It's less work to include
     * the 11 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This puts the
     * EEPROM into write/erase mode.
     */
    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

    /* Prepare the EEPROM */
    e1000_standby_eeprom(hw);

    while (words_written < words) {
        /* Send the Write command (3-bit opcode + addr) */
        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
                                eeprom->opcode_bits);

        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
                                eeprom->address_bits);

        /* Send the data */
        e1000_shift_out_ee_bits(hw, data[words_written], 16);

        /* Toggle the CS line.  This in effect tells the EEPROM to execute
         * the previous command.
         */
        e1000_standby_eeprom(hw);

        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
         * signal that the command has been completed by raising the DO signal.
         * If DO does not go high in 10 milliseconds, then error out.
         */
5367
        for (i = 0; i < 200; i++) {
L
Linus Torvalds 已提交
5368
            eecd = E1000_READ_REG(hw, EECD);
5369
            if (eecd & E1000_EECD_DO) break;
L
Linus Torvalds 已提交
5370 5371
            udelay(50);
        }
5372
        if (i == 200) {
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
            DEBUGOUT("EEPROM Write did not complete\n");
            return -E1000_ERR_EEPROM;
        }

        /* Recover from write */
        e1000_standby_eeprom(hw);

        words_written++;
    }

    /* Send the write disable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 10).  It's less work to include
     * the 10 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This takes the
     * EEPROM out of write/erase mode.
     */
    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

    return E1000_SUCCESS;
}

5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
/******************************************************************************
 * Flushes the cached eeprom to NVM. This is done by saving the modified values
 * in the eeprom cache and the non modified values in the currently active bank
 * to the new bank.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
5407
static int32_t
5408 5409 5410 5411 5412 5413 5414
e1000_commit_shadow_ram(struct e1000_hw *hw)
{
    uint32_t attempts = 100000;
    uint32_t eecd = 0;
    uint32_t flop = 0;
    uint32_t i = 0;
    int32_t error = E1000_SUCCESS;
5415 5416 5417 5418 5419 5420 5421
    uint32_t old_bank_offset = 0;
    uint32_t new_bank_offset = 0;
    uint32_t sector_retries = 0;
    uint8_t low_byte = 0;
    uint8_t high_byte = 0;
    uint8_t temp_byte = 0;
    boolean_t sector_write_failed = FALSE;
5422 5423

    if (hw->mac_type == e1000_82573) {
5424 5425
        /* The flop register will be used to determine if flash type is STM */
        flop = E1000_READ_REG(hw, FLOP);
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
        for (i=0; i < attempts; i++) {
            eecd = E1000_READ_REG(hw, EECD);
            if ((eecd & E1000_EECD_FLUPD) == 0) {
                break;
            }
            udelay(5);
        }

        if (i == attempts) {
            return -E1000_ERR_EEPROM;
        }

J
Jesse Brandeburg 已提交
5438
        /* If STM opcode located in bits 15:8 of flop, reset firmware */
5439 5440 5441 5442 5443 5444 5445
        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
        }

        /* Perform the flash update */
        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);

J
Jesse Brandeburg 已提交
5446
        for (i=0; i < attempts; i++) {
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
            eecd = E1000_READ_REG(hw, EECD);
            if ((eecd & E1000_EECD_FLUPD) == 0) {
                break;
            }
            udelay(5);
        }

        if (i == attempts) {
            return -E1000_ERR_EEPROM;
        }
    }

5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
        /* We're writing to the opposite bank so if we're on bank 1,
         * write to bank 0 etc.  We also need to erase the segment that
         * is going to be written */
        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
            new_bank_offset = hw->flash_bank_size * 2;
            old_bank_offset = 0;
            e1000_erase_ich8_4k_segment(hw, 1);
        } else {
            old_bank_offset = hw->flash_bank_size * 2;
            new_bank_offset = 0;
            e1000_erase_ich8_4k_segment(hw, 0);
        }

        do {
            sector_write_failed = FALSE;
            /* Loop for every byte in the shadow RAM,
             * which is in units of words. */
            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                /* Determine whether to write the value stored
                 * in the other NVM bank or a modified value stored
                 * in the shadow RAM */
                if (hw->eeprom_shadow_ram[i].modified == TRUE) {
                    low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
                                         &temp_byte);
                    udelay(100);
                    error = e1000_verify_write_ich8_byte(hw,
                                                 (i << 1) + new_bank_offset,
                                                 low_byte);
                    if (error != E1000_SUCCESS)
                        sector_write_failed = TRUE;
                    high_byte =
                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
                                         &temp_byte);
                    udelay(100);
                } else {
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
                                         &low_byte);
                    udelay(100);
                    error = e1000_verify_write_ich8_byte(hw,
                                 (i << 1) + new_bank_offset, low_byte);
                    if (error != E1000_SUCCESS)
                        sector_write_failed = TRUE;
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
                                         &high_byte);
                }

                /* If the word is 0x13, then make sure the signature bits
                 * (15:14) are 11b until the commit has completed.
                 * This will allow us to write 10b which indicates the
                 * signature is valid.  We want to do this after the write
                 * has completed so that we don't mark the segment valid
                 * while the write is still in progress */
                if (i == E1000_ICH8_NVM_SIG_WORD)
                    high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;

                error = e1000_verify_write_ich8_byte(hw,
                             (i << 1) + new_bank_offset + 1, high_byte);
                if (error != E1000_SUCCESS)
                    sector_write_failed = TRUE;

                if (sector_write_failed == FALSE) {
                    /* Clear the now not used entry in the cache */
                    hw->eeprom_shadow_ram[i].modified = FALSE;
                    hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
                }
            }

            /* Don't bother writing the segment valid bits if sector
             * programming failed. */
            if (sector_write_failed == FALSE) {
                /* Finally validate the new segment by setting bit 15:14
                 * to 10b in word 0x13 , this can be done without an
                 * erase as well since these bits are 11 to start with
                 * and we need to change bit 14 to 0b */
                e1000_read_ich8_byte(hw,
                    E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
                    &high_byte);
                high_byte &= 0xBF;
                error = e1000_verify_write_ich8_byte(hw,
                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
                            high_byte);
                if (error != E1000_SUCCESS)
                    sector_write_failed = TRUE;

                /* And invalidate the previously valid segment by setting
                 * its signature word (0x13) high_byte to 0b. This can be
                 * done without an erase because flash erase sets all bits
                 * to 1's. We can write 1's to 0's without an erase */
                error = e1000_verify_write_ich8_byte(hw,
                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
                            0);
                if (error != E1000_SUCCESS)
                    sector_write_failed = TRUE;
            }
        } while (++sector_retries < 10 && sector_write_failed == TRUE);
    }

5559 5560 5561
    return error;
}

L
Linus Torvalds 已提交
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
/******************************************************************************
 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 * second function of dual function devices
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_read_mac_addr(struct e1000_hw * hw)
{
    uint16_t offset;
    uint16_t eeprom_data, i;

    DEBUGFUNC("e1000_read_mac_addr");

5576
    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
L
Linus Torvalds 已提交
5577
        offset = i >> 1;
5578
        if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
L
Linus Torvalds 已提交
5579 5580 5581 5582 5583 5584
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
    }
J
Jesse Brandeburg 已提交
5585

5586 5587 5588 5589 5590 5591
    switch (hw->mac_type) {
    default:
        break;
    case e1000_82546:
    case e1000_82546_rev_3:
    case e1000_82571:
5592
    case e1000_80003es2lan:
5593
        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
L
Linus Torvalds 已提交
5594
            hw->perm_mac_addr[5] ^= 0x01;
5595 5596
        break;
    }
L
Linus Torvalds 已提交
5597

5598
    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
        hw->mac_addr[i] = hw->perm_mac_addr[i];
    return E1000_SUCCESS;
}

/******************************************************************************
 * Initializes receive address filters.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive addresss registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
5612
static void
L
Linus Torvalds 已提交
5613 5614 5615
e1000_init_rx_addrs(struct e1000_hw *hw)
{
    uint32_t i;
5616
    uint32_t rar_num;
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623 5624

    DEBUGFUNC("e1000_init_rx_addrs");

    /* Setup the receive address. */
    DEBUGOUT("Programming MAC Address into RAR[0]\n");

    e1000_rar_set(hw, hw->mac_addr, 0);

5625
    rar_num = E1000_RAR_ENTRIES;
5626 5627 5628 5629 5630 5631

    /* Reserve a spot for the Locally Administered Address to work around
     * an 82571 issue in which a reset on one port will reload the MAC on
     * the other port. */
    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
        rar_num -= 1;
5632 5633 5634
    if (hw->mac_type == e1000_ich8lan)
        rar_num = E1000_RAR_ENTRIES_ICH8LAN;

L
Linus Torvalds 已提交
5635 5636
    /* Zero out the other 15 receive addresses. */
    DEBUGOUT("Clearing RAR[1-15]\n");
5637
    for (i = 1; i < rar_num; i++) {
L
Linus Torvalds 已提交
5638
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5639
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5640
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5641
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
    }
}

/******************************************************************************
 * Hashes an address to determine its location in the multicast table
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr - the multicast address to hash
 *****************************************************************************/
uint32_t
e1000_hash_mc_addr(struct e1000_hw *hw,
                   uint8_t *mc_addr)
{
    uint32_t hash_value = 0;

    /* The portion of the address that is used for the hash table is
     * determined by the mc_filter_type setting.
     */
    switch (hw->mc_filter_type) {
    /* [0] [1] [2] [3] [4] [5]
     * 01  AA  00  12  34  56
     * LSB                 MSB
     */
    case 0:
5666 5667 5668 5669 5670 5671 5672
        if (hw->mac_type == e1000_ich8lan) {
            /* [47:38] i.e. 0x158 for above example address */
            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
        } else {
            /* [47:36] i.e. 0x563 for above example address */
            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        }
L
Linus Torvalds 已提交
5673 5674
        break;
    case 1:
5675 5676 5677 5678 5679 5680 5681
        if (hw->mac_type == e1000_ich8lan) {
            /* [46:37] i.e. 0x2B1 for above example address */
            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
        } else {
            /* [46:35] i.e. 0xAC6 for above example address */
            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
        }
L
Linus Torvalds 已提交
5682 5683
        break;
    case 2:
5684 5685 5686 5687 5688 5689 5690
        if (hw->mac_type == e1000_ich8lan) {
            /*[45:36] i.e. 0x163 for above example address */
            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        } else {
            /* [45:34] i.e. 0x5D8 for above example address */
            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        }
L
Linus Torvalds 已提交
5691 5692
        break;
    case 3:
5693 5694 5695 5696 5697 5698 5699
        if (hw->mac_type == e1000_ich8lan) {
            /* [43:34] i.e. 0x18D for above example address */
            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        } else {
            /* [43:32] i.e. 0x634 for above example address */
            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
        }
L
Linus Torvalds 已提交
5700 5701 5702 5703
        break;
    }

    hash_value &= 0xFFF;
5704 5705
    if (hw->mac_type == e1000_ich8lan)
        hash_value &= 0x3FF;
5706

L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
    return hash_value;
}

/******************************************************************************
 * Sets the bit in the multicast table corresponding to the hash value.
 *
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 *****************************************************************************/
void
e1000_mta_set(struct e1000_hw *hw,
              uint32_t hash_value)
{
    uint32_t hash_bit, hash_reg;
    uint32_t mta;
    uint32_t temp;

    /* The MTA is a register array of 128 32-bit registers.
     * It is treated like an array of 4096 bits.  We want to set
     * bit BitArray[hash_value]. So we figure out what register
     * the bit is in, read it, OR in the new bit, then write
     * back the new value.  The register is determined by the
     * upper 7 bits of the hash value and the bit within that
     * register are determined by the lower 5 bits of the value.
     */
    hash_reg = (hash_value >> 5) & 0x7F;
5733 5734
    if (hw->mac_type == e1000_ich8lan)
        hash_reg &= 0x1F;
L
Linus Torvalds 已提交
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
    hash_bit = hash_value & 0x1F;

    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);

    mta |= (1 << hash_bit);

    /* If we are on an 82544 and we are trying to write an odd offset
     * in the MTA, save off the previous entry before writing and
     * restore the old value after writing.
     */
5745
    if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
L
Linus Torvalds 已提交
5746 5747
        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5748
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5749
        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5750
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5751 5752
    } else {
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5753
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
    }
}

/******************************************************************************
 * Puts an ethernet address into a receive address register.
 *
 * hw - Struct containing variables accessed by shared code
 * addr - Address to put into receive address register
 * index - Receive address register to write
 *****************************************************************************/
void
e1000_rar_set(struct e1000_hw *hw,
              uint8_t *addr,
              uint32_t index)
{
    uint32_t rar_low, rar_high;

    /* HW expects these in little endian so we reverse the byte order
     * from network order (big endian) to little endian
     */
    rar_low = ((uint32_t) addr[0] |
               ((uint32_t) addr[1] << 8) |
               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
5777
    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
L
Linus Torvalds 已提交
5778

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
     * unit hang.
     *
     * Description:
     * If there are any Rx frames queued up or otherwise present in the HW
     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
     * hang.  To work around this issue, we have to disable receives and
     * flush out all Rx frames before we enable RSS. To do so, we modify we
     * redirect all Rx traffic to manageability and then reset the HW.
     * This flushes away Rx frames, and (since the redirections to
     * manageability persists across resets) keeps new ones from coming in
     * while we work.  Then, we clear the Address Valid AV bit for all MAC
     * addresses and undo the re-direction to manageability.
     * Now, frames are coming in again, but the MAC won't accept them, so
     * far so good.  We now proceed to initialize RSS (if necessary) and
     * configure the Rx unit.  Last, we re-enable the AV bits and continue
     * on our merry way.
     */
    switch (hw->mac_type) {
    case e1000_82571:
    case e1000_82572:
5800
    case e1000_80003es2lan:
5801 5802 5803 5804 5805 5806 5807
        if (hw->leave_av_bit_off == TRUE)
            break;
    default:
        /* Indicate to hardware the Address is Valid. */
        rar_high |= E1000_RAH_AV;
        break;
    }
L
Linus Torvalds 已提交
5808 5809

    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5810
    E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5811
    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5812
    E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
}

/******************************************************************************
 * Writes a value to the specified offset in the VLAN filter table.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - Offset in VLAN filer table to write
 * value - Value to write into VLAN filter table
 *****************************************************************************/
void
e1000_write_vfta(struct e1000_hw *hw,
                 uint32_t offset,
                 uint32_t value)
{
    uint32_t temp;

5829 5830 5831 5832
    if (hw->mac_type == e1000_ich8lan)
        return;

    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
L
Linus Torvalds 已提交
5833 5834
        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5835
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5836
        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5837
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5838 5839
    } else {
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5840
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5841 5842 5843 5844 5845 5846 5847 5848
    }
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
5849
static void
L
Linus Torvalds 已提交
5850 5851 5852
e1000_clear_vfta(struct e1000_hw *hw)
{
    uint32_t offset;
5853 5854 5855 5856
    uint32_t vfta_value = 0;
    uint32_t vfta_offset = 0;
    uint32_t vfta_bit_in_reg = 0;

5857 5858 5859
    if (hw->mac_type == e1000_ich8lan)
        return;

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
    if (hw->mac_type == e1000_82573) {
        if (hw->mng_cookie.vlan_id != 0) {
            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
             * ID.  The following operations determine which 32b entry
             * (i.e. offset) into the array we want to set the VLAN ID
             * (i.e. bit) of the manageability unit. */
            vfta_offset = (hw->mng_cookie.vlan_id >>
                           E1000_VFTA_ENTRY_SHIFT) &
                          E1000_VFTA_ENTRY_MASK;
            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
        }
    }
    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
        /* If the offset we want to clear is the same offset of the
         * manageability VLAN ID, then clear all bits except that of the
         * manageability unit */
        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5879
        E1000_WRITE_FLUSH(hw);
5880
    }
L
Linus Torvalds 已提交
5881 5882
}

5883
static int32_t
L
Linus Torvalds 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
e1000_id_led_init(struct e1000_hw * hw)
{
    uint32_t ledctl;
    const uint32_t ledctl_mask = 0x000000FF;
    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
    uint16_t eeprom_data, i, temp;
    const uint16_t led_mask = 0x0F;

    DEBUGFUNC("e1000_id_led_init");

5895
    if (hw->mac_type < e1000_82540) {
L
Linus Torvalds 已提交
5896 5897 5898 5899 5900 5901 5902 5903 5904
        /* Nothing to do */
        return E1000_SUCCESS;
    }

    ledctl = E1000_READ_REG(hw, LEDCTL);
    hw->ledctl_default = ledctl;
    hw->ledctl_mode1 = hw->ledctl_default;
    hw->ledctl_mode2 = hw->ledctl_default;

5905
    if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
L
Linus Torvalds 已提交
5906 5907 5908
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920

    if ((hw->mac_type == e1000_82573) &&
        (eeprom_data == ID_LED_RESERVED_82573))
        eeprom_data = ID_LED_DEFAULT_82573;
    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
            (eeprom_data == ID_LED_RESERVED_FFFF)) {
        if (hw->mac_type == e1000_ich8lan)
            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
        else
            eeprom_data = ID_LED_DEFAULT;
    }
    for (i = 0; i < 4; i++) {
L
Linus Torvalds 已提交
5921
        temp = (eeprom_data >> (i << 2)) & led_mask;
5922
        switch (temp) {
L
Linus Torvalds 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
        case ID_LED_ON1_DEF2:
        case ID_LED_ON1_ON2:
        case ID_LED_ON1_OFF2:
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_on << (i << 3);
            break;
        case ID_LED_OFF1_DEF2:
        case ID_LED_OFF1_ON2:
        case ID_LED_OFF1_OFF2:
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_off << (i << 3);
            break;
        default:
            /* Do nothing */
            break;
        }
5939
        switch (temp) {
L
Linus Torvalds 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
        case ID_LED_DEF1_ON2:
        case ID_LED_ON1_ON2:
        case ID_LED_OFF1_ON2:
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_on << (i << 3);
            break;
        case ID_LED_DEF1_OFF2:
        case ID_LED_ON1_OFF2:
        case ID_LED_OFF1_OFF2:
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_off << (i << 3);
            break;
        default:
            /* Do nothing */
            break;
        }
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Prepares SW controlable LED for use and saves the current state of the LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_setup_led(struct e1000_hw *hw)
{
    uint32_t ledctl;
    int32_t ret_val = E1000_SUCCESS;

    DEBUGFUNC("e1000_setup_led");

5973
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        /* No setup necessary */
        break;
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        /* Turn off PHY Smart Power Down (if enabled) */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                     &hw->phy_spd_default);
5987
        if (ret_val)
L
Linus Torvalds 已提交
5988 5989 5990 5991
            return ret_val;
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                      (uint16_t)(hw->phy_spd_default &
                                      ~IGP01E1000_GMII_SPD));
5992
        if (ret_val)
L
Linus Torvalds 已提交
5993 5994 5995
            return ret_val;
        /* Fall Through */
    default:
5996
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
            ledctl = E1000_READ_REG(hw, LEDCTL);
            /* Save current LEDCTL settings */
            hw->ledctl_default = ledctl;
            /* Turn off LED0 */
            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
                        E1000_LEDCTL_LED0_BLINK |
                        E1000_LEDCTL_LED0_MODE_MASK);
            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
                       E1000_LEDCTL_LED0_MODE_SHIFT);
            E1000_WRITE_REG(hw, LEDCTL, ledctl);
6007
        } else if (hw->media_type == e1000_media_type_copper)
L
Linus Torvalds 已提交
6008 6009 6010 6011 6012 6013 6014
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
        break;
    }

    return E1000_SUCCESS;
}

6015

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
/******************************************************************************
 * Used on 82571 and later Si that has LED blink bits.
 * Callers must use their own timer and should have already called
 * e1000_id_led_init()
 * Call e1000_cleanup led() to stop blinking
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_blink_led_start(struct e1000_hw *hw)
{
    int16_t  i;
    uint32_t ledctl_blink = 0;

    DEBUGFUNC("e1000_id_led_blink_on");

    if (hw->mac_type < e1000_82571) {
        /* Nothing to do */
        return E1000_SUCCESS;
    }
    if (hw->media_type == e1000_media_type_fiber) {
        /* always blink LED0 for PCI-E fiber */
        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
    } else {
        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
        ledctl_blink = hw->ledctl_mode2;
        for (i=0; i < 4; i++)
            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
                E1000_LEDCTL_MODE_LED_ON)
                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
    }

    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);

    return E1000_SUCCESS;
}

L
Linus Torvalds 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
/******************************************************************************
 * Restores the saved state of the SW controlable LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_cleanup_led(struct e1000_hw *hw)
{
    int32_t ret_val = E1000_SUCCESS;

    DEBUGFUNC("e1000_cleanup_led");

6066
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        /* No cleanup necessary */
        break;
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        /* Turn on PHY Smart Power Down (if previously enabled) */
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                      hw->phy_spd_default);
6080
        if (ret_val)
L
Linus Torvalds 已提交
6081 6082 6083
            return ret_val;
        /* Fall Through */
    default:
6084 6085 6086 6087
        if (hw->phy_type == e1000_phy_ife) {
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
            break;
        }
L
Linus Torvalds 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
        /* Restore LEDCTL settings */
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
        break;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Turns on the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_led_on(struct e1000_hw *hw)
{
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);

    DEBUGFUNC("e1000_led_on");

6108
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6109 6110 6111 6112 6113 6114 6115 6116
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
        /* Set SW Defineable Pin 0 to turn on the LED */
        ctrl |= E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        break;
    case e1000_82544:
6117
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
            /* Set SW Defineable Pin 0 to turn on the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else {
            /* Clear SW Defineable Pin 0 to turn on the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        }
        break;
    default:
6128
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6129 6130 6131
            /* Clear SW Defineable Pin 0 to turn on the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
6132 6133 6134 6135
        } else if (hw->phy_type == e1000_phy_ife) {
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
        } else if (hw->media_type == e1000_media_type_copper) {
L
Linus Torvalds 已提交
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
            return E1000_SUCCESS;
        }
        break;
    }

    E1000_WRITE_REG(hw, CTRL, ctrl);

    return E1000_SUCCESS;
}

/******************************************************************************
 * Turns off the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_led_off(struct e1000_hw *hw)
{
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);

    DEBUGFUNC("e1000_led_off");

6159
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6160 6161 6162 6163 6164 6165 6166 6167
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
        /* Clear SW Defineable Pin 0 to turn off the LED */
        ctrl &= ~E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        break;
    case e1000_82544:
6168
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
            /* Clear SW Defineable Pin 0 to turn off the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else {
            /* Set SW Defineable Pin 0 to turn off the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        }
        break;
    default:
6179
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6180 6181 6182
            /* Set SW Defineable Pin 0 to turn off the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
6183 6184 6185 6186
        } else if (hw->phy_type == e1000_phy_ife) {
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
        } else if (hw->media_type == e1000_media_type_copper) {
L
Linus Torvalds 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
            return E1000_SUCCESS;
        }
        break;
    }

    E1000_WRITE_REG(hw, CTRL, ctrl);

    return E1000_SUCCESS;
}

/******************************************************************************
 * Clears all hardware statistics counters.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
6203
static void
L
Linus Torvalds 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
    volatile uint32_t temp;

    temp = E1000_READ_REG(hw, CRCERRS);
    temp = E1000_READ_REG(hw, SYMERRS);
    temp = E1000_READ_REG(hw, MPC);
    temp = E1000_READ_REG(hw, SCC);
    temp = E1000_READ_REG(hw, ECOL);
    temp = E1000_READ_REG(hw, MCC);
    temp = E1000_READ_REG(hw, LATECOL);
    temp = E1000_READ_REG(hw, COLC);
    temp = E1000_READ_REG(hw, DC);
    temp = E1000_READ_REG(hw, SEC);
    temp = E1000_READ_REG(hw, RLEC);
    temp = E1000_READ_REG(hw, XONRXC);
    temp = E1000_READ_REG(hw, XONTXC);
    temp = E1000_READ_REG(hw, XOFFRXC);
    temp = E1000_READ_REG(hw, XOFFTXC);
    temp = E1000_READ_REG(hw, FCRUC);
6224 6225

    if (hw->mac_type != e1000_ich8lan) {
L
Linus Torvalds 已提交
6226 6227 6228 6229 6230 6231
    temp = E1000_READ_REG(hw, PRC64);
    temp = E1000_READ_REG(hw, PRC127);
    temp = E1000_READ_REG(hw, PRC255);
    temp = E1000_READ_REG(hw, PRC511);
    temp = E1000_READ_REG(hw, PRC1023);
    temp = E1000_READ_REG(hw, PRC1522);
6232 6233
    }

L
Linus Torvalds 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
    temp = E1000_READ_REG(hw, GPRC);
    temp = E1000_READ_REG(hw, BPRC);
    temp = E1000_READ_REG(hw, MPRC);
    temp = E1000_READ_REG(hw, GPTC);
    temp = E1000_READ_REG(hw, GORCL);
    temp = E1000_READ_REG(hw, GORCH);
    temp = E1000_READ_REG(hw, GOTCL);
    temp = E1000_READ_REG(hw, GOTCH);
    temp = E1000_READ_REG(hw, RNBC);
    temp = E1000_READ_REG(hw, RUC);
    temp = E1000_READ_REG(hw, RFC);
    temp = E1000_READ_REG(hw, ROC);
    temp = E1000_READ_REG(hw, RJC);
    temp = E1000_READ_REG(hw, TORL);
    temp = E1000_READ_REG(hw, TORH);
    temp = E1000_READ_REG(hw, TOTL);
    temp = E1000_READ_REG(hw, TOTH);
    temp = E1000_READ_REG(hw, TPR);
    temp = E1000_READ_REG(hw, TPT);
6253 6254

    if (hw->mac_type != e1000_ich8lan) {
L
Linus Torvalds 已提交
6255 6256 6257 6258 6259 6260
    temp = E1000_READ_REG(hw, PTC64);
    temp = E1000_READ_REG(hw, PTC127);
    temp = E1000_READ_REG(hw, PTC255);
    temp = E1000_READ_REG(hw, PTC511);
    temp = E1000_READ_REG(hw, PTC1023);
    temp = E1000_READ_REG(hw, PTC1522);
6261 6262
    }

L
Linus Torvalds 已提交
6263 6264 6265
    temp = E1000_READ_REG(hw, MPTC);
    temp = E1000_READ_REG(hw, BPTC);

6266
    if (hw->mac_type < e1000_82543) return;
L
Linus Torvalds 已提交
6267 6268 6269 6270 6271 6272 6273 6274

    temp = E1000_READ_REG(hw, ALGNERRC);
    temp = E1000_READ_REG(hw, RXERRC);
    temp = E1000_READ_REG(hw, TNCRS);
    temp = E1000_READ_REG(hw, CEXTERR);
    temp = E1000_READ_REG(hw, TSCTC);
    temp = E1000_READ_REG(hw, TSCTFC);

6275
    if (hw->mac_type <= e1000_82544) return;
L
Linus Torvalds 已提交
6276 6277 6278 6279

    temp = E1000_READ_REG(hw, MGTPRC);
    temp = E1000_READ_REG(hw, MGTPDC);
    temp = E1000_READ_REG(hw, MGTPTC);
6280

6281
    if (hw->mac_type <= e1000_82547_rev_2) return;
6282 6283 6284

    temp = E1000_READ_REG(hw, IAC);
    temp = E1000_READ_REG(hw, ICRXOC);
6285 6286 6287

    if (hw->mac_type == e1000_ich8lan) return;

6288 6289 6290 6291 6292 6293 6294
    temp = E1000_READ_REG(hw, ICRXPTC);
    temp = E1000_READ_REG(hw, ICRXATC);
    temp = E1000_READ_REG(hw, ICTXPTC);
    temp = E1000_READ_REG(hw, ICTXATC);
    temp = E1000_READ_REG(hw, ICTXQEC);
    temp = E1000_READ_REG(hw, ICTXQMTC);
    temp = E1000_READ_REG(hw, ICRXDMTC);
L
Linus Torvalds 已提交
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
}

/******************************************************************************
 * Resets Adaptive IFS to its default state.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Call this after e1000_init_hw. You may override the IFS defaults by setting
 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
 * before calling this function.
 *****************************************************************************/
void
e1000_reset_adaptive(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_reset_adaptive");

6312 6313
    if (hw->adaptive_ifs) {
        if (!hw->ifs_params_forced) {
L
Linus Torvalds 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
            hw->current_ifs_val = 0;
            hw->ifs_min_val = IFS_MIN;
            hw->ifs_max_val = IFS_MAX;
            hw->ifs_step_size = IFS_STEP;
            hw->ifs_ratio = IFS_RATIO;
        }
        hw->in_ifs_mode = FALSE;
        E1000_WRITE_REG(hw, AIT, 0);
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Called during the callback/watchdog routine to update IFS value based on
 * the ratio of transmits to collisions.
 *
 * hw - Struct containing variables accessed by shared code
 * tx_packets - Number of transmits since last callback
 * total_collisions - Number of collisions since last callback
 *****************************************************************************/
void
e1000_update_adaptive(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_update_adaptive");

6340 6341 6342
    if (hw->adaptive_ifs) {
        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
L
Linus Torvalds 已提交
6343
                hw->in_ifs_mode = TRUE;
6344 6345
                if (hw->current_ifs_val < hw->ifs_max_val) {
                    if (hw->current_ifs_val == 0)
L
Linus Torvalds 已提交
6346 6347 6348 6349 6350 6351 6352
                        hw->current_ifs_val = hw->ifs_min_val;
                    else
                        hw->current_ifs_val += hw->ifs_step_size;
                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
                }
            }
        } else {
6353
            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
L
Linus Torvalds 已提交
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
                hw->current_ifs_val = 0;
                hw->in_ifs_mode = FALSE;
                E1000_WRITE_REG(hw, AIT, 0);
            }
        }
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
 *
 * hw - Struct containing variables accessed by shared code
 * frame_len - The length of the frame in question
 * mac_addr - The Ethernet destination address of the frame in question
 *****************************************************************************/
void
e1000_tbi_adjust_stats(struct e1000_hw *hw,
                       struct e1000_hw_stats *stats,
                       uint32_t frame_len,
                       uint8_t *mac_addr)
{
    uint64_t carry_bit;

    /* First adjust the frame length. */
    frame_len--;
    /* We need to adjust the statistics counters, since the hardware
     * counters overcount this packet as a CRC error and undercount
     * the packet as a good packet
     */
    /* This packet should not be counted as a CRC error.    */
    stats->crcerrs--;
    /* This packet does count as a Good Packet Received.    */
    stats->gprc++;

    /* Adjust the Good Octets received counters             */
    carry_bit = 0x80000000 & stats->gorcl;
    stats->gorcl += frame_len;
    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
     * Received Count) was one before the addition,
     * AND it is zero after, then we lost the carry out,
     * need to add one to Gorch (Good Octets Received Count High).
     * This could be simplified if all environments supported
     * 64-bit integers.
     */
6400
    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
L
Linus Torvalds 已提交
6401 6402 6403 6404 6405
        stats->gorch++;
    /* Is this a broadcast or multicast?  Check broadcast first,
     * since the test for a multicast frame will test positive on
     * a broadcast frame.
     */
6406
    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
L
Linus Torvalds 已提交
6407 6408
        /* Broadcast packet */
        stats->bprc++;
6409
    else if (*mac_addr & 0x01)
L
Linus Torvalds 已提交
6410 6411 6412
        /* Multicast packet */
        stats->mprc++;

6413
    if (frame_len == hw->max_frame_size) {
L
Linus Torvalds 已提交
6414 6415 6416
        /* In this case, the hardware has overcounted the number of
         * oversize frames.
         */
6417
        if (stats->roc > 0)
L
Linus Torvalds 已提交
6418 6419 6420 6421 6422 6423
            stats->roc--;
    }

    /* Adjust the bin counters when the extra byte put the frame in the
     * wrong bin. Remember that the frame_len was adjusted above.
     */
6424
    if (frame_len == 64) {
L
Linus Torvalds 已提交
6425 6426
        stats->prc64++;
        stats->prc127--;
6427
    } else if (frame_len == 127) {
L
Linus Torvalds 已提交
6428 6429
        stats->prc127++;
        stats->prc255--;
6430
    } else if (frame_len == 255) {
L
Linus Torvalds 已提交
6431 6432
        stats->prc255++;
        stats->prc511--;
6433
    } else if (frame_len == 511) {
L
Linus Torvalds 已提交
6434 6435
        stats->prc511++;
        stats->prc1023--;
6436
    } else if (frame_len == 1023) {
L
Linus Torvalds 已提交
6437 6438
        stats->prc1023++;
        stats->prc1522--;
6439
    } else if (frame_len == 1522) {
L
Linus Torvalds 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
        stats->prc1522++;
    }
}

/******************************************************************************
 * Gets the current PCI bus type, speed, and width of the hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_get_bus_info(struct e1000_hw *hw)
{
    uint32_t status;

    switch (hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
        hw->bus_type = e1000_bus_type_unknown;
        hw->bus_speed = e1000_bus_speed_unknown;
        hw->bus_width = e1000_bus_width_unknown;
        break;
6461
    case e1000_82572:
6462
    case e1000_82573:
J
Jeff Kirsher 已提交
6463 6464 6465 6466 6467
        hw->bus_type = e1000_bus_type_pci_express;
        hw->bus_speed = e1000_bus_speed_2500;
        hw->bus_width = e1000_bus_width_pciex_1;
        break;
    case e1000_82571:
6468
    case e1000_ich8lan:
6469
    case e1000_80003es2lan:
6470 6471 6472 6473
        hw->bus_type = e1000_bus_type_pci_express;
        hw->bus_speed = e1000_bus_speed_2500;
        hw->bus_width = e1000_bus_width_pciex_4;
        break;
L
Linus Torvalds 已提交
6474 6475 6476 6477 6478
    default:
        status = E1000_READ_REG(hw, STATUS);
        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
                       e1000_bus_type_pcix : e1000_bus_type_pci;

6479
        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
L
Linus Torvalds 已提交
6480 6481
            hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
                            e1000_bus_speed_66 : e1000_bus_speed_120;
6482
        } else if (hw->bus_type == e1000_bus_type_pci) {
L
Linus Torvalds 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
                            e1000_bus_speed_66 : e1000_bus_speed_33;
        } else {
            switch (status & E1000_STATUS_PCIX_SPEED) {
            case E1000_STATUS_PCIX_SPEED_66:
                hw->bus_speed = e1000_bus_speed_66;
                break;
            case E1000_STATUS_PCIX_SPEED_100:
                hw->bus_speed = e1000_bus_speed_100;
                break;
            case E1000_STATUS_PCIX_SPEED_133:
                hw->bus_speed = e1000_bus_speed_133;
                break;
            default:
                hw->bus_speed = e1000_bus_speed_reserved;
                break;
            }
        }
        hw->bus_width = (status & E1000_STATUS_BUS64) ?
                        e1000_bus_width_64 : e1000_bus_width_32;
        break;
    }
}

/******************************************************************************
 * Writes a value to one of the devices registers using port I/O (as opposed to
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to write to
 * value - value to write
 *****************************************************************************/
6515
static void
L
Linus Torvalds 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
e1000_write_reg_io(struct e1000_hw *hw,
                   uint32_t offset,
                   uint32_t value)
{
    unsigned long io_addr = hw->io_base;
    unsigned long io_data = hw->io_base + 4;

    e1000_io_write(hw, io_addr, offset);
    e1000_io_write(hw, io_data, value);
}

/******************************************************************************
 * Estimates the cable length.
 *
 * hw - Struct containing variables accessed by shared code
 * min_length - The estimated minimum length
 * max_length - The estimated maximum length
 *
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS
 *
 * This function always returns a ranged length (minimum & maximum).
 * So for M88 phy's, this function interprets the one value returned from the
 * register to the minimum and maximum range.
 * For IGP phy's, the function calculates the range by the AGC registers.
 *****************************************************************************/
6542
static int32_t
L
Linus Torvalds 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
e1000_get_cable_length(struct e1000_hw *hw,
                       uint16_t *min_length,
                       uint16_t *max_length)
{
    int32_t ret_val;
    uint16_t agc_value = 0;
    uint16_t i, phy_data;
    uint16_t cable_length;

    DEBUGFUNC("e1000_get_cable_length");

    *min_length = *max_length = 0;

    /* Use old method for Phy older than IGP */
6557
    if (hw->phy_type == e1000_phy_m88) {
6558

L
Linus Torvalds 已提交
6559 6560
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
6561
        if (ret_val)
L
Linus Torvalds 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
            return ret_val;
        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;

        /* Convert the enum value to ranged values */
        switch (cable_length) {
        case e1000_cable_length_50:
            *min_length = 0;
            *max_length = e1000_igp_cable_length_50;
            break;
        case e1000_cable_length_50_80:
            *min_length = e1000_igp_cable_length_50;
            *max_length = e1000_igp_cable_length_80;
            break;
        case e1000_cable_length_80_110:
            *min_length = e1000_igp_cable_length_80;
            *max_length = e1000_igp_cable_length_110;
            break;
        case e1000_cable_length_110_140:
            *min_length = e1000_igp_cable_length_110;
            *max_length = e1000_igp_cable_length_140;
            break;
        case e1000_cable_length_140:
            *min_length = e1000_igp_cable_length_140;
            *max_length = e1000_igp_cable_length_170;
            break;
        default:
            return -E1000_ERR_PHY;
            break;
        }
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
    } else if (hw->phy_type == e1000_phy_gg82563) {
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
                                     &phy_data);
        if (ret_val)
            return ret_val;
        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;

        switch (cable_length) {
        case e1000_gg_cable_length_60:
            *min_length = 0;
            *max_length = e1000_igp_cable_length_60;
            break;
        case e1000_gg_cable_length_60_115:
            *min_length = e1000_igp_cable_length_60;
            *max_length = e1000_igp_cable_length_115;
            break;
        case e1000_gg_cable_length_115_150:
            *min_length = e1000_igp_cable_length_115;
            *max_length = e1000_igp_cable_length_150;
            break;
        case e1000_gg_cable_length_150:
            *min_length = e1000_igp_cable_length_150;
            *max_length = e1000_igp_cable_length_180;
            break;
        default:
            return -E1000_ERR_PHY;
            break;
        }
6620
    } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6621 6622
        uint16_t cur_agc_value;
        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
L
Linus Torvalds 已提交
6623 6624 6625 6626 6627 6628
        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                                         {IGP01E1000_PHY_AGC_A,
                                                          IGP01E1000_PHY_AGC_B,
                                                          IGP01E1000_PHY_AGC_C,
                                                          IGP01E1000_PHY_AGC_D};
        /* Read the AGC registers for all channels */
6629
        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
L
Linus Torvalds 已提交
6630 6631

            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6632
            if (ret_val)
L
Linus Torvalds 已提交
6633 6634
                return ret_val;

6635
            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
L
Linus Torvalds 已提交
6636

6637 6638 6639
            /* Value bound check. */
            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
                (cur_agc_value == 0))
L
Linus Torvalds 已提交
6640 6641
                return -E1000_ERR_PHY;

6642
            agc_value += cur_agc_value;
L
Linus Torvalds 已提交
6643 6644

            /* Update minimal AGC value. */
6645 6646
            if (min_agc_value > cur_agc_value)
                min_agc_value = cur_agc_value;
L
Linus Torvalds 已提交
6647 6648 6649
        }

        /* Remove the minimal AGC result for length < 50m */
6650 6651
        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
            agc_value -= min_agc_value;
L
Linus Torvalds 已提交
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666

            /* Get the average length of the remaining 3 channels */
            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
        } else {
            /* Get the average length of all the 4 channels. */
            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
        }

        /* Set the range of the calculated length. */
        *min_length = ((e1000_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) > 0) ?
                       (e1000_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) : 0;
        *max_length = e1000_igp_cable_length_table[agc_value] +
                      IGP01E1000_AGC_RANGE;
6667 6668 6669 6670
    } else if (hw->phy_type == e1000_phy_igp_2 ||
               hw->phy_type == e1000_phy_igp_3) {
        uint16_t cur_agc_index, max_agc_index = 0;
        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
                                                         {IGP02E1000_PHY_AGC_A,
                                                          IGP02E1000_PHY_AGC_B,
                                                          IGP02E1000_PHY_AGC_C,
                                                          IGP02E1000_PHY_AGC_D};
        /* Read the AGC registers for all channels */
        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
            if (ret_val)
                return ret_val;

6682
            /* Getting bits 15:9, which represent the combination of course and
6683 6684
             * fine gain values.  The result is a number that can be put into
             * the lookup table to obtain the approximate cable length. */
6685 6686
            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
                            IGP02E1000_AGC_LENGTH_MASK;
6687

6688 6689 6690 6691
            /* Array index bound check. */
            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
                (cur_agc_index == 0))
                return -E1000_ERR_PHY;
6692

6693 6694 6695 6696 6697 6698 6699 6700 6701
            /* Remove min & max AGC values from calculation. */
            if (e1000_igp_2_cable_length_table[min_agc_index] >
                e1000_igp_2_cable_length_table[cur_agc_index])
                min_agc_index = cur_agc_index;
            if (e1000_igp_2_cable_length_table[max_agc_index] <
                e1000_igp_2_cable_length_table[cur_agc_index])
                max_agc_index = cur_agc_index;

            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6702 6703
        }

6704 6705
        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
                      e1000_igp_2_cable_length_table[max_agc_index]);
6706 6707 6708 6709 6710 6711
        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

        /* Calculate cable length with the error range of +/- 10 meters. */
        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
        *max_length = agc_value + IGP02E1000_AGC_RANGE;
L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Check the cable polarity
 *
 * hw - Struct containing variables accessed by shared code
 * polarity - output parameter : 0 - Polarity is not reversed
 *                               1 - Polarity is reversed.
 *
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS
 *
 * For phy's older then IGP, this function simply reads the polarity bit in the
 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
 * IGP01E1000_PHY_PCS_INIT_REG.
 *****************************************************************************/
6733
static int32_t
L
Linus Torvalds 已提交
6734
e1000_check_polarity(struct e1000_hw *hw,
6735
                     e1000_rev_polarity *polarity)
L
Linus Torvalds 已提交
6736 6737 6738 6739 6740 6741
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_polarity");

6742 6743
    if ((hw->phy_type == e1000_phy_m88) ||
        (hw->phy_type == e1000_phy_gg82563)) {
L
Linus Torvalds 已提交
6744 6745 6746
        /* return the Polarity bit in the Status register. */
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
6747
        if (ret_val)
L
Linus Torvalds 已提交
6748
            return ret_val;
6749 6750 6751 6752
        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;

6753 6754
    } else if (hw->phy_type == e1000_phy_igp ||
              hw->phy_type == e1000_phy_igp_3 ||
6755
              hw->phy_type == e1000_phy_igp_2) {
L
Linus Torvalds 已提交
6756 6757 6758
        /* Read the Status register to check the speed */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
                                     &phy_data);
6759
        if (ret_val)
L
Linus Torvalds 已提交
6760 6761 6762 6763
            return ret_val;

        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
         * find the polarity status */
6764
        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
L
Linus Torvalds 已提交
6765 6766 6767 6768 6769
           IGP01E1000_PSSR_SPEED_1000MBPS) {

            /* Read the GIG initialization PCS register (0x00B4) */
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
                                         &phy_data);
6770
            if (ret_val)
L
Linus Torvalds 已提交
6771 6772 6773
                return ret_val;

            /* Check the polarity bits */
6774 6775
            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
L
Linus Torvalds 已提交
6776 6777 6778
        } else {
            /* For 10 Mbps, read the polarity bit in the status register. (for
             * 100 Mbps this bit is always 0) */
6779 6780
            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
L
Linus Torvalds 已提交
6781
        }
6782 6783 6784 6785 6786
    } else if (hw->phy_type == e1000_phy_ife) {
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
                                     &phy_data);
        if (ret_val)
            return ret_val;
6787 6788 6789
        *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
                     IFE_PESC_POLARITY_REVERSED_SHIFT) ?
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
L
Linus Torvalds 已提交
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Check if Downshift occured
 *
 * hw - Struct containing variables accessed by shared code
 * downshift - output parameter : 0 - No Downshift ocured.
 *                                1 - Downshift ocured.
 *
 * returns: - E1000_ERR_XXX
6802
 *            E1000_SUCCESS
L
Linus Torvalds 已提交
6803 6804 6805 6806 6807 6808
 *
 * For phy's older then IGP, this function reads the Downshift bit in the Phy
 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
 * Link Health register.  In IGP this bit is latched high, so the driver must
 * read it immediately after link is established.
 *****************************************************************************/
6809
static int32_t
L
Linus Torvalds 已提交
6810 6811 6812 6813 6814 6815 6816
e1000_check_downshift(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_downshift");

6817 6818
    if (hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
6819
        hw->phy_type == e1000_phy_igp_2) {
L
Linus Torvalds 已提交
6820 6821
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
                                     &phy_data);
6822
        if (ret_val)
L
Linus Torvalds 已提交
6823 6824 6825
            return ret_val;

        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6826 6827
    } else if ((hw->phy_type == e1000_phy_m88) ||
               (hw->phy_type == e1000_phy_gg82563)) {
L
Linus Torvalds 已提交
6828 6829
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
6830
        if (ret_val)
L
Linus Torvalds 已提交
6831 6832 6833 6834
            return ret_val;

        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
6835 6836 6837
    } else if (hw->phy_type == e1000_phy_ife) {
        /* e1000_phy_ife supports 10/100 speed only */
        hw->speed_downgraded = FALSE;
L
Linus Torvalds 已提交
6838
    }
6839

L
Linus Torvalds 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
 * gigabit link is achieved to improve link quality.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

6855
static int32_t
L
Linus Torvalds 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
e1000_config_dsp_after_link_change(struct e1000_hw *hw,
                                   boolean_t link_up)
{
    int32_t ret_val;
    uint16_t phy_data, phy_saved_data, speed, duplex, i;
    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                        {IGP01E1000_PHY_AGC_PARAM_A,
                                        IGP01E1000_PHY_AGC_PARAM_B,
                                        IGP01E1000_PHY_AGC_PARAM_C,
                                        IGP01E1000_PHY_AGC_PARAM_D};
    uint16_t min_length, max_length;

    DEBUGFUNC("e1000_config_dsp_after_link_change");

6870
    if (hw->phy_type != e1000_phy_igp)
L
Linus Torvalds 已提交
6871 6872
        return E1000_SUCCESS;

6873
    if (link_up) {
L
Linus Torvalds 已提交
6874
        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6875
        if (ret_val) {
L
Linus Torvalds 已提交
6876 6877 6878 6879
            DEBUGOUT("Error getting link speed and duplex\n");
            return ret_val;
        }

6880
        if (speed == SPEED_1000) {
L
Linus Torvalds 已提交
6881

6882 6883 6884
            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
            if (ret_val)
                return ret_val;
L
Linus Torvalds 已提交
6885

6886
            if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
L
Linus Torvalds 已提交
6887 6888
                min_length >= e1000_igp_cable_length_50) {

6889
                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
L
Linus Torvalds 已提交
6890 6891
                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
                                                 &phy_data);
6892
                    if (ret_val)
L
Linus Torvalds 已提交
6893 6894 6895 6896 6897 6898
                        return ret_val;

                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;

                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
                                                  phy_data);
6899
                    if (ret_val)
L
Linus Torvalds 已提交
6900 6901 6902 6903 6904
                        return ret_val;
                }
                hw->dsp_config_state = e1000_dsp_config_activated;
            }

6905
            if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
L
Linus Torvalds 已提交
6906 6907 6908 6909 6910 6911 6912 6913
               (min_length < e1000_igp_cable_length_50)) {

                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
                uint32_t idle_errs = 0;

                /* clear previous idle error counts */
                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
                                             &phy_data);
6914
                if (ret_val)
L
Linus Torvalds 已提交
6915 6916
                    return ret_val;

6917
                for (i = 0; i < ffe_idle_err_timeout; i++) {
L
Linus Torvalds 已提交
6918 6919 6920
                    udelay(1000);
                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
                                                 &phy_data);
6921
                    if (ret_val)
L
Linus Torvalds 已提交
6922 6923 6924
                        return ret_val;

                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
6925
                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
L
Linus Torvalds 已提交
6926 6927 6928 6929 6930
                        hw->ffe_config_state = e1000_ffe_config_active;

                        ret_val = e1000_write_phy_reg(hw,
                                    IGP01E1000_PHY_DSP_FFE,
                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
6931
                        if (ret_val)
L
Linus Torvalds 已提交
6932 6933 6934 6935
                            return ret_val;
                        break;
                    }

6936
                    if (idle_errs)
L
Linus Torvalds 已提交
6937 6938 6939 6940 6941
                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
                }
            }
        }
    } else {
6942
        if (hw->dsp_config_state == e1000_dsp_config_activated) {
L
Linus Torvalds 已提交
6943 6944 6945 6946
            /* Save off the current value of register 0x2F5B to be restored at
             * the end of the routines. */
            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

6947
            if (ret_val)
L
Linus Torvalds 已提交
6948 6949 6950 6951 6952
                return ret_val;

            /* Disable the PHY transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

6953
            if (ret_val)
L
Linus Torvalds 已提交
6954 6955
                return ret_val;

6956
            mdelay(20);
L
Linus Torvalds 已提交
6957 6958 6959

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_FORCE_GIGA);
6960
            if (ret_val)
L
Linus Torvalds 已提交
6961
                return ret_val;
6962
            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
L
Linus Torvalds 已提交
6963
                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
6964
                if (ret_val)
L
Linus Torvalds 已提交
6965 6966 6967 6968 6969 6970
                    return ret_val;

                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;

                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
6971
                if (ret_val)
L
Linus Torvalds 已提交
6972 6973 6974 6975 6976
                    return ret_val;
            }

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
6977
            if (ret_val)
L
Linus Torvalds 已提交
6978 6979
                return ret_val;

6980
            mdelay(20);
L
Linus Torvalds 已提交
6981 6982 6983 6984

            /* Now enable the transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

6985
            if (ret_val)
L
Linus Torvalds 已提交
6986 6987 6988 6989 6990
                return ret_val;

            hw->dsp_config_state = e1000_dsp_config_enabled;
        }

6991
        if (hw->ffe_config_state == e1000_ffe_config_active) {
L
Linus Torvalds 已提交
6992 6993 6994 6995
            /* Save off the current value of register 0x2F5B to be restored at
             * the end of the routines. */
            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

6996
            if (ret_val)
L
Linus Torvalds 已提交
6997 6998 6999 7000 7001
                return ret_val;

            /* Disable the PHY transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

7002
            if (ret_val)
L
Linus Torvalds 已提交
7003 7004
                return ret_val;

7005
            mdelay(20);
L
Linus Torvalds 已提交
7006 7007 7008

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_FORCE_GIGA);
7009
            if (ret_val)
L
Linus Torvalds 已提交
7010 7011 7012
                return ret_val;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
7013
            if (ret_val)
L
Linus Torvalds 已提交
7014 7015 7016 7017
                return ret_val;

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
7018
            if (ret_val)
L
Linus Torvalds 已提交
7019 7020
                return ret_val;

7021
            mdelay(20);
L
Linus Torvalds 已提交
7022 7023 7024 7025

            /* Now enable the transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

7026
            if (ret_val)
L
Linus Torvalds 已提交
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
                return ret_val;

            hw->ffe_config_state = e1000_ffe_config_enabled;
        }
    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 * Set PHY to class A mode
 * Assumes the following operations will follow to enable the new class mode.
 *  1. Do a PHY soft reset
 *  2. Restart auto-negotiation or force link.
 *
 * hw - Struct containing variables accessed by shared code
 ****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_set_phy_mode");

7051 7052
    if ((hw->mac_type == e1000_82545_rev_3) &&
        (hw->media_type == e1000_media_type_copper)) {
L
Linus Torvalds 已提交
7053
        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7054
        if (ret_val) {
L
Linus Torvalds 已提交
7055 7056 7057
            return ret_val;
        }

7058 7059
        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
            (eeprom_data & EEPROM_PHY_CLASS_A)) {
L
Linus Torvalds 已提交
7060
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7061
            if (ret_val)
L
Linus Torvalds 已提交
7062 7063
                return ret_val;
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7064
            if (ret_val)
L
Linus Torvalds 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
                return ret_val;

            hw->phy_reset_disable = FALSE;
        }
    }

    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * This function sets the lplu state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

7088
static int32_t
L
Linus Torvalds 已提交
7089 7090 7091
e1000_set_d3_lplu_state(struct e1000_hw *hw,
                        boolean_t active)
{
7092
    uint32_t phy_ctrl = 0;
L
Linus Torvalds 已提交
7093 7094 7095 7096
    int32_t ret_val;
    uint16_t phy_data;
    DEBUGFUNC("e1000_set_d3_lplu_state");

7097 7098
    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
        && hw->phy_type != e1000_phy_igp_3)
L
Linus Torvalds 已提交
7099 7100 7101 7102 7103
        return E1000_SUCCESS;

    /* During driver activity LPLU should not be used or it will attain link
     * from the lowest speeds starting from 10Mbps. The capability is used for
     * Dx transitions and states */
7104
    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7105
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7106
        if (ret_val)
7107
            return ret_val;
7108 7109 7110 7111 7112
    } else if (hw->mac_type == e1000_ich8lan) {
        /* MAC writes into PHY register based on the state transition
         * and start auto-negotiation. SW driver can overwrite the settings
         * in CSR PHY power control E1000_PHY_CTRL register. */
        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7113 7114
    } else {
        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7115
        if (ret_val)
L
Linus Torvalds 已提交
7116
            return ret_val;
7117 7118
    }

7119 7120 7121
    if (!active) {
        if (hw->mac_type == e1000_82541_rev_2 ||
            hw->mac_type == e1000_82547_rev_2) {
7122 7123
            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7124
            if (ret_val)
7125 7126
                return ret_val;
        } else {
7127 7128 7129 7130
            if (hw->mac_type == e1000_ich8lan) {
                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
            } else {
7131 7132 7133 7134 7135
                phy_data &= ~IGP02E1000_PM_D3_LPLU;
                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                              phy_data);
                if (ret_val)
                    return ret_val;
7136
            }
7137
        }
L
Linus Torvalds 已提交
7138 7139 7140 7141 7142 7143 7144 7145

        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
         * Dx states where the power conservation is most important.  During
         * driver activity we should enable SmartSpeed, so performance is
         * maintained. */
        if (hw->smart_speed == e1000_smart_speed_on) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
7146
            if (ret_val)
L
Linus Torvalds 已提交
7147 7148 7149 7150 7151
                return ret_val;

            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7152
            if (ret_val)
L
Linus Torvalds 已提交
7153 7154 7155 7156
                return ret_val;
        } else if (hw->smart_speed == e1000_smart_speed_off) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
7157
            if (ret_val)
L
Linus Torvalds 已提交
7158 7159 7160 7161 7162
                return ret_val;

            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7163
            if (ret_val)
L
Linus Torvalds 已提交
7164 7165 7166
                return ret_val;
        }

7167 7168 7169
    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
L
Linus Torvalds 已提交
7170

7171
        if (hw->mac_type == e1000_82541_rev_2 ||
7172
            hw->mac_type == e1000_82547_rev_2) {
7173 7174
            phy_data |= IGP01E1000_GMII_FLEX_SPD;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7175
            if (ret_val)
7176 7177
                return ret_val;
        } else {
7178 7179 7180 7181
            if (hw->mac_type == e1000_ich8lan) {
                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
            } else {
7182 7183 7184 7185 7186
                phy_data |= IGP02E1000_PM_D3_LPLU;
                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                              phy_data);
                if (ret_val)
                    return ret_val;
7187
            }
7188 7189 7190 7191
        }

        /* When LPLU is enabled we should disable SmartSpeed */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7192
        if (ret_val)
7193 7194 7195 7196
            return ret_val;

        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7197
        if (ret_val)
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
            return ret_val;

    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * This function sets the lplu d0 state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

7218
static int32_t
7219 7220 7221
e1000_set_d0_lplu_state(struct e1000_hw *hw,
                        boolean_t active)
{
7222
    uint32_t phy_ctrl = 0;
7223 7224 7225 7226
    int32_t ret_val;
    uint16_t phy_data;
    DEBUGFUNC("e1000_set_d0_lplu_state");

7227
    if (hw->mac_type <= e1000_82547_rev_2)
7228 7229
        return E1000_SUCCESS;

7230 7231 7232
    if (hw->mac_type == e1000_ich8lan) {
        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
    } else {
7233
        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7234
        if (ret_val)
L
Linus Torvalds 已提交
7235
            return ret_val;
7236
    }
L
Linus Torvalds 已提交
7237

7238
    if (!active) {
7239 7240 7241 7242
        if (hw->mac_type == e1000_ich8lan) {
            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        } else {
7243 7244 7245 7246
            phy_data &= ~IGP02E1000_PM_D0_LPLU;
            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
            if (ret_val)
                return ret_val;
7247
        }
7248 7249 7250 7251 7252 7253 7254 7255

        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
         * Dx states where the power conservation is most important.  During
         * driver activity we should enable SmartSpeed, so performance is
         * maintained. */
        if (hw->smart_speed == e1000_smart_speed_on) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
7256
            if (ret_val)
7257 7258 7259 7260 7261
                return ret_val;

            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7262
            if (ret_val)
7263 7264 7265 7266
                return ret_val;
        } else if (hw->smart_speed == e1000_smart_speed_off) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
7267
            if (ret_val)
7268 7269 7270 7271 7272
                return ret_val;

            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7273
            if (ret_val)
7274 7275 7276 7277 7278
                return ret_val;
        }


    } else {
7279

7280 7281 7282 7283
        if (hw->mac_type == e1000_ich8lan) {
            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        } else {
7284
            phy_data |= IGP02E1000_PM_D0_LPLU;
7285 7286 7287
            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
            if (ret_val)
                return ret_val;
7288
        }
7289

L
Linus Torvalds 已提交
7290 7291
        /* When LPLU is enabled we should disable SmartSpeed */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7292
        if (ret_val)
L
Linus Torvalds 已提交
7293 7294 7295 7296
            return ret_val;

        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7297
        if (ret_val)
L
Linus Torvalds 已提交
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
            return ret_val;

    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t
e1000_set_vco_speed(struct e1000_hw *hw)
{
    int32_t  ret_val;
    uint16_t default_page = 0;
    uint16_t phy_data;

    DEBUGFUNC("e1000_set_vco_speed");

7318
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
       break;
    default:
        return E1000_SUCCESS;
    }

    /* Set PHY register 30, page 5, bit 8 to 0 */

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7329
    if (ret_val)
L
Linus Torvalds 已提交
7330 7331 7332
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7333
    if (ret_val)
L
Linus Torvalds 已提交
7334 7335 7336
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7337
    if (ret_val)
L
Linus Torvalds 已提交
7338 7339 7340 7341
        return ret_val;

    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7342
    if (ret_val)
L
Linus Torvalds 已提交
7343 7344 7345 7346 7347
        return ret_val;

    /* Set PHY register 30, page 4, bit 11 to 1 */

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7348
    if (ret_val)
L
Linus Torvalds 已提交
7349 7350 7351
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7352
    if (ret_val)
L
Linus Torvalds 已提交
7353 7354 7355 7356
        return ret_val;

    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7357
    if (ret_val)
L
Linus Torvalds 已提交
7358 7359 7360
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7361
    if (ret_val)
L
Linus Torvalds 已提交
7362 7363 7364 7365 7366 7367
        return ret_val;

    return E1000_SUCCESS;
}


7368 7369 7370 7371 7372
/*****************************************************************************
 * This function reads the cookie from ARC ram.
 *
 * returns: - E1000_SUCCESS .
 ****************************************************************************/
7373
static int32_t
7374 7375 7376
e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
{
    uint8_t i;
7377
    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7378
    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
L
Linus Torvalds 已提交
7379

7380 7381
    length = (length >> 2);
    offset = (offset >> 2);
L
Linus Torvalds 已提交
7382

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395
    for (i = 0; i < length; i++) {
        *((uint32_t *) buffer + i) =
            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
    }
    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function checks whether the HOST IF is enabled for command operaton
 * and also checks whether the previous command is completed.
 * It busy waits in case of previous command is not completed.
 *
7396
 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7397 7398 7399
 *            timeout
 *          - E1000_SUCCESS for success.
 ****************************************************************************/
7400
static int32_t
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
e1000_mng_enable_host_if(struct e1000_hw * hw)
{
    uint32_t hicr;
    uint8_t i;

    /* Check that the host interface is enabled. */
    hicr = E1000_READ_REG(hw, HICR);
    if ((hicr & E1000_HICR_EN) == 0) {
        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
        return -E1000_ERR_HOST_INTERFACE_COMMAND;
    }
    /* check the previous command is completed */
    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
        hicr = E1000_READ_REG(hw, HICR);
        if (!(hicr & E1000_HICR_C))
            break;
7417
        mdelay(1);
7418 7419
    }

7420
    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
        DEBUGOUT("Previous command timeout failed .\n");
        return -E1000_ERR_HOST_INTERFACE_COMMAND;
    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 * This function writes the buffer content at the offset given on the host if.
 * It also does alignment considerations to do the writes in most efficient way.
 * Also fills up the sum of the buffer in *buffer parameter.
 *
 * returns  - E1000_SUCCESS for success.
 ****************************************************************************/
7434
static int32_t
7435 7436 7437 7438 7439
e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
                        uint16_t length, uint16_t offset, uint8_t *sum)
{
    uint8_t *tmp;
    uint8_t *bufptr = buffer;
7440
    uint32_t data = 0;
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
    uint16_t remaining, i, j, prev_bytes;

    /* sum = only sum of the data and it is not checksum */

    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
        return -E1000_ERR_PARAM;
    }

    tmp = (uint8_t *)&data;
    prev_bytes = offset & 0x3;
    offset &= 0xFFFC;
    offset >>= 2;

    if (prev_bytes) {
        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
            *(tmp + j) = *bufptr++;
            *sum += *(tmp + j);
        }
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
        length -= j - prev_bytes;
        offset++;
    }

    remaining = length & 0x3;
    length -= remaining;

    /* Calculate length in DWORDs */
    length >>= 2;

    /* The device driver writes the relevant command block into the
     * ram area. */
    for (i = 0; i < length; i++) {
        for (j = 0; j < sizeof(uint32_t); j++) {
            *(tmp + j) = *bufptr++;
            *sum += *(tmp + j);
        }

        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
    }
    if (remaining) {
        for (j = 0; j < sizeof(uint32_t); j++) {
            if (j < remaining)
                *(tmp + j) = *bufptr++;
            else
                *(tmp + j) = 0;

            *sum += *(tmp + j);
        }
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
    }

    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function writes the command header after does the checksum calculation.
 *
 * returns  - E1000_SUCCESS for success.
 ****************************************************************************/
7502
static int32_t
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519
e1000_mng_write_cmd_header(struct e1000_hw * hw,
                           struct e1000_host_mng_command_header * hdr)
{
    uint16_t i;
    uint8_t sum;
    uint8_t *buffer;

    /* Write the whole command header structure which includes sum of
     * the buffer */

    uint16_t length = sizeof(struct e1000_host_mng_command_header);

    sum = hdr->checksum;
    hdr->checksum = 0;

    buffer = (uint8_t *) hdr;
    i = length;
7520
    while (i--)
7521 7522 7523 7524 7525 7526
        sum += buffer[i];

    hdr->checksum = 0 - sum;

    length >>= 2;
    /* The device driver writes the relevant command block into the ram area. */
7527
    for (i = 0; i < length; i++) {
7528
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7529 7530
        E1000_WRITE_FLUSH(hw);
    }
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541

    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function indicates to ARC that a new command is pending which completes
 * one write operation by the driver.
 *
 * returns  - E1000_SUCCESS for success.
 ****************************************************************************/
7542
static int32_t
7543
e1000_mng_write_commit(struct e1000_hw * hw)
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
{
    uint32_t hicr;

    hicr = E1000_READ_REG(hw, HICR);
    /* Setting this bit tells the ARC that a new command is pending. */
    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);

    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function checks the mode of the firmware.
 *
 * returns  - TRUE when the mode is IAMT or FALSE.
 ****************************************************************************/
boolean_t
7561
e1000_check_mng_mode(struct e1000_hw *hw)
7562 7563 7564 7565 7566
{
    uint32_t fwsm;

    fwsm = E1000_READ_REG(hw, FWSM);

7567 7568 7569 7570 7571 7572
    if (hw->mac_type == e1000_ich8lan) {
        if ((fwsm & E1000_FWSM_MODE_MASK) ==
            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
            return TRUE;
    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
        return TRUE;

    return FALSE;
}


/*****************************************************************************
 * This function writes the dhcp info .
 ****************************************************************************/
int32_t
e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7584
                          uint16_t length)
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
{
    int32_t ret_val;
    struct e1000_host_mng_command_header hdr;

    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
    hdr.command_length = length;
    hdr.reserved1 = 0;
    hdr.reserved2 = 0;
    hdr.checksum = 0;

    ret_val = e1000_mng_enable_host_if(hw);
    if (ret_val == E1000_SUCCESS) {
        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
                                          &(hdr.checksum));
        if (ret_val == E1000_SUCCESS) {
            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
            if (ret_val == E1000_SUCCESS)
                ret_val = e1000_mng_write_commit(hw);
        }
    }
    return ret_val;
}


/*****************************************************************************
 * This function calculates the checksum.
 *
 * returns  - checksum of buffer contents.
 ****************************************************************************/
7614
static uint8_t
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
e1000_calculate_mng_checksum(char *buffer, uint32_t length)
{
    uint8_t sum = 0;
    uint32_t i;

    if (!buffer)
        return 0;

    for (i=0; i < length; i++)
        sum += buffer[i];

    return (uint8_t) (0 - sum);
}

/*****************************************************************************
 * This function checks whether tx pkt filtering needs to be enabled or not.
 *
 * returns  - TRUE for packet filtering or FALSE.
 ****************************************************************************/
boolean_t
e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
    /* called in init as well as watchdog timer functions */

    int32_t ret_val, checksum;
    boolean_t tx_filter = FALSE;
    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);

    if (e1000_check_mng_mode(hw)) {
        ret_val = e1000_mng_enable_host_if(hw);
        if (ret_val == E1000_SUCCESS) {
            ret_val = e1000_host_if_read_cookie(hw, buffer);
            if (ret_val == E1000_SUCCESS) {
                checksum = hdr->checksum;
                hdr->checksum = 0;
                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
                    checksum == e1000_calculate_mng_checksum((char *)buffer,
                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
                    if (hdr->status &
                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
                        tx_filter = TRUE;
                } else
                    tx_filter = TRUE;
            } else
                tx_filter = TRUE;
        }
    }

    hw->tx_pkt_filtering = tx_filter;
    return tx_filter;
}

/******************************************************************************
 * Verifies the hardware needs to allow ARPs to be processed by the host
 *
 * hw - Struct containing variables accessed by shared code
 *
 * returns: - TRUE/FALSE
 *
 *****************************************************************************/
uint32_t
e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
    uint32_t manc;
    uint32_t fwsm, factps;

    if (hw->asf_firmware_present) {
        manc = E1000_READ_REG(hw, MANC);

        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
            return FALSE;
        if (e1000_arc_subsystem_valid(hw) == TRUE) {
            fwsm = E1000_READ_REG(hw, FWSM);
            factps = E1000_READ_REG(hw, FACTPS);

            if (((fwsm & E1000_FWSM_MODE_MASK) ==
                (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
                (factps & E1000_FACTPS_MNGCG))
                return TRUE;
        } else
            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
                return TRUE;
    }
    return FALSE;
}

static int32_t
e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_status_reg;
    uint16_t i;

    /* Polarity reversal workaround for forced 10F/10H links. */

    /* Disable the transmitter on the PHY */

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7715
    if (ret_val)
L
Linus Torvalds 已提交
7716 7717
        return ret_val;
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7718
    if (ret_val)
L
Linus Torvalds 已提交
7719 7720 7721
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7722
    if (ret_val)
L
Linus Torvalds 已提交
7723 7724 7725
        return ret_val;

    /* This loop will early-out if the NO link condition has been met. */
7726
    for (i = PHY_FORCE_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
7727 7728 7729 7730 7731
        /* Read the MII Status Register and wait for Link Status bit
         * to be clear.
         */

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7732
        if (ret_val)
L
Linus Torvalds 已提交
7733 7734 7735
            return ret_val;

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7736
        if (ret_val)
L
Linus Torvalds 已提交
7737 7738
            return ret_val;

7739
        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7740
        mdelay(100);
L
Linus Torvalds 已提交
7741 7742 7743
    }

    /* Recommended delay time after link has been lost */
7744
    mdelay(1000);
L
Linus Torvalds 已提交
7745 7746 7747 7748

    /* Now we will re-enable th transmitter on the PHY */

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7749
    if (ret_val)
L
Linus Torvalds 已提交
7750
        return ret_val;
7751
    mdelay(50);
L
Linus Torvalds 已提交
7752
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7753
    if (ret_val)
L
Linus Torvalds 已提交
7754
        return ret_val;
7755
    mdelay(50);
L
Linus Torvalds 已提交
7756
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7757
    if (ret_val)
L
Linus Torvalds 已提交
7758
        return ret_val;
7759
    mdelay(50);
L
Linus Torvalds 已提交
7760
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7761
    if (ret_val)
L
Linus Torvalds 已提交
7762 7763 7764
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7765
    if (ret_val)
L
Linus Torvalds 已提交
7766 7767 7768
        return ret_val;

    /* This loop will early-out if the link condition has been met. */
7769
    for (i = PHY_FORCE_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
7770 7771 7772 7773 7774
        /* Read the MII Status Register and wait for Link Status bit
         * to be set.
         */

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7775
        if (ret_val)
L
Linus Torvalds 已提交
7776 7777 7778
            return ret_val;

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7779
        if (ret_val)
L
Linus Torvalds 已提交
7780 7781
            return ret_val;

7782
        if (mii_status_reg & MII_SR_LINK_STATUS) break;
7783
        mdelay(100);
L
Linus Torvalds 已提交
7784 7785 7786 7787
    }
    return E1000_SUCCESS;
}

7788 7789 7790 7791 7792 7793 7794 7795 7796
/***************************************************************************
 *
 * Disables PCI-Express master access.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - none.
 *
 ***************************************************************************/
7797
static void
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
e1000_set_pci_express_master_disable(struct e1000_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("e1000_set_pci_express_master_disable");

    if (hw->bus_type != e1000_bus_type_pci_express)
        return;

    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
    E1000_WRITE_REG(hw, CTRL, ctrl);
}

/*******************************************************************************
 *
 * Disables PCI-Express master access and verifies there are no pending requests
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
 *            caused the master requests to be disabled.
 *            E1000_SUCCESS master requests disabled.
 *
 ******************************************************************************/
int32_t
e1000_disable_pciex_master(struct e1000_hw *hw)
{
    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */

    DEBUGFUNC("e1000_disable_pciex_master");

    if (hw->bus_type != e1000_bus_type_pci_express)
        return E1000_SUCCESS;

    e1000_set_pci_express_master_disable(hw);

7835 7836
    while (timeout) {
        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7837 7838 7839 7840 7841 7842
            break;
        else
            udelay(100);
        timeout--;
    }

7843
    if (!timeout) {
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860
        DEBUGOUT("Master requests are pending.\n");
        return -E1000_ERR_MASTER_REQUESTS_PENDING;
    }

    return E1000_SUCCESS;
}

/*******************************************************************************
 *
 * Check for EEPROM Auto Read bit done.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to reset MAC
 *            E1000_SUCCESS at any other case.
 *
 ******************************************************************************/
7861
static int32_t
7862 7863 7864 7865 7866 7867 7868 7869
e1000_get_auto_rd_done(struct e1000_hw *hw)
{
    int32_t timeout = AUTO_READ_DONE_TIMEOUT;

    DEBUGFUNC("e1000_get_auto_rd_done");

    switch (hw->mac_type) {
    default:
7870
        msleep(5);
7871
        break;
7872 7873
    case e1000_82571:
    case e1000_82572:
7874
    case e1000_82573:
7875
    case e1000_80003es2lan:
7876 7877 7878 7879
    case e1000_ich8lan:
        while (timeout) {
            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
                break;
7880
            else msleep(1);
7881 7882 7883
            timeout--;
        }

7884
        if (!timeout) {
7885 7886 7887 7888 7889 7890
            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
            return -E1000_ERR_RESET;
        }
        break;
    }

J
Jeff Kirsher 已提交
7891 7892 7893 7894
    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
     * Need to wait for PHY configuration completion before accessing NVM
     * and PHY. */
    if (hw->mac_type == e1000_82573)
7895
        msleep(25);
J
Jeff Kirsher 已提交
7896

7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908
    return E1000_SUCCESS;
}

/***************************************************************************
 * Checks if the PHY configuration is done
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to reset MAC
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
7909
static int32_t
7910 7911
e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
7912 7913 7914
    int32_t timeout = PHY_CFG_TIMEOUT;
    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;

7915 7916
    DEBUGFUNC("e1000_get_phy_cfg_done");

7917 7918
    switch (hw->mac_type) {
    default:
7919
        mdelay(10);
7920
        break;
7921 7922 7923 7924 7925
    case e1000_80003es2lan:
        /* Separate *_CFG_DONE_* bit for each port */
        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
        /* Fall Through */
7926 7927 7928 7929 7930 7931
    case e1000_82571:
    case e1000_82572:
        while (timeout) {
            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
                break;
            else
7932
                msleep(1);
7933 7934 7935 7936 7937 7938 7939 7940
            timeout--;
        }
        if (!timeout) {
            DEBUGOUT("MNG configuration cycle has not completed.\n");
            return -E1000_ERR_RESET;
        }
        break;
    }
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
 * adapter or Eeprom access.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
7956
static int32_t
7957 7958 7959 7960 7961 7962 7963
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
    int32_t timeout;
    uint32_t swsm;

    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");

7964
    if (!hw->eeprom_semaphore_present)
7965 7966
        return E1000_SUCCESS;

7967 7968 7969 7970 7971
    if (hw->mac_type == e1000_80003es2lan) {
        /* Get the SW semaphore. */
        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
            return -E1000_ERR_EEPROM;
    }
7972 7973 7974

    /* Get the FW semaphore. */
    timeout = hw->eeprom.word_size + 1;
7975
    while (timeout) {
7976 7977 7978 7979 7980
        swsm = E1000_READ_REG(hw, SWSM);
        swsm |= E1000_SWSM_SWESMBI;
        E1000_WRITE_REG(hw, SWSM, swsm);
        /* if we managed to set the bit we got the semaphore. */
        swsm = E1000_READ_REG(hw, SWSM);
7981
        if (swsm & E1000_SWSM_SWESMBI)
7982 7983 7984 7985 7986 7987
            break;

        udelay(50);
        timeout--;
    }

7988
    if (!timeout) {
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
        /* Release semaphores */
        e1000_put_hw_eeprom_semaphore(hw);
        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
        return -E1000_ERR_EEPROM;
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 * This function clears HW semaphore bits.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - None.
 *
 ***************************************************************************/
8006
static void
8007 8008 8009 8010 8011 8012
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
    uint32_t swsm;

    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");

8013
    if (!hw->eeprom_semaphore_present)
8014 8015 8016
        return;

    swsm = E1000_READ_REG(hw, SWSM);
8017 8018 8019 8020
    if (hw->mac_type == e1000_80003es2lan) {
        /* Release both semaphores. */
        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
    } else
8021
        swsm &= ~(E1000_SWSM_SWESMBI);
8022 8023 8024
    E1000_WRITE_REG(hw, SWSM, swsm);
}

8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
/***************************************************************************
 *
 * Obtaining software semaphore bit (SMBI) before resetting PHY.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
8035
static int32_t
8036 8037 8038 8039 8040 8041 8042
e1000_get_software_semaphore(struct e1000_hw *hw)
{
    int32_t timeout = hw->eeprom.word_size + 1;
    uint32_t swsm;

    DEBUGFUNC("e1000_get_software_semaphore");

8043
    if (hw->mac_type != e1000_80003es2lan) {
8044
        return E1000_SUCCESS;
8045
    }
8046

8047
    while (timeout) {
8048 8049
        swsm = E1000_READ_REG(hw, SWSM);
        /* If SMBI bit cleared, it is now set and we hold the semaphore */
8050
        if (!(swsm & E1000_SWSM_SMBI))
8051
            break;
8052
        mdelay(1);
8053 8054 8055
        timeout--;
    }

8056
    if (!timeout) {
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
        return -E1000_ERR_RESET;
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Release semaphore bit (SMBI).
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8071
static void
8072 8073 8074 8075 8076 8077
e1000_release_software_semaphore(struct e1000_hw *hw)
{
    uint32_t swsm;

    DEBUGFUNC("e1000_release_software_semaphore");

8078
    if (hw->mac_type != e1000_80003es2lan) {
8079
        return;
8080
    }
8081 8082 8083 8084 8085 8086 8087

    swsm = E1000_READ_REG(hw, SWSM);
    /* Release the SW semaphores.*/
    swsm &= ~E1000_SWSM_SMBI;
    E1000_WRITE_REG(hw, SWSM, swsm);
}

8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
/******************************************************************************
 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
 * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
 * the caller to figure out how to deal with it.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * returns: - E1000_BLK_PHY_RESET
 *            E1000_SUCCESS
 *
 *****************************************************************************/
int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
    uint32_t manc = 0;
8103 8104 8105 8106 8107 8108 8109
    uint32_t fwsm = 0;

    if (hw->mac_type == e1000_ich8lan) {
        fwsm = E1000_READ_REG(hw, FWSM);
        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
                                            : E1000_BLK_PHY_RESET;
    }
J
Jesse Brandeburg 已提交
8110 8111

    if (hw->mac_type > e1000_82547_rev_2)
8112 8113
        manc = E1000_READ_REG(hw, MANC);
    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8114
        E1000_BLK_PHY_RESET : E1000_SUCCESS;
8115 8116
}

8117
static uint8_t
8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
e1000_arc_subsystem_valid(struct e1000_hw *hw)
{
    uint32_t fwsm;

    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
     * may not be provided a DMA clock when no manageability features are
     * enabled.  We do not want to perform any reads/writes to these registers
     * if this is the case.  We read FWSM to determine the manageability mode.
     */
    switch (hw->mac_type) {
8128 8129
    case e1000_82571:
    case e1000_82572:
8130
    case e1000_82573:
8131
    case e1000_80003es2lan:
8132
        fwsm = E1000_READ_REG(hw, FWSM);
8133
        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8134 8135
            return TRUE;
        break;
8136 8137
    case e1000_ich8lan:
        return TRUE;
8138 8139 8140 8141 8142 8143 8144
    default:
        break;
    }
    return FALSE;
}


A
Auke Kok 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153
/******************************************************************************
 * Configure PCI-Ex no-snoop
 *
 * hw - Struct containing variables accessed by shared code.
 * no_snoop - Bitmap of no-snoop events.
 *
 * returns: E1000_SUCCESS
 *
 *****************************************************************************/
8154
static int32_t
A
Auke Kok 已提交
8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
{
    uint32_t gcr_reg = 0;

    DEBUGFUNC("e1000_set_pci_ex_no_snoop");

    if (hw->bus_type == e1000_bus_type_unknown)
        e1000_get_bus_info(hw);

    if (hw->bus_type != e1000_bus_type_pci_express)
        return E1000_SUCCESS;

    if (no_snoop) {
        gcr_reg = E1000_READ_REG(hw, GCR);
        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
        gcr_reg |= no_snoop;
        E1000_WRITE_REG(hw, GCR, gcr_reg);
    }
    if (hw->mac_type == e1000_ich8lan) {
        uint32_t ctrl_ext;

        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);

        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Get software semaphore FLAG bit (SWFLAG).
 * SWFLAG is used to synchronize the access to all shared resource between
 * SW, FW and HW.
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8195
static int32_t
A
Auke Kok 已提交
8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
e1000_get_software_flag(struct e1000_hw *hw)
{
    int32_t timeout = PHY_CFG_TIMEOUT;
    uint32_t extcnf_ctrl;

    DEBUGFUNC("e1000_get_software_flag");

    if (hw->mac_type == e1000_ich8lan) {
        while (timeout) {
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);

            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
                break;
8212
            mdelay(1);
A
Auke Kok 已提交
8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
            timeout--;
        }

        if (!timeout) {
            DEBUGOUT("FW or HW locks the resource too long.\n");
            return -E1000_ERR_CONFIG;
        }
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Release software semaphore FLAG bit (SWFLAG).
 * SWFLAG is used to synchronize the access to all shared resource between
 * SW, FW and HW.
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8234
static void
A
Auke Kok 已提交
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258
e1000_release_software_flag(struct e1000_hw *hw)
{
    uint32_t extcnf_ctrl;

    DEBUGFUNC("e1000_release_software_flag");

    if (hw->mac_type == e1000_ich8lan) {
        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
    }

    return;
}

/******************************************************************************
 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
 * register.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
8259
static int32_t
A
Auke Kok 已提交
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314
e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
                       uint16_t *data)
{
    int32_t  error = E1000_SUCCESS;
    uint32_t flash_bank = 0;
    uint32_t act_offset = 0;
    uint32_t bank_offset = 0;
    uint16_t word = 0;
    uint16_t i = 0;

    /* We need to know which is the valid flash bank.  In the event
     * that we didn't allocate eeprom_shadow_ram, we may not be
     * managing flash_bank.  So it cannot be trusted and needs
     * to be updated with each read.
     */
    /* Value of bit 22 corresponds to the flash bank we're on. */
    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;

    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
    bank_offset = flash_bank * (hw->flash_bank_size * 2);

    error = e1000_get_software_flag(hw);
    if (error != E1000_SUCCESS)
        return error;

    for (i = 0; i < words; i++) {
        if (hw->eeprom_shadow_ram != NULL &&
            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
        } else {
            /* The NVM part needs a byte offset, hence * 2 */
            act_offset = bank_offset + ((offset + i) * 2);
            error = e1000_read_ich8_word(hw, act_offset, &word);
            if (error != E1000_SUCCESS)
                break;
            data[i] = word;
        }
    }

    e1000_release_software_flag(hw);

    return error;
}

/******************************************************************************
 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
 * register.  Actually, writes are written to the shadow ram cache in the hw
 * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
 * the NVM, which occurs when the NVM checksum is updated.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of word in the EEPROM to write
 * words - number of words to write
 * data - words to write to the EEPROM
 *****************************************************************************/
8315
static int32_t
A
Auke Kok 已提交
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
                        uint16_t *data)
{
    uint32_t i = 0;
    int32_t error = E1000_SUCCESS;

    error = e1000_get_software_flag(hw);
    if (error != E1000_SUCCESS)
        return error;

    /* A driver can write to the NVM only if it has eeprom_shadow_ram
     * allocated.  Subsequent reads to the modified words are read from
     * this cached structure as well.  Writes will only go into this
     * cached structure unless it's followed by a call to
     * e1000_update_eeprom_checksum() where it will commit the changes
     * and clear the "modified" field.
     */
    if (hw->eeprom_shadow_ram != NULL) {
        for (i = 0; i < words; i++) {
            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
            } else {
                error = -E1000_ERR_EEPROM;
                break;
            }
        }
    } else {
        /* Drivers have the option to not allocate eeprom_shadow_ram as long
         * as they don't perform any NVM writes.  An attempt in doing so
         * will result in this error.
         */
        error = -E1000_ERR_EEPROM;
    }

    e1000_release_software_flag(hw);

    return error;
}

/******************************************************************************
 * This function does initial flash setup so that a new read/write/erase cycle
 * can be started.
 *
 * hw - The pointer to the hw structure
 ****************************************************************************/
8362
static int32_t
A
Auke Kok 已提交
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
e1000_ich8_cycle_init(struct e1000_hw *hw)
{
    union ich8_hws_flash_status hsfsts;
    int32_t error = E1000_ERR_EEPROM;
    int32_t i     = 0;

    DEBUGFUNC("e1000_ich8_cycle_init");

    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);

    /* May be check the Flash Des Valid bit in Hw status */
    if (hsfsts.hsf_status.fldesvalid == 0) {
        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
        return error;
    }

    /* Clear FCERR in Hw status by writing 1 */
    /* Clear DAEL in Hw status by writing a 1 */
    hsfsts.hsf_status.flcerr = 1;
    hsfsts.hsf_status.dael = 1;

    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);

    /* Either we should have a hardware SPI cycle in progress bit to check
     * against, in order to start a new cycle or FDONE bit should be changed
     * in the hardware so that it is 1 after harware reset, which can then be
     * used as an indication whether a cycle is in progress or has been
     * completed .. we should also have some software semaphore mechanism to
     * guard FDONE or the cycle in progress bit so that two threads access to
     * those bits can be sequentiallized or a way so that 2 threads dont
     * start the cycle at the same time */

    if (hsfsts.hsf_status.flcinprog == 0) {
        /* There is no cycle running at present, so we can start a cycle */
        /* Begin by setting Flash Cycle Done. */
        hsfsts.hsf_status.flcdone = 1;
        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
        error = E1000_SUCCESS;
    } else {
        /* otherwise poll for sometime so the current cycle has a chance
         * to end before giving up. */
        for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
            if (hsfsts.hsf_status.flcinprog == 0) {
                error = E1000_SUCCESS;
                break;
            }
            udelay(1);
        }
        if (error == E1000_SUCCESS) {
            /* Successful in waiting for previous cycle to timeout,
             * now set the Flash Cycle Done. */
            hsfsts.hsf_status.flcdone = 1;
            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
        } else {
            DEBUGOUT("Flash controller busy, cannot get access");
        }
    }
    return error;
}

/******************************************************************************
 * This function starts a flash cycle and waits for its completion
 *
 * hw - The pointer to the hw structure
 ****************************************************************************/
8429
static int32_t
A
Auke Kok 已提交
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
{
    union ich8_hws_flash_ctrl hsflctl;
    union ich8_hws_flash_status hsfsts;
    int32_t error = E1000_ERR_EEPROM;
    uint32_t i = 0;

    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
    hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
    hsflctl.hsf_ctrl.flcgo = 1;
    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

    /* wait till FDONE bit is set to 1 */
    do {
        hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
        if (hsfsts.hsf_status.flcdone == 1)
            break;
        udelay(1);
        i++;
    } while (i < timeout);
    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
        error = E1000_SUCCESS;
    }
    return error;
}

/******************************************************************************
 * Reads a byte or word from the NVM using the ICH8 flash access registers.
 *
 * hw - The pointer to the hw structure
 * index - The index of the byte or word to read.
 * size - Size of data to read, 1=byte 2=word
 * data - Pointer to the word to store the value read.
 *****************************************************************************/
8464
static int32_t
A
Auke Kok 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
                     uint32_t size, uint16_t* data)
{
    union ich8_hws_flash_status hsfsts;
    union ich8_hws_flash_ctrl hsflctl;
    uint32_t flash_linear_address;
    uint32_t flash_data = 0;
    int32_t error = -E1000_ERR_EEPROM;
    int32_t count = 0;

    DEBUGFUNC("e1000_read_ich8_data");

    if (size < 1  || size > 2 || data == 0x0 ||
        index > ICH8_FLASH_LINEAR_ADDR_MASK)
        return error;

    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
                           hw->flash_base_addr;

    do {
        udelay(1);
        /* Steps */
        error = e1000_ich8_cycle_init(hw);
        if (error != E1000_SUCCESS)
            break;

        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
        hsflctl.hsf_ctrl.fldbcount = size - 1;
        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

        /* Write the last 24 bits of index into Flash Linear address field in
         * Flash Address */
        /* TODO: TBD maybe check the index against the size of flash */

        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);

        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);

        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
         * sequence a few more times, else read in (shift in) the Flash Data0,
         * the order is least significant byte first msb to lsb */
        if (error == E1000_SUCCESS) {
            flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
            if (size == 1) {
                *data = (uint8_t)(flash_data & 0x000000FF);
            } else if (size == 2) {
                *data = (uint16_t)(flash_data & 0x0000FFFF);
            }
            break;
        } else {
            /* If we've gotten here, then things are probably completely hosed,
             * but if the error condition is detected, it won't hurt to give
             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
             */
            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
            if (hsfsts.hsf_status.flcerr == 1) {
                /* Repeat for some time before giving up. */
                continue;
            } else if (hsfsts.hsf_status.flcdone == 0) {
                DEBUGOUT("Timeout error - flash cycle did not complete.");
                break;
            }
        }
    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);

    return error;
}

/******************************************************************************
 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
 *
 * hw - The pointer to the hw structure
 * index - The index of the byte/word to read.
 * size - Size of data to read, 1=byte 2=word
 * data - The byte(s) to write to the NVM.
 *****************************************************************************/
8543
static int32_t
A
Auke Kok 已提交
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
                      uint16_t data)
{
    union ich8_hws_flash_status hsfsts;
    union ich8_hws_flash_ctrl hsflctl;
    uint32_t flash_linear_address;
    uint32_t flash_data = 0;
    int32_t error = -E1000_ERR_EEPROM;
    int32_t count = 0;

    DEBUGFUNC("e1000_write_ich8_data");

    if (size < 1  || size > 2 || data > size * 0xff ||
        index > ICH8_FLASH_LINEAR_ADDR_MASK)
        return error;

    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
                           hw->flash_base_addr;

    do {
        udelay(1);
        /* Steps */
        error = e1000_ich8_cycle_init(hw);
        if (error != E1000_SUCCESS)
            break;

        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
        hsflctl.hsf_ctrl.fldbcount = size -1;
        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

        /* Write the last 24 bits of index into Flash Linear address field in
         * Flash Address */
        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);

        if (size == 1)
            flash_data = (uint32_t)data & 0x00FF;
        else
            flash_data = (uint32_t)data;

        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);

        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
         * sequence a few more times else done */
        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
        if (error == E1000_SUCCESS) {
            break;
        } else {
            /* If we're here, then things are most likely completely hosed,
             * but if the error condition is detected, it won't hurt to give
             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
             */
            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
            if (hsfsts.hsf_status.flcerr == 1) {
                /* Repeat for some time before giving up. */
                continue;
            } else if (hsfsts.hsf_status.flcdone == 0) {
                DEBUGOUT("Timeout error - flash cycle did not complete.");
                break;
            }
        }
    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);

    return error;
}

/******************************************************************************
 * Reads a single byte from the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The index of the byte to read.
 * data - Pointer to a byte to store the value read.
 *****************************************************************************/
8618
static int32_t
A
Auke Kok 已提交
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640
e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
{
    int32_t status = E1000_SUCCESS;
    uint16_t word = 0;

    status = e1000_read_ich8_data(hw, index, 1, &word);
    if (status == E1000_SUCCESS) {
        *data = (uint8_t)word;
    }

    return status;
}

/******************************************************************************
 * Writes a single byte to the NVM using the ICH8 flash access registers.
 * Performs verification by reading back the value and then going through
 * a retry algorithm before giving up.
 *
 * hw - pointer to e1000_hw structure
 * index - The index of the byte to write.
 * byte - The byte to write to the NVM.
 *****************************************************************************/
8641
static int32_t
A
Auke Kok 已提交
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671
e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
{
    int32_t error = E1000_SUCCESS;
    int32_t program_retries;
    uint8_t temp_byte;

    e1000_write_ich8_byte(hw, index, byte);
    udelay(100);

    for (program_retries = 0; program_retries < 100; program_retries++) {
        e1000_read_ich8_byte(hw, index, &temp_byte);
        if (temp_byte == byte)
            break;
        udelay(10);
        e1000_write_ich8_byte(hw, index, byte);
        udelay(100);
    }
    if (program_retries == 100)
        error = E1000_ERR_EEPROM;

    return error;
}

/******************************************************************************
 * Writes a single byte to the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The index of the byte to read.
 * data - The byte to write to the NVM.
 *****************************************************************************/
8672
static int32_t
A
Auke Kok 已提交
8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689
e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
{
    int32_t status = E1000_SUCCESS;
    uint16_t word = (uint16_t)data;

    status = e1000_write_ich8_data(hw, index, 1, word);

    return status;
}

/******************************************************************************
 * Reads a word from the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The starting byte index of the word to read.
 * data - Pointer to a word to store the value read.
 *****************************************************************************/
8690
static int32_t
A
Auke Kok 已提交
8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704
e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
{
    int32_t status = E1000_SUCCESS;
    status = e1000_read_ich8_data(hw, index, 2, data);
    return status;
}

/******************************************************************************
 * Writes a word to the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The starting byte index of the word to read.
 * data - The word to write to the NVM.
 *****************************************************************************/
8705
#if 0
A
Auke Kok 已提交
8706 8707 8708 8709 8710 8711 8712
int32_t
e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
{
    int32_t status = E1000_SUCCESS;
    status = e1000_write_ich8_data(hw, index, 2, data);
    return status;
}
8713
#endif  /*  0  */
A
Auke Kok 已提交
8714 8715 8716 8717 8718 8719 8720 8721

/******************************************************************************
 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
 * segment N is 4096 * N + flash_reg_addr.
 *
 * hw - pointer to e1000_hw structure
 * segment - 0 for first segment, 1 for second segment, etc.
 *****************************************************************************/
8722
static int32_t
A
Auke Kok 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
{
    union ich8_hws_flash_status hsfsts;
    union ich8_hws_flash_ctrl hsflctl;
    uint32_t flash_linear_address;
    int32_t  count = 0;
    int32_t  error = E1000_ERR_EEPROM;
    int32_t  iteration, seg_size;
    int32_t  sector_size;
    int32_t  j = 0;
    int32_t  error_flag = 0;

    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);

    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
     *     consecutive sectors.  The start index for the nth Hw sector can be
     *     calculated as = segment * 4096 + n * 256
     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
     *     The start index for the nth Hw sector can be calculated
     *     as = segment * 4096
     * 10: Error condition
     * 11: The Hw sector size is much bigger than the size asked to
     *     erase...error condition */
    if (hsfsts.hsf_status.berasesz == 0x0) {
        /* Hw sector size 256 */
        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
        iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
    } else if (hsfsts.hsf_status.berasesz == 0x1) {
        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
        iteration = 1;
    } else if (hsfsts.hsf_status.berasesz == 0x3) {
        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
        iteration = 1;
    } else {
        return error;
    }

    for (j = 0; j < iteration ; j++) {
        do {
            count++;
            /* Steps */
            error = e1000_ich8_cycle_init(hw);
            if (error != E1000_SUCCESS) {
                error_flag = 1;
                break;
            }

            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
             * Control */
            hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
            hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

            /* Write the last 24 bits of an index within the block into Flash
             * Linear address field in Flash Address.  This probably needs to
             * be calculated here based off the on-chip segment size and the
             * software segment size assumed (4K) */
            /* TBD */
            flash_linear_address = segment * sector_size + j * seg_size;
            flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
            flash_linear_address += hw->flash_base_addr;

            E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);

            error = e1000_ich8_flash_cycle(hw, 1000000);
            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
             * sequence a few more times else Done */
            if (error == E1000_SUCCESS) {
                break;
            } else {
                hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
                if (hsfsts.hsf_status.flcerr == 1) {
                    /* repeat for some time before giving up */
                    continue;
                } else if (hsfsts.hsf_status.flcdone == 0) {
                    error_flag = 1;
                    break;
                }
            }
        } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
        if (error_flag == 1)
            break;
    }
    if (error_flag != 1)
        error = E1000_SUCCESS;
    return error;
}

8812
static int32_t
A
Auke Kok 已提交
8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
                                      uint32_t cnf_base_addr, uint32_t cnf_size)
{
    uint32_t ret_val = E1000_SUCCESS;
    uint16_t word_addr, reg_data, reg_addr;
    uint16_t i;

    /* cnf_base_addr is in DWORD */
    word_addr = (uint16_t)(cnf_base_addr << 1);

    /* cnf_size is returned in size of dwords */
    for (i = 0; i < cnf_size; i++) {
        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
        if (ret_val)
            return ret_val;

        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
        if (ret_val)
            return ret_val;

        ret_val = e1000_get_software_flag(hw);
        if (ret_val != E1000_SUCCESS)
            return ret_val;

        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);

        e1000_release_software_flag(hw);
    }

    return ret_val;
}


8846
static int32_t
A
Auke Kok 已提交
8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
e1000_init_lcd_from_nvm(struct e1000_hw *hw)
{
    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;

    if (hw->phy_type != e1000_phy_igp_3)
          return E1000_SUCCESS;

    /* Check if SW needs configure the PHY */
    reg_data = E1000_READ_REG(hw, FEXTNVM);
    if (!(reg_data & FEXTNVM_SW_CONFIG))
        return E1000_SUCCESS;

    /* Wait for basic configuration completes before proceeding*/
    loop = 0;
    do {
        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
        udelay(100);
        loop++;
    } while ((!reg_data) && (loop < 50));

    /* Clear the Init Done bit for the next init event */
    reg_data = E1000_READ_REG(hw, STATUS);
    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
    E1000_WRITE_REG(hw, STATUS, reg_data);

    /* Make sure HW does not configure LCD from PHY extended configuration
       before SW configuration */
    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
        cnf_size >>= 16;
        if (cnf_size) {
            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
            /* cnf_base_addr is in DWORD */
            cnf_base_addr >>= 16;

            /* Configure LCD from extended configuration region. */
            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
                                                            cnf_size);
            if (ret_val)
                return ret_val;
        }
    }

    return E1000_SUCCESS;
}


8897