e1000_hw.c 314.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*******************************************************************************

3 4 5 6 7 8 9 10 11 12
  Intel PRO/1000 Linux driver
  Copyright(c) 1999 - 2006 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
L
Linus Torvalds 已提交
13
  more details.
14

L
Linus Torvalds 已提交
15
  You should have received a copy of the GNU General Public License along with
16 17 18 19 20 21
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

L
Linus Torvalds 已提交
22 23
  Contact Information:
  Linux NICS <linux.nics@intel.com>
24
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
L
Linus Torvalds 已提交
25 26 27 28 29 30 31 32
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* e1000_hw.c
 * Shared functions for accessing and configuring the MAC
 */

33

L
Linus Torvalds 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include "e1000_hw.h"

static int32_t e1000_set_phy_type(struct e1000_hw *hw);
static void e1000_phy_init_script(struct e1000_hw *hw);
static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
                                     uint16_t count);
static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
                                      uint16_t words, uint16_t *data);
static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
                                            uint16_t offset, uint16_t words,
                                            uint16_t *data);
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
                                    uint16_t count);
static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
                                      uint16_t phy_data);
static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
                                     uint16_t *phy_data);
static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
static void e1000_standby_eeprom(struct e1000_hw *hw);
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
70 71
static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
72 73
static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
static int32_t e1000_check_downshift(struct e1000_hw *hw);
74
static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
static void e1000_clear_vfta(struct e1000_hw *hw);
static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
						  boolean_t link_up);
static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
static int32_t e1000_get_cable_length(struct e1000_hw *hw,
				      uint16_t *min_length,
				      uint16_t *max_length);
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
static int32_t e1000_id_led_init(struct e1000_hw * hw);
static void e1000_init_rx_addrs(struct e1000_hw *hw);
static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
				      uint16_t words, uint16_t *data);
static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
static int32_t e1000_wait_autoneg(struct e1000_hw *hw);

static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
			       uint32_t value);

#define E1000_WRITE_REG_IO(a, reg, val) \
	    e1000_write_reg_io((a), E1000_##reg, val)
104 105
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
                                               uint16_t duplex);
106
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw,
					   uint32_t segment);
static int32_t e1000_get_software_flag(struct e1000_hw *hw);
static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
				      uint16_t words, uint16_t *data);
static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
				    uint8_t* data);
static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
				    uint16_t *data);
static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
				   uint16_t *data);
static void e1000_release_software_flag(struct e1000_hw *hw);
static void e1000_release_software_semaphore(struct e1000_hw *hw);
static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw,
					 uint32_t no_snoop);
static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw,
					    uint32_t index, uint8_t byte);
static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
				       uint16_t words, uint16_t *data);
static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
				     uint8_t data);
static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
				    uint16_t data);

L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146
/* IGP cable length table */
static const
uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};

147 148
static const
uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
149 150 151 152 153 154 155 156
    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
      104, 109, 114, 118, 121, 124};
157

L
Linus Torvalds 已提交
158 159 160 161 162 163 164 165 166 167 168

/******************************************************************************
 * Set the phy type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_set_phy_type(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_set_phy_type");

169
    if (hw->mac_type == e1000_undefined)
170 171
        return -E1000_ERR_PHY_TYPE;

172
    switch (hw->phy_id) {
L
Linus Torvalds 已提交
173 174 175
    case M88E1000_E_PHY_ID:
    case M88E1000_I_PHY_ID:
    case M88E1011_I_PHY_ID:
176
    case M88E1111_I_PHY_ID:
L
Linus Torvalds 已提交
177 178 179
        hw->phy_type = e1000_phy_m88;
        break;
    case IGP01E1000_I_PHY_ID:
180 181 182 183
        if (hw->mac_type == e1000_82541 ||
            hw->mac_type == e1000_82541_rev_2 ||
            hw->mac_type == e1000_82547 ||
            hw->mac_type == e1000_82547_rev_2) {
L
Linus Torvalds 已提交
184 185 186
            hw->phy_type = e1000_phy_igp;
            break;
        }
187 188 189 190 191 192 193 194
    case IGP03E1000_E_PHY_ID:
        hw->phy_type = e1000_phy_igp_3;
        break;
    case IFE_E_PHY_ID:
    case IFE_PLUS_E_PHY_ID:
    case IFE_C_E_PHY_ID:
        hw->phy_type = e1000_phy_ife;
        break;
195 196 197 198 199
    case GG82563_E_PHY_ID:
        if (hw->mac_type == e1000_80003es2lan) {
            hw->phy_type = e1000_phy_gg82563;
            break;
        }
L
Linus Torvalds 已提交
200 201 202 203 204 205 206 207 208 209
        /* Fall Through */
    default:
        /* Should never have loaded on this device */
        hw->phy_type = e1000_phy_undefined;
        return -E1000_ERR_PHY_TYPE;
    }

    return E1000_SUCCESS;
}

210

L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223
/******************************************************************************
 * IGP phy init script - initializes the GbE PHY
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
    uint32_t ret_val;
    uint16_t phy_saved_data;

    DEBUGFUNC("e1000_phy_init_script");

224
    if (hw->phy_init_script) {
225
        msleep(20);
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233

        /* Save off the current value of register 0x2F5B to be restored at
         * the end of this routine. */
        ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

        /* Disabled the PHY transmitter */
        e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

234
        msleep(20);
L
Linus Torvalds 已提交
235 236 237

        e1000_write_phy_reg(hw,0x0000,0x0140);

238
        msleep(5);
L
Linus Torvalds 已提交
239

240
        switch (hw->mac_type) {
L
Linus Torvalds 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        case e1000_82541:
        case e1000_82547:
            e1000_write_phy_reg(hw, 0x1F95, 0x0001);

            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);

            e1000_write_phy_reg(hw, 0x1F79, 0x0018);

            e1000_write_phy_reg(hw, 0x1F30, 0x1600);

            e1000_write_phy_reg(hw, 0x1F31, 0x0014);

            e1000_write_phy_reg(hw, 0x1F32, 0x161C);

            e1000_write_phy_reg(hw, 0x1F94, 0x0003);

            e1000_write_phy_reg(hw, 0x1F96, 0x003F);

            e1000_write_phy_reg(hw, 0x2010, 0x0008);
            break;

        case e1000_82541_rev_2:
        case e1000_82547_rev_2:
            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
            break;
        default:
            break;
        }

        e1000_write_phy_reg(hw, 0x0000, 0x3300);

272
        msleep(20);
L
Linus Torvalds 已提交
273 274 275 276

        /* Now enable the transmitter */
        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

277
        if (hw->mac_type == e1000_82547) {
L
Linus Torvalds 已提交
278 279 280 281 282
            uint16_t fused, fine, coarse;

            /* Move to analog registers page */
            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);

283
            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
L
Linus Torvalds 已提交
284 285 286 287 288
                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);

                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;

289
                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
L
Linus Torvalds 已提交
290 291
                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
292
                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;

                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);

                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
            }
        }
    }
}

/******************************************************************************
 * Set the mac type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_set_mac_type");

    switch (hw->device_id) {
    case E1000_DEV_ID_82542:
        switch (hw->revision_id) {
        case E1000_82542_2_0_REV_ID:
            hw->mac_type = e1000_82542_rev2_0;
            break;
        case E1000_82542_2_1_REV_ID:
            hw->mac_type = e1000_82542_rev2_1;
            break;
        default:
            /* Invalid 82542 revision ID */
            return -E1000_ERR_MAC_TYPE;
        }
        break;
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
        hw->mac_type = e1000_82543;
        break;
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
        hw->mac_type = e1000_82544;
        break;
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
        hw->mac_type = e1000_82540;
        break;
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82545EM_FIBER:
        hw->mac_type = e1000_82545;
        break;
    case E1000_DEV_ID_82545GM_COPPER:
    case E1000_DEV_ID_82545GM_FIBER:
    case E1000_DEV_ID_82545GM_SERDES:
        hw->mac_type = e1000_82545_rev_3;
        break;
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_FIBER:
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
        hw->mac_type = e1000_82546;
        break;
    case E1000_DEV_ID_82546GB_COPPER:
    case E1000_DEV_ID_82546GB_FIBER:
    case E1000_DEV_ID_82546GB_SERDES:
    case E1000_DEV_ID_82546GB_PCIE:
366 367
    case E1000_DEV_ID_82546GB_QUAD_COPPER:
    case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
L
Linus Torvalds 已提交
368 369 370 371
        hw->mac_type = e1000_82546_rev_3;
        break;
    case E1000_DEV_ID_82541EI:
    case E1000_DEV_ID_82541EI_MOBILE:
372
    case E1000_DEV_ID_82541ER_LOM:
L
Linus Torvalds 已提交
373 374 375 376 377 378 379 380 381
        hw->mac_type = e1000_82541;
        break;
    case E1000_DEV_ID_82541ER:
    case E1000_DEV_ID_82541GI:
    case E1000_DEV_ID_82541GI_LF:
    case E1000_DEV_ID_82541GI_MOBILE:
        hw->mac_type = e1000_82541_rev_2;
        break;
    case E1000_DEV_ID_82547EI:
382
    case E1000_DEV_ID_82547EI_MOBILE:
L
Linus Torvalds 已提交
383 384 385 386 387
        hw->mac_type = e1000_82547;
        break;
    case E1000_DEV_ID_82547GI:
        hw->mac_type = e1000_82547_rev_2;
        break;
388 389 390
    case E1000_DEV_ID_82571EB_COPPER:
    case E1000_DEV_ID_82571EB_FIBER:
    case E1000_DEV_ID_82571EB_SERDES:
391
    case E1000_DEV_ID_82571EB_QUAD_COPPER:
392 393 394 395 396
            hw->mac_type = e1000_82571;
        break;
    case E1000_DEV_ID_82572EI_COPPER:
    case E1000_DEV_ID_82572EI_FIBER:
    case E1000_DEV_ID_82572EI_SERDES:
397
    case E1000_DEV_ID_82572EI:
398 399
        hw->mac_type = e1000_82572;
        break;
400 401
    case E1000_DEV_ID_82573E:
    case E1000_DEV_ID_82573E_IAMT:
402
    case E1000_DEV_ID_82573L:
403 404
        hw->mac_type = e1000_82573;
        break;
405 406
    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
407 408 409 410
    case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
        hw->mac_type = e1000_80003es2lan;
        break;
411 412 413 414 415 416 417
    case E1000_DEV_ID_ICH8_IGP_M_AMT:
    case E1000_DEV_ID_ICH8_IGP_AMT:
    case E1000_DEV_ID_ICH8_IGP_C:
    case E1000_DEV_ID_ICH8_IFE:
    case E1000_DEV_ID_ICH8_IGP_M:
        hw->mac_type = e1000_ich8lan;
        break;
L
Linus Torvalds 已提交
418 419 420 421 422
    default:
        /* Should never have loaded on this device */
        return -E1000_ERR_MAC_TYPE;
    }

423
    switch (hw->mac_type) {
424 425 426 427
    case e1000_ich8lan:
        hw->swfwhw_semaphore_present = TRUE;
        hw->asf_firmware_present = TRUE;
        break;
428 429 430
    case e1000_80003es2lan:
        hw->swfw_sync_present = TRUE;
        /* fall through */
431 432
    case e1000_82571:
    case e1000_82572:
433 434 435
    case e1000_82573:
        hw->eeprom_semaphore_present = TRUE;
        /* fall through */
L
Linus Torvalds 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        hw->asf_firmware_present = TRUE;
        break;
    default:
        break;
    }

    return E1000_SUCCESS;
}

/*****************************************************************************
 * Set media type and TBI compatibility.
 *
 * hw - Struct containing variables accessed by shared code
 * **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
    uint32_t status;

    DEBUGFUNC("e1000_set_media_type");

461
    if (hw->mac_type != e1000_82543) {
L
Linus Torvalds 已提交
462 463 464 465 466 467 468
        /* tbi_compatibility is only valid on 82543 */
        hw->tbi_compatibility_en = FALSE;
    }

    switch (hw->device_id) {
    case E1000_DEV_ID_82545GM_SERDES:
    case E1000_DEV_ID_82546GB_SERDES:
469 470
    case E1000_DEV_ID_82571EB_SERDES:
    case E1000_DEV_ID_82572EI_SERDES:
471
    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
L
Linus Torvalds 已提交
472 473 474
        hw->media_type = e1000_media_type_internal_serdes;
        break;
    default:
475 476 477 478 479
        switch (hw->mac_type) {
        case e1000_82542_rev2_0:
        case e1000_82542_rev2_1:
            hw->media_type = e1000_media_type_fiber;
            break;
480
        case e1000_ich8lan:
481 482 483 484 485 486 487
        case e1000_82573:
            /* The STATUS_TBIMODE bit is reserved or reused for the this
             * device.
             */
            hw->media_type = e1000_media_type_copper;
            break;
        default:
L
Linus Torvalds 已提交
488
            status = E1000_READ_REG(hw, STATUS);
489
            if (status & E1000_STATUS_TBIMODE) {
L
Linus Torvalds 已提交
490 491 492 493 494 495
                hw->media_type = e1000_media_type_fiber;
                /* tbi_compatibility not valid on fiber */
                hw->tbi_compatibility_en = FALSE;
            } else {
                hw->media_type = e1000_media_type_copper;
            }
496
            break;
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        }
    }
}

/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_reset_hw(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t ctrl_ext;
    uint32_t icr;
    uint32_t manc;
    uint32_t led_ctrl;
514 515 516
    uint32_t timeout;
    uint32_t extcnf_ctrl;
    int32_t ret_val;
L
Linus Torvalds 已提交
517 518 519 520

    DEBUGFUNC("e1000_reset_hw");

    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
521
    if (hw->mac_type == e1000_82542_rev2_0) {
L
Linus Torvalds 已提交
522 523 524 525
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
    }

526
    if (hw->bus_type == e1000_bus_type_pci_express) {
527 528 529
        /* Prevent the PCI-E bus from sticking if there is no TLP connection
         * on the last TLP read/write transaction when MAC is reset.
         */
530
        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
531 532 533 534
            DEBUGOUT("PCI-E Master disable polling has failed.\n");
        }
    }

L
Linus Torvalds 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Disable the Transmit and Receive units.  Then delay to allow
     * any pending transactions to complete before we hit the MAC with
     * the global reset.
     */
    E1000_WRITE_REG(hw, RCTL, 0);
    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
    E1000_WRITE_FLUSH(hw);

    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
    hw->tbi_compatibility_on = FALSE;

    /* Delay to allow any outstanding PCI transactions to complete before
     * resetting the device
     */
553
    msleep(10);
L
Linus Torvalds 已提交
554 555 556 557

    ctrl = E1000_READ_REG(hw, CTRL);

    /* Must reset the PHY before resetting the MAC */
558
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
559
        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
560
        msleep(5);
L
Linus Torvalds 已提交
561 562
    }

563 564
    /* Must acquire the MDIO ownership before MAC reset.
     * Ownership defaults to firmware after a reset. */
565
    if (hw->mac_type == e1000_82573) {
566 567 568 569 570 571 572 573 574
        timeout = 10;

        extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

        do {
            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);

575
            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
576 577 578 579
                break;
            else
                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

580
            msleep(2);
581
            timeout--;
582
        } while (timeout);
583 584
    }

585 586 587 588 589 590 591 592
    /* Workaround for ICH8 bit corruption issue in FIFO memory */
    if (hw->mac_type == e1000_ich8lan) {
        /* Set Tx and Rx buffer allocation to 8k apiece. */
        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
        /* Set Packet Buffer Size to 16k. */
        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
    }

L
Linus Torvalds 已提交
593 594 595 596 597 598 599
    /* Issue a global reset to the MAC.  This will reset the chip's
     * transmit, receive, DMA, and link units.  It will not effect
     * the current PCI configuration.  The global reset bit is self-
     * clearing, and should clear within a microsecond.
     */
    DEBUGOUT("Issuing a global reset to MAC\n");

600
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        case e1000_82544:
        case e1000_82540:
        case e1000_82545:
        case e1000_82546:
        case e1000_82541:
        case e1000_82541_rev_2:
            /* These controllers can't ack the 64-bit write when issuing the
             * reset, so use IO-mapping as a workaround to issue the reset */
            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
        case e1000_82545_rev_3:
        case e1000_82546_rev_3:
            /* Reset is performed on a shadow of the control register */
            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
            break;
616 617 618 619 620 621 622 623 624 625 626 627
        case e1000_ich8lan:
            if (!hw->phy_reset_disable &&
                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
                 * at the same time to make sure the interface between
                 * MAC and the external PHY is reset.
                 */
                ctrl |= E1000_CTRL_PHY_RST;
            }

            e1000_get_software_flag(hw);
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
628
            msleep(5);
629
            break;
L
Linus Torvalds 已提交
630 631 632 633 634 635 636 637 638
        default:
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
    }

    /* After MAC reset, force reload of EEPROM to restore power-on settings to
     * device.  Later controllers reload the EEPROM automatically, so just wait
     * for reload to complete.
     */
639
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650
        case e1000_82542_rev2_0:
        case e1000_82542_rev2_1:
        case e1000_82543:
        case e1000_82544:
            /* Wait for reset to complete */
            udelay(10);
            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
            E1000_WRITE_FLUSH(hw);
            /* Wait for EEPROM reload */
651
            msleep(2);
L
Linus Torvalds 已提交
652 653 654 655 656 657
            break;
        case e1000_82541:
        case e1000_82541_rev_2:
        case e1000_82547:
        case e1000_82547_rev_2:
            /* Wait for EEPROM reload */
658
            msleep(20);
L
Linus Torvalds 已提交
659
            break;
660
        case e1000_82573:
J
Jeff Kirsher 已提交
661 662 663 664 665 666 667
            if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
                udelay(10);
                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
                E1000_WRITE_FLUSH(hw);
            }
668
            /* fall through */
669 670
        case e1000_82571:
        case e1000_82572:
671
        case e1000_ich8lan:
672
        case e1000_80003es2lan:
673
            ret_val = e1000_get_auto_rd_done(hw);
674
            if (ret_val)
675 676 677
                /* We don't want to continue accessing MAC registers. */
                return ret_val;
            break;
L
Linus Torvalds 已提交
678 679
        default:
            /* Wait for EEPROM reload (it happens automatically) */
680
            msleep(5);
L
Linus Torvalds 已提交
681 682 683 684
            break;
    }

    /* Disable HW ARPs on ASF enabled adapters */
685
    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
L
Linus Torvalds 已提交
686 687 688 689 690
        manc = E1000_READ_REG(hw, MANC);
        manc &= ~(E1000_MANC_ARP_EN);
        E1000_WRITE_REG(hw, MANC, manc);
    }

691
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
L
Linus Torvalds 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        e1000_phy_init_script(hw);

        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }

    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Clear any pending interrupt events. */
    icr = E1000_READ_REG(hw, ICR);

    /* If MWI was previously enabled, reenable it. */
709
    if (hw->mac_type == e1000_82542_rev2_0) {
710
        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
L
Linus Torvalds 已提交
711 712 713
            e1000_pci_set_mwi(hw);
    }

714 715 716 717 718 719
    if (hw->mac_type == e1000_ich8lan) {
        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
        kab |= E1000_KABGTXD_BGSQLBIAS;
        E1000_WRITE_REG(hw, KABGTXD, kab);
    }

L
Linus Torvalds 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    return E1000_SUCCESS;
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Assumes that the controller has previously been reset and is in a
 * post-reset uninitialized state. Initializes the receive address registers,
 * multicast table, and VLAN filter table. Calls routines to setup link
 * configuration and flow control settings. Clears all on-chip counters. Leaves
 * the transmit and receive units disabled and uninitialized.
 *****************************************************************************/
int32_t
e1000_init_hw(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t i;
    int32_t ret_val;
    uint16_t pcix_cmd_word;
    uint16_t pcix_stat_hi_word;
    uint16_t cmd_mmrbc;
    uint16_t stat_mmrbc;
744
    uint32_t mta_size;
745
    uint32_t reg_data;
746
    uint32_t ctrl_ext;
747

L
Linus Torvalds 已提交
748 749
    DEBUGFUNC("e1000_init_hw");

750 751 752 753 754 755 756 757 758 759 760
    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
    if (hw->mac_type == e1000_ich8lan) {
        reg_data = E1000_READ_REG(hw, TARC0);
        reg_data |= 0x30000000;
        E1000_WRITE_REG(hw, TARC0, reg_data);

        reg_data = E1000_READ_REG(hw, STATUS);
        reg_data &= ~0x80000000;
        E1000_WRITE_REG(hw, STATUS, reg_data);
    }

L
Linus Torvalds 已提交
761 762
    /* Initialize Identification LED */
    ret_val = e1000_id_led_init(hw);
763
    if (ret_val) {
L
Linus Torvalds 已提交
764 765 766 767 768 769 770 771 772
        DEBUGOUT("Error Initializing Identification LED\n");
        return ret_val;
    }

    /* Set the media type and TBI compatibility */
    e1000_set_media_type(hw);

    /* Disabling VLAN filtering. */
    DEBUGOUT("Initializing the IEEE VLAN\n");
773 774 775 776 777 778
    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
    if (hw->mac_type != e1000_ich8lan) {
        if (hw->mac_type < e1000_82545_rev_3)
            E1000_WRITE_REG(hw, VET, 0);
        e1000_clear_vfta(hw);
    }
L
Linus Torvalds 已提交
779 780

    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
781
    if (hw->mac_type == e1000_82542_rev2_0) {
L
Linus Torvalds 已提交
782 783 784 785
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
        E1000_WRITE_FLUSH(hw);
786
        msleep(5);
L
Linus Torvalds 已提交
787 788 789 790 791 792 793 794
    }

    /* Setup the receive address. This involves initializing all of the Receive
     * Address Registers (RARs 0 - 15).
     */
    e1000_init_rx_addrs(hw);

    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
795
    if (hw->mac_type == e1000_82542_rev2_0) {
L
Linus Torvalds 已提交
796 797
        E1000_WRITE_REG(hw, RCTL, 0);
        E1000_WRITE_FLUSH(hw);
798 799
        msleep(1);
        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
L
Linus Torvalds 已提交
800 801 802 803 804
            e1000_pci_set_mwi(hw);
    }

    /* Zero out the Multicast HASH table */
    DEBUGOUT("Zeroing the MTA\n");
805
    mta_size = E1000_MC_TBL_SIZE;
806 807
    if (hw->mac_type == e1000_ich8lan)
        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
808
    for (i = 0; i < mta_size; i++) {
L
Linus Torvalds 已提交
809
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
810 811 812 813
        /* use write flush to prevent Memory Write Block (MWB) from
         * occuring when accessing our register space */
        E1000_WRITE_FLUSH(hw);
    }
L
Linus Torvalds 已提交
814 815 816

    /* Set the PCI priority bit correctly in the CTRL register.  This
     * determines if the adapter gives priority to receives, or if it
817 818
     * gives equal priority to transmits and receives.  Valid only on
     * 82542 and 82543 silicon.
L
Linus Torvalds 已提交
819
     */
820
    if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
L
Linus Torvalds 已提交
821 822 823 824
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
    }

825
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
826 827 828 829 830
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
        break;
    default:
        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
831
        if (hw->bus_type == e1000_bus_type_pcix) {
L
Linus Torvalds 已提交
832 833 834 835 836 837 838
            e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
            e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
                &pcix_stat_hi_word);
            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
                PCIX_COMMAND_MMRBC_SHIFT;
            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
                PCIX_STATUS_HI_MMRBC_SHIFT;
839
            if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
L
Linus Torvalds 已提交
840
                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
841
            if (cmd_mmrbc > stat_mmrbc) {
L
Linus Torvalds 已提交
842 843 844 845 846 847 848 849 850
                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
                e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
                    &pcix_cmd_word);
            }
        }
        break;
    }

851 852
    /* More time needed for PHY to initialize */
    if (hw->mac_type == e1000_ich8lan)
853
        msleep(15);
854

L
Linus Torvalds 已提交
855 856 857 858
    /* Call a subroutine to configure the link and setup flow control. */
    ret_val = e1000_setup_link(hw);

    /* Set the transmit descriptor write-back policy */
859
    if (hw->mac_type > e1000_82544) {
L
Linus Torvalds 已提交
860 861
        ctrl = E1000_READ_REG(hw, TXDCTL);
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
862 863 864
        switch (hw->mac_type) {
        default:
            break;
865 866
        case e1000_82571:
        case e1000_82572:
867
        case e1000_82573:
868
        case e1000_ich8lan:
869
        case e1000_80003es2lan:
870 871 872
            ctrl |= E1000_TXDCTL_COUNT_DESC;
            break;
        }
L
Linus Torvalds 已提交
873 874 875
        E1000_WRITE_REG(hw, TXDCTL, ctrl);
    }

876
    if (hw->mac_type == e1000_82573) {
877
        e1000_enable_tx_pkt_filtering(hw);
878 879
    }

880 881 882
    switch (hw->mac_type) {
    default:
        break;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    case e1000_80003es2lan:
        /* Enable retransmit on late collisions */
        reg_data = E1000_READ_REG(hw, TCTL);
        reg_data |= E1000_TCTL_RTLC;
        E1000_WRITE_REG(hw, TCTL, reg_data);

        /* Configure Gigabit Carry Extend Padding */
        reg_data = E1000_READ_REG(hw, TCTL_EXT);
        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
        E1000_WRITE_REG(hw, TCTL_EXT, reg_data);

        /* Configure Transmit Inter-Packet Gap */
        reg_data = E1000_READ_REG(hw, TIPG);
        reg_data &= ~E1000_TIPG_IPGT_MASK;
        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
        E1000_WRITE_REG(hw, TIPG, reg_data);

        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
        reg_data &= ~0x00100000;
        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
        /* Fall through */
905
    case e1000_82571:
M
Mallikarjuna R Chilakala 已提交
906
    case e1000_82572:
907
    case e1000_ich8lan:
908
        ctrl = E1000_READ_REG(hw, TXDCTL1);
909
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
910
        if (hw->mac_type >= e1000_82571)
911
            ctrl |= E1000_TXDCTL_COUNT_DESC;
912 913 914 915 916 917 918 919 920 921
        E1000_WRITE_REG(hw, TXDCTL1, ctrl);
        break;
    }


    if (hw->mac_type == e1000_82573) {
        uint32_t gcr = E1000_READ_REG(hw, GCR);
        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
        E1000_WRITE_REG(hw, GCR, gcr);
    }
922

L
Linus Torvalds 已提交
923 924 925 926 927 928 929
    /* Clear all of the statistics registers (clear on read).  It is
     * important that we do this after we have tried to establish link
     * because the symbol error count will increment wildly if there
     * is no link.
     */
    e1000_clear_hw_cntrs(hw);

930 931 932 933 934
    /* ICH8 No-snoop bits are opposite polarity.
     * Set to snoop by default after reset. */
    if (hw->mac_type == e1000_ich8lan)
        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);

935 936 937 938 939 940 941 942 943
    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        /* Relaxed ordering must be disabled to avoid a parity
         * error crash in a PCI slot. */
        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    return ret_val;
}

/******************************************************************************
 * Adjust SERDES output amplitude based on EEPROM setting.
 *
 * hw - Struct containing variables accessed by shared code.
 *****************************************************************************/
static int32_t
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
    uint16_t eeprom_data;
    int32_t  ret_val;

    DEBUGFUNC("e1000_adjust_serdes_amplitude");

960
    if (hw->media_type != e1000_media_type_internal_serdes)
L
Linus Torvalds 已提交
961 962
        return E1000_SUCCESS;

963
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
964 965 966 967 968 969 970 971 972 973 974 975
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
        break;
    default:
        return E1000_SUCCESS;
    }

    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
    if (ret_val) {
        return ret_val;
    }

976
    if (eeprom_data != EEPROM_RESERVED_WORD) {
L
Linus Torvalds 已提交
977
        /* Adjust SERDES output amplitude only. */
978
        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
L
Linus Torvalds 已提交
979
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
980
        if (ret_val)
L
Linus Torvalds 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            return ret_val;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Configures flow control and link settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Determines which flow control settings to use. Calls the apropriate media-
 * specific link configuration function. Configures the flow control settings.
 * Assuming the adapter has a valid link partner, a valid link should be
 * established. Assumes the hardware has previously been reset and the
 * transmitter and receiver are not enabled.
 *****************************************************************************/
int32_t
e1000_setup_link(struct e1000_hw *hw)
{
    uint32_t ctrl_ext;
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_setup_link");

1007 1008 1009 1010 1011
    /* In the case of the phy reset being blocked, we already have a link.
     * We do not have to set it up again. */
    if (e1000_check_phy_reset_block(hw))
        return E1000_SUCCESS;

L
Linus Torvalds 已提交
1012 1013 1014 1015 1016 1017 1018 1019
    /* Read and store word 0x0F of the EEPROM. This word contains bits
     * that determine the hardware's default PAUSE (flow control) mode,
     * a bit that determines whether the HW defaults to enabling or
     * disabling auto-negotiation, and the direction of the
     * SW defined pins. If there is no SW over-ride of the flow
     * control setting, then the variable hw->fc will
     * be initialized based on a value in the EEPROM.
     */
1020
    if (hw->fc == E1000_FC_DEFAULT) {
J
Jeff Kirsher 已提交
1021
        switch (hw->mac_type) {
1022
        case e1000_ich8lan:
J
Jeff Kirsher 已提交
1023
        case e1000_82573:
1024
            hw->fc = E1000_FC_FULL;
J
Jeff Kirsher 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033
            break;
        default:
            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
                                        1, &eeprom_data);
            if (ret_val) {
                DEBUGOUT("EEPROM Read Error\n");
                return -E1000_ERR_EEPROM;
            }
            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1034
                hw->fc = E1000_FC_NONE;
J
Jeff Kirsher 已提交
1035 1036
            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
                    EEPROM_WORD0F_ASM_DIR)
1037
                hw->fc = E1000_FC_TX_PAUSE;
J
Jeff Kirsher 已提交
1038
            else
1039
                hw->fc = E1000_FC_FULL;
J
Jeff Kirsher 已提交
1040 1041
            break;
        }
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047
    }

    /* We want to save off the original Flow Control configuration just
     * in case we get disconnected and then reconnected into a different
     * hub or switch with different Flow Control capabilities.
     */
1048
    if (hw->mac_type == e1000_82542_rev2_0)
1049
        hw->fc &= (~E1000_FC_TX_PAUSE);
L
Linus Torvalds 已提交
1050

1051
    if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1052
        hw->fc &= (~E1000_FC_RX_PAUSE);
L
Linus Torvalds 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

    hw->original_fc = hw->fc;

    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);

    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
     * polarity value for the SW controlled pins, and setup the
     * Extended Device Control reg with that info.
     * This is needed because one of the SW controlled pins is used for
     * signal detection.  So this should be done before e1000_setup_pcs_link()
     * or e1000_phy_setup() is called.
     */
1065
    if (hw->mac_type == e1000_82543) {
1066 1067 1068 1069 1070 1071
        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
                                    1, &eeprom_data);
        if (ret_val) {
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
L
Linus Torvalds 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
                    SWDPIO__EXT_SHIFT);
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

    /* Call the necessary subroutine to configure the link. */
    ret_val = (hw->media_type == e1000_media_type_copper) ?
              e1000_setup_copper_link(hw) :
              e1000_setup_fiber_serdes_link(hw);

    /* Initialize the flow control address, type, and PAUSE timer
     * registers to their default values.  This is done even if flow
     * control is disabled, because it does not hurt anything to
     * initialize these registers.
     */
    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");

1089 1090 1091 1092 1093 1094
    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
    if (hw->mac_type != e1000_ich8lan) {
        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
    }
1095

L
Linus Torvalds 已提交
1096 1097 1098 1099 1100 1101 1102 1103
    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);

    /* Set the flow control receive threshold registers.  Normally,
     * these registers will be set to a default threshold that may be
     * adjusted later by the driver's runtime code.  However, if the
     * ability to transmit pause frames in not enabled, then these
     * registers will be set to 0.
     */
1104
    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110
        E1000_WRITE_REG(hw, FCRTL, 0);
        E1000_WRITE_REG(hw, FCRTH, 0);
    } else {
        /* We need to set up the Receive Threshold high and low water marks
         * as well as (optionally) enabling the transmission of XON frames.
         */
1111
        if (hw->fc_send_xon) {
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        } else {
            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        }
    }
    return ret_val;
}

/******************************************************************************
 * Sets up link for a fiber based or serdes based adapter
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Manipulates Physical Coding Sublayer functions in order to configure
 * link. Assumes the hardware has been previously reset and the transmitter
 * and receiver are not enabled.
 *****************************************************************************/
static int32_t
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t status;
    uint32_t txcw = 0;
    uint32_t i;
    uint32_t signal = 0;
    int32_t ret_val;

    DEBUGFUNC("e1000_setup_fiber_serdes_link");

1143 1144 1145 1146 1147 1148 1149 1150
    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
     * until explicitly turned off or a power cycle is performed.  A read to
     * the register does not indicate its status.  Therefore, we ensure
     * loopback mode is disabled during initialization.
     */
    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);

L
Linus Torvalds 已提交
1151 1152 1153 1154 1155 1156 1157
    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
     * set when the optics detect a signal. On older adapters, it will be
     * cleared when there is a signal.  This applies to fiber media only.
     * If we're on serdes media, adjust the output amplitude to value set in
     * the EEPROM.
     */
    ctrl = E1000_READ_REG(hw, CTRL);
1158
    if (hw->media_type == e1000_media_type_fiber)
L
Linus Torvalds 已提交
1159 1160 1161
        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;

    ret_val = e1000_adjust_serdes_amplitude(hw);
1162
    if (ret_val)
L
Linus Torvalds 已提交
1163 1164 1165 1166 1167 1168 1169
        return ret_val;

    /* Take the link out of reset */
    ctrl &= ~(E1000_CTRL_LRST);

    /* Adjust VCO speed to improve BER performance */
    ret_val = e1000_set_vco_speed(hw);
1170
    if (ret_val)
L
Linus Torvalds 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        return ret_val;

    e1000_config_collision_dist(hw);

    /* Check for a software override of the flow control settings, and setup
     * the device accordingly.  If auto-negotiation is enabled, then software
     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
     * auto-negotiation is disabled, then software will have to manually
     * configure the two flow control enable bits in the CTRL register.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames, but
     *          not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames but we do
     *          not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     */
    switch (hw->fc) {
1191
    case E1000_FC_NONE:
L
Linus Torvalds 已提交
1192 1193 1194
        /* Flow control is completely disabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
        break;
1195
    case E1000_FC_RX_PAUSE:
L
Linus Torvalds 已提交
1196 1197 1198 1199 1200 1201 1202 1203
        /* RX Flow control is enabled and TX Flow control is disabled by a
         * software over-ride. Since there really isn't a way to advertise
         * that we are capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE. Later, we will
         *  disable the adapter's ability to send PAUSE frames.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
1204
    case E1000_FC_TX_PAUSE:
L
Linus Torvalds 已提交
1205 1206 1207 1208 1209
        /* TX Flow control is enabled, and RX Flow control is disabled, by a
         * software over-ride.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
        break;
1210
    case E1000_FC_FULL:
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        /* Flow control (both RX and TX) is enabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
        break;
    }

    /* Since auto-negotiation is enabled, take the link out of reset (the link
     * will be in reset, because we previously reset the chip). This will
     * restart auto-negotiation.  If auto-neogtiation is successful then the
     * link-up status bit will be set and the flow control enable bits (RFCE
     * and TFCE) will be set according to their negotiated value.
     */
    DEBUGOUT("Auto-negotiation enabled\n");

    E1000_WRITE_REG(hw, TXCW, txcw);
    E1000_WRITE_REG(hw, CTRL, ctrl);
    E1000_WRITE_FLUSH(hw);

    hw->txcw = txcw;
1233
    msleep(1);
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239 1240

    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
     * indication in the Device Status Register.  Time-out if a link isn't
     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
     * less than 500 milliseconds even if the other end is doing it in SW).
     * For internal serdes, we just assume a signal is present, then poll.
     */
1241
    if (hw->media_type == e1000_media_type_internal_serdes ||
L
Linus Torvalds 已提交
1242 1243
       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
        DEBUGOUT("Looking for Link\n");
1244
        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1245
            msleep(10);
L
Linus Torvalds 已提交
1246
            status = E1000_READ_REG(hw, STATUS);
1247
            if (status & E1000_STATUS_LU) break;
L
Linus Torvalds 已提交
1248
        }
1249
        if (i == (LINK_UP_TIMEOUT / 10)) {
L
Linus Torvalds 已提交
1250 1251 1252 1253 1254 1255 1256 1257
            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
            hw->autoneg_failed = 1;
            /* AutoNeg failed to achieve a link, so we'll call
             * e1000_check_for_link. This routine will force the link up if
             * we detect a signal. This will allow us to communicate with
             * non-autonegotiating link partners.
             */
            ret_val = e1000_check_for_link(hw);
1258
            if (ret_val) {
L
Linus Torvalds 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
                DEBUGOUT("Error while checking for link\n");
                return ret_val;
            }
            hw->autoneg_failed = 0;
        } else {
            hw->autoneg_failed = 0;
            DEBUGOUT("Valid Link Found\n");
        }
    } else {
        DEBUGOUT("No Signal Detected\n");
    }
    return E1000_SUCCESS;
}

/******************************************************************************
1274
* Make sure we have a valid PHY and change PHY mode before link setup.
L
Linus Torvalds 已提交
1275 1276 1277 1278
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
1279
e1000_copper_link_preconfig(struct e1000_hw *hw)
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t phy_data;

1285
    DEBUGFUNC("e1000_copper_link_preconfig");
L
Linus Torvalds 已提交
1286 1287 1288 1289 1290 1291

    ctrl = E1000_READ_REG(hw, CTRL);
    /* With 82543, we need to force speed and duplex on the MAC equal to what
     * the PHY speed and duplex configuration is. In addition, we need to
     * perform a hardware reset on the PHY to take it out of reset.
     */
1292
    if (hw->mac_type > e1000_82543) {
L
Linus Torvalds 已提交
1293 1294 1295 1296 1297 1298
        ctrl |= E1000_CTRL_SLU;
        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
        E1000_WRITE_REG(hw, CTRL, ctrl);
    } else {
        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
        E1000_WRITE_REG(hw, CTRL, ctrl);
1299
        ret_val = e1000_phy_hw_reset(hw);
1300
        if (ret_val)
1301
            return ret_val;
L
Linus Torvalds 已提交
1302 1303 1304 1305
    }

    /* Make sure we have a valid PHY */
    ret_val = e1000_detect_gig_phy(hw);
1306
    if (ret_val) {
L
Linus Torvalds 已提交
1307 1308 1309 1310 1311 1312 1313
        DEBUGOUT("Error, did not detect valid phy.\n");
        return ret_val;
    }
    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);

    /* Set PHY to class A mode (if necessary) */
    ret_val = e1000_set_phy_mode(hw);
1314
    if (ret_val)
L
Linus Torvalds 已提交
1315 1316
        return ret_val;

1317
    if ((hw->mac_type == e1000_82545_rev_3) ||
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323
       (hw->mac_type == e1000_82546_rev_3)) {
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        phy_data |= 0x00000008;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
    }

1324 1325 1326
    if (hw->mac_type <= e1000_82543 ||
        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
L
Linus Torvalds 已提交
1327 1328
        hw->phy_reset_disable = FALSE;

1329 1330
   return E1000_SUCCESS;
}
L
Linus Torvalds 已提交
1331 1332


1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
    uint32_t led_ctrl;
    int32_t ret_val;
    uint16_t phy_data;
L
Linus Torvalds 已提交
1344

1345
    DEBUGFUNC("e1000_copper_link_igp_setup");
L
Linus Torvalds 已提交
1346

1347 1348
    if (hw->phy_reset_disable)
        return E1000_SUCCESS;
1349

1350 1351 1352 1353 1354
    ret_val = e1000_phy_reset(hw);
    if (ret_val) {
        DEBUGOUT("Error Resetting the PHY\n");
        return ret_val;
    }
L
Linus Torvalds 已提交
1355

1356
    /* Wait 15ms for MAC to configure PHY from eeprom settings */
1357
    msleep(15);
1358
    if (hw->mac_type != e1000_ich8lan) {
1359 1360 1361 1362 1363
    /* Configure activity LED after PHY reset */
    led_ctrl = E1000_READ_REG(hw, LEDCTL);
    led_ctrl &= IGP_ACTIVITY_LED_MASK;
    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
    E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1364
    }
L
Linus Torvalds 已提交
1365

1366 1367 1368 1369 1370 1371 1372 1373
    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
    if (hw->phy_type == e1000_phy_igp) {
        /* disable lplu d3 during driver init */
        ret_val = e1000_set_d3_lplu_state(hw, FALSE);
        if (ret_val) {
            DEBUGOUT("Error Disabling LPLU D3\n");
            return ret_val;
        }
1374
    }
L
Linus Torvalds 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    /* disable lplu d0 during driver init */
    ret_val = e1000_set_d0_lplu_state(hw, FALSE);
    if (ret_val) {
        DEBUGOUT("Error Disabling LPLU D0\n");
        return ret_val;
    }
    /* Configure mdi-mdix settings */
    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
    if (ret_val)
        return ret_val;
L
Linus Torvalds 已提交
1386

1387 1388 1389 1390 1391
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
        hw->dsp_config_state = e1000_dsp_config_disabled;
        /* Force MDI for earlier revs of the IGP PHY */
        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
        hw->mdix = 1;
L
Linus Torvalds 已提交
1392

1393 1394 1395
    } else {
        hw->dsp_config_state = e1000_dsp_config_enabled;
        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
L
Linus Torvalds 已提交
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        switch (hw->mdix) {
        case 1:
            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
            break;
        case 2:
            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
            break;
        case 0:
        default:
            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
            break;
        }
    }
    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1411
    if (ret_val)
1412
        return ret_val;
L
Linus Torvalds 已提交
1413

1414
    /* set auto-master slave resolution settings */
1415
    if (hw->autoneg) {
1416
        e1000_ms_type phy_ms_setting = hw->master_slave;
L
Linus Torvalds 已提交
1417

1418
        if (hw->ffe_config_state == e1000_ffe_config_active)
1419
            hw->ffe_config_state = e1000_ffe_config_enabled;
L
Linus Torvalds 已提交
1420

1421
        if (hw->dsp_config_state == e1000_dsp_config_activated)
1422
            hw->dsp_config_state = e1000_dsp_config_enabled;
L
Linus Torvalds 已提交
1423

1424 1425 1426
        /* when autonegotiation advertisment is only 1000Mbps then we
          * should disable SmartSpeed and enable Auto MasterSlave
          * resolution as hardware default. */
1427
        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1428
            /* Disable SmartSpeed */
1429 1430 1431
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
            if (ret_val)
L
Linus Torvalds 已提交
1432
                return ret_val;
1433
            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1434 1435 1436
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
            if (ret_val)
L
Linus Torvalds 已提交
1437
                return ret_val;
1438 1439
            /* Set auto Master/Slave resolution process */
            ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1440
            if (ret_val)
1441 1442 1443
                return ret_val;
            phy_data &= ~CR_1000T_MS_ENABLE;
            ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1444
            if (ret_val)
1445 1446
                return ret_val;
        }
L
Linus Torvalds 已提交
1447

1448
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1449
        if (ret_val)
1450
            return ret_val;
L
Linus Torvalds 已提交
1451

1452 1453 1454 1455 1456 1457
        /* load defaults for future use */
        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
                                        ((phy_data & CR_1000T_MS_VALUE) ?
                                         e1000_ms_force_master :
                                         e1000_ms_force_slave) :
                                         e1000_ms_auto;
L
Linus Torvalds 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        switch (phy_ms_setting) {
        case e1000_ms_force_master:
            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
            break;
        case e1000_ms_force_slave:
            phy_data |= CR_1000T_MS_ENABLE;
            phy_data &= ~(CR_1000T_MS_VALUE);
            break;
        case e1000_ms_auto:
            phy_data &= ~CR_1000T_MS_ENABLE;
            default:
            break;
        }
        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1473
        if (ret_val)
1474
            return ret_val;
1475
    }
L
Linus Torvalds 已提交
1476

1477
    return E1000_SUCCESS;
1478
}
L
Linus Torvalds 已提交
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/********************************************************************
* Copper link setup for e1000_phy_gg82563 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;
    uint32_t reg_data;

    DEBUGFUNC("e1000_copper_link_ggp_setup");

1494
    if (!hw->phy_reset_disable) {
1495

1496 1497 1498
        /* Enable CRS on TX for half-duplex operation. */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
                                     &phy_data);
1499
        if (ret_val)
1500 1501 1502 1503 1504 1505 1506 1507
            return ret_val;

        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;

        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
                                      phy_data);
1508
        if (ret_val)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
            return ret_val;

        /* Options:
         *   MDI/MDI-X = 0 (default)
         *   0 - Auto for all speeds
         *   1 - MDI mode
         *   2 - MDI-X mode
         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
         */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1519
        if (ret_val)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            return ret_val;

        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

        switch (hw->mdix) {
        case 1:
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
            break;
        case 2:
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
            break;
        case 0:
        default:
            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
            break;
        }

        /* Options:
         *   disable_polarity_correction = 0 (default)
         *       Automatic Correction for Reversed Cable Polarity
         *   0 - Disabled
         *   1 - Enabled
         */
        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1544
        if (hw->disable_polarity_correction == 1)
1545 1546 1547
            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);

1548
        if (ret_val)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
            return ret_val;

        /* SW Reset the PHY so all changes take effect */
        ret_val = e1000_phy_reset(hw);
        if (ret_val) {
            DEBUGOUT("Error Resetting the PHY\n");
            return ret_val;
        }
    } /* phy_reset_disable */

    if (hw->mac_type == e1000_80003es2lan) {
        /* Bypass RX and TX FIFO's */
        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
        if (ret_val)
            return ret_val;

        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);

        if (ret_val)
            return ret_val;

        reg_data = E1000_READ_REG(hw, CTRL_EXT);
        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
        E1000_WRITE_REG(hw, CTRL_EXT, reg_data);

        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
                                          &phy_data);
        if (ret_val)
            return ret_val;

        /* Do not init these registers when the HW is in IAMT mode, since the
         * firmware will have already initialized them.  We only initialize
         * them if the HW is not in IAMT mode.
         */
        if (e1000_check_mng_mode(hw) == FALSE) {
            /* Enable Electrical Idle on the PHY */
            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
                                          phy_data);
            if (ret_val)
                return ret_val;

            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                                         &phy_data);
            if (ret_val)
                return ret_val;

1603
            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1604 1605
            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                                          phy_data);
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
            if (ret_val)
                return ret_val;
        }

        /* Workaround: Disable padding in Kumeran interface in the MAC
         * and in the PHY to avoid CRC errors.
         */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
                                     &phy_data);
        if (ret_val)
            return ret_val;
        phy_data |= GG82563_ICR_DIS_PADDING;
        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
                                      phy_data);
        if (ret_val)
            return ret_val;
    }

    return E1000_SUCCESS;
}
L
Linus Torvalds 已提交
1627

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;
L
Linus Torvalds 已提交
1638

1639
    DEBUGFUNC("e1000_copper_link_mgp_setup");
L
Linus Torvalds 已提交
1640

1641
    if (hw->phy_reset_disable)
1642
        return E1000_SUCCESS;
1643

1644 1645
    /* Enable CRS on TX. This must be set for half-duplex operation. */
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1646
    if (ret_val)
1647
        return ret_val;
L
Linus Torvalds 已提交
1648

1649
    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
L
Linus Torvalds 已提交
1650

1651 1652 1653 1654 1655 1656 1657 1658
    /* Options:
     *   MDI/MDI-X = 0 (default)
     *   0 - Auto for all speeds
     *   1 - MDI mode
     *   2 - MDI-X mode
     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
     */
    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
L
Linus Torvalds 已提交
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
    switch (hw->mdix) {
    case 1:
        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
        break;
    case 2:
        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
        break;
    case 3:
        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
        break;
    case 0:
    default:
        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
        break;
    }

    /* Options:
     *   disable_polarity_correction = 0 (default)
     *       Automatic Correction for Reversed Cable Polarity
     *   0 - Disabled
     *   1 - Enabled
L
Linus Torvalds 已提交
1681
     */
1682
    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1683
    if (hw->disable_polarity_correction == 1)
1684
        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
A
Auke Kok 已提交
1685 1686
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
    if (ret_val)
1687 1688 1689
        return ret_val;

    if (hw->phy_revision < M88E1011_I_REV_4) {
A
Auke Kok 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        /* Force TX_CLK in the Extended PHY Specific Control Register
         * to 25MHz clock.
         */
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data |= M88E1000_EPSCR_TX_CLK_25;

        if ((hw->phy_revision == E1000_REVISION_2) &&
            (hw->phy_id == M88E1111_I_PHY_ID)) {
            /* Vidalia Phy, set the downshift counter to 5x */
            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
            ret_val = e1000_write_phy_reg(hw,
                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
            if (ret_val)
                return ret_val;
        } else {
            /* Configure Master and Slave downshift values */
            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1711
                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
A
Auke Kok 已提交
1712
            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1713
                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
A
Auke Kok 已提交
1714 1715 1716 1717 1718
            ret_val = e1000_write_phy_reg(hw,
                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
            if (ret_val)
               return ret_val;
        }
1719
    }
L
Linus Torvalds 已提交
1720

1721 1722
    /* SW Reset the PHY so all changes take effect */
    ret_val = e1000_phy_reset(hw);
1723
    if (ret_val) {
1724 1725
        DEBUGOUT("Error Resetting the PHY\n");
        return ret_val;
L
Linus Torvalds 已提交
1726 1727
    }

1728
   return E1000_SUCCESS;
L
Linus Torvalds 已提交
1729 1730
}

1731 1732 1733
/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
L
Linus Torvalds 已提交
1734 1735
*
* hw - Struct containing variables accessed by shared code
1736 1737 1738
*********************************************************************/
static int32_t
e1000_copper_link_autoneg(struct e1000_hw *hw)
L
Linus Torvalds 已提交
1739 1740
{
    int32_t ret_val;
1741
    uint16_t phy_data;
L
Linus Torvalds 已提交
1742

1743
    DEBUGFUNC("e1000_copper_link_autoneg");
L
Linus Torvalds 已提交
1744

1745 1746 1747 1748 1749 1750 1751 1752
    /* Perform some bounds checking on the hw->autoneg_advertised
     * parameter.  If this variable is zero, then set it to the default.
     */
    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;

    /* If autoneg_advertised is zero, we assume it was not defaulted
     * by the calling code so we set to advertise full capability.
     */
1753
    if (hw->autoneg_advertised == 0)
1754 1755
        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;

1756 1757 1758 1759
    /* IFE phy only supports 10/100 */
    if (hw->phy_type == e1000_phy_ife)
        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;

1760 1761
    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
    ret_val = e1000_phy_setup_autoneg(hw);
1762
    if (ret_val) {
1763 1764 1765 1766 1767 1768 1769 1770 1771
        DEBUGOUT("Error Setting up Auto-Negotiation\n");
        return ret_val;
    }
    DEBUGOUT("Restarting Auto-Neg\n");

    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
     * the Auto Neg Restart bit in the PHY control register.
     */
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1772
    if (ret_val)
L
Linus Torvalds 已提交
1773 1774
        return ret_val;

1775 1776
    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1777
    if (ret_val)
L
Linus Torvalds 已提交
1778 1779
        return ret_val;

1780 1781 1782
    /* Does the user want to wait for Auto-Neg to complete here, or
     * check at a later time (for example, callback routine).
     */
1783
    if (hw->wait_autoneg_complete) {
1784
        ret_val = e1000_wait_autoneg(hw);
1785
        if (ret_val) {
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            DEBUGOUT("Error while waiting for autoneg to complete\n");
            return ret_val;
        }
    }

    hw->get_link_status = TRUE;

    return E1000_SUCCESS;
}

/******************************************************************************
* Config the MAC and the PHY after link is up.
*   1) Set up the MAC to the current PHY speed/duplex
*      if we are on 82543.  If we
*      are on newer silicon, we only need to configure
*      collision distance in the Transmit Control Register.
*   2) Set up flow control on the MAC to that established with
*      the link partner.
1804
*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1805 1806 1807 1808 1809 1810 1811 1812
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_postconfig(struct e1000_hw *hw)
{
    int32_t ret_val;
    DEBUGFUNC("e1000_copper_link_postconfig");
1813

1814
    if (hw->mac_type >= e1000_82544) {
1815 1816 1817
        e1000_config_collision_dist(hw);
    } else {
        ret_val = e1000_config_mac_to_phy(hw);
1818
        if (ret_val) {
1819 1820 1821 1822 1823
            DEBUGOUT("Error configuring MAC to PHY settings\n");
            return ret_val;
        }
    }
    ret_val = e1000_config_fc_after_link_up(hw);
1824
    if (ret_val) {
1825 1826 1827 1828 1829
        DEBUGOUT("Error Configuring Flow Control\n");
        return ret_val;
    }

    /* Config DSP to improve Giga link quality */
1830
    if (hw->phy_type == e1000_phy_igp) {
1831
        ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1832
        if (ret_val) {
1833 1834 1835 1836
            DEBUGOUT("Error Configuring DSP after link up\n");
            return ret_val;
        }
    }
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
    return E1000_SUCCESS;
}

/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_setup_copper_link(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t i;
    uint16_t phy_data;
1852
    uint16_t reg_data;
1853 1854 1855

    DEBUGFUNC("e1000_setup_copper_link");

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    switch (hw->mac_type) {
    case e1000_80003es2lan:
    case e1000_ich8lan:
        /* Set the mac to wait the maximum time between each
         * iteration and increase the max iterations when
         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
        if (ret_val)
            return ret_val;
        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
        if (ret_val)
            return ret_val;
        reg_data |= 0x3F;
        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
        if (ret_val)
            return ret_val;
    default:
        break;
    }

1876 1877
    /* Check if it is a valid PHY and set PHY mode if necessary. */
    ret_val = e1000_copper_link_preconfig(hw);
1878
    if (ret_val)
1879 1880
        return ret_val;

1881 1882
    switch (hw->mac_type) {
    case e1000_80003es2lan:
1883 1884
        /* Kumeran registers are written-only */
        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
                                       reg_data);
        if (ret_val)
            return ret_val;
        break;
    default:
        break;
    }

1895
    if (hw->phy_type == e1000_phy_igp ||
1896
        hw->phy_type == e1000_phy_igp_3 ||
1897 1898
        hw->phy_type == e1000_phy_igp_2) {
        ret_val = e1000_copper_link_igp_setup(hw);
1899
        if (ret_val)
1900 1901 1902
            return ret_val;
    } else if (hw->phy_type == e1000_phy_m88) {
        ret_val = e1000_copper_link_mgp_setup(hw);
1903
        if (ret_val)
1904
            return ret_val;
1905 1906
    } else if (hw->phy_type == e1000_phy_gg82563) {
        ret_val = e1000_copper_link_ggp_setup(hw);
1907
        if (ret_val)
1908
            return ret_val;
1909 1910
    }

1911
    if (hw->autoneg) {
1912 1913
        /* Setup autoneg and flow control advertisement
          * and perform autonegotiation */
1914
        ret_val = e1000_copper_link_autoneg(hw);
1915
        if (ret_val)
1916
            return ret_val;
1917 1918 1919 1920 1921
    } else {
        /* PHY will be set to 10H, 10F, 100H,or 100F
          * depending on value from forced_speed_duplex. */
        DEBUGOUT("Forcing speed and duplex\n");
        ret_val = e1000_phy_force_speed_duplex(hw);
1922
        if (ret_val) {
1923 1924 1925 1926 1927 1928 1929 1930
            DEBUGOUT("Error Forcing Speed and Duplex\n");
            return ret_val;
        }
    }

    /* Check link status. Wait up to 100 microseconds for link to become
     * valid.
     */
1931
    for (i = 0; i < 10; i++) {
1932
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1933
        if (ret_val)
1934 1935
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1936
        if (ret_val)
1937 1938
            return ret_val;

1939
        if (phy_data & MII_SR_LINK_STATUS) {
1940 1941
            /* Config the MAC and PHY after link is up */
            ret_val = e1000_copper_link_postconfig(hw);
1942
            if (ret_val)
1943
                return ret_val;
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
            DEBUGOUT("Valid link established!!!\n");
            return E1000_SUCCESS;
        }
        udelay(10);
    }

    DEBUGOUT("Unable to establish link!!!\n");
    return E1000_SUCCESS;
}

1955 1956 1957 1958 1959 1960
/******************************************************************************
* Configure the MAC-to-PHY interface for 10/100Mbps
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
1961
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
    int32_t ret_val = E1000_SUCCESS;
    uint32_t tipg;
    uint16_t reg_data;

    DEBUGFUNC("e1000_configure_kmrn_for_10_100");

    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
                                   reg_data);
    if (ret_val)
        return ret_val;

    /* Configure Transmit Inter-Packet Gap */
    tipg = E1000_READ_REG(hw, TIPG);
    tipg &= ~E1000_TIPG_IPGT_MASK;
    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
    E1000_WRITE_REG(hw, TIPG, tipg);

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);

    if (ret_val)
        return ret_val;

    if (duplex == HALF_DUPLEX)
        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
    else
        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
    return ret_val;
}

static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
{
    int32_t ret_val = E1000_SUCCESS;
    uint16_t reg_data;
    uint32_t tipg;

    DEBUGFUNC("e1000_configure_kmrn_for_1000");

    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
                                   reg_data);
    if (ret_val)
        return ret_val;

    /* Configure Transmit Inter-Packet Gap */
    tipg = E1000_READ_REG(hw, TIPG);
    tipg &= ~E1000_TIPG_IPGT_MASK;
    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
    E1000_WRITE_REG(hw, TIPG, tipg);

2017 2018 2019 2020 2021 2022 2023 2024
    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);

    if (ret_val)
        return ret_val;

    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

2025 2026 2027
    return ret_val;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_autoneg_adv_reg;
    uint16_t mii_1000t_ctrl_reg;

    DEBUGFUNC("e1000_phy_setup_autoneg");

    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2044
    if (ret_val)
2045 2046
        return ret_val;

2047 2048 2049 2050 2051 2052 2053
    if (hw->phy_type != e1000_phy_ife) {
        /* Read the MII 1000Base-T Control Register (Address 9). */
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
        if (ret_val)
            return ret_val;
    } else
        mii_1000t_ctrl_reg=0;
2054 2055 2056

    /* Need to parse both autoneg_advertised and fc and set up
     * the appropriate PHY registers.  First we will parse for
L
Linus Torvalds 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
     * autoneg_advertised software override.  Since we can advertise
     * a plethora of combinations, we need to check each bit
     * individually.
     */

    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
     * Advertisement Register (Address 4) and the 1000 mb speed bits in
     * the  1000Base-T Control Register (Address 9).
     */
    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;

    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);

    /* Do we want to advertise 10 Mb Half Duplex? */
2072
    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077
        DEBUGOUT("Advertise 10mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
    }

    /* Do we want to advertise 10 Mb Full Duplex? */
2078
    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083
        DEBUGOUT("Advertise 10mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
    }

    /* Do we want to advertise 100 Mb Half Duplex? */
2084
    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089
        DEBUGOUT("Advertise 100mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
    }

    /* Do we want to advertise 100 Mb Full Duplex? */
2090
    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
L
Linus Torvalds 已提交
2091 2092 2093 2094 2095
        DEBUGOUT("Advertise 100mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
    }

    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2096
    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
L
Linus Torvalds 已提交
2097 2098 2099 2100
        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
    }

    /* Do we want to advertise 1000 Mb Full Duplex? */
2101
    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
L
Linus Torvalds 已提交
2102 2103
        DEBUGOUT("Advertise 1000mb Full duplex\n");
        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2104 2105 2106
        if (hw->phy_type == e1000_phy_ife) {
            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
        }
L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    }

    /* Check for a software override of the flow control settings, and
     * setup the PHY advertisement registers accordingly.  If
     * auto-negotiation is enabled, then software will have to set the
     * "PAUSE" bits to the correct value in the Auto-Negotiation
     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames
     *          but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          but we do not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     *  other:  No software override.  The flow control configuration
     *          in the EEPROM is used.
     */
    switch (hw->fc) {
2126
    case E1000_FC_NONE: /* 0 */
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131
        /* Flow control (RX & TX) is completely disabled by a
         * software over-ride.
         */
        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
2132
    case E1000_FC_RX_PAUSE: /* 1 */
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
        /* RX Flow control is enabled, and TX Flow control is
         * disabled, by a software over-ride.
         */
        /* Since there really isn't a way to advertise that we are
         * capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE.  Later
         * (in e1000_config_fc_after_link_up) we will disable the
         *hw's ability to send PAUSE frames.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
2144
    case E1000_FC_TX_PAUSE: /* 2 */
L
Linus Torvalds 已提交
2145 2146 2147 2148 2149 2150
        /* TX Flow control is enabled, and RX Flow control is
         * disabled, by a software over-ride.
         */
        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
        break;
2151
    case E1000_FC_FULL: /* 3 */
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
        /* Flow control (both RX and TX) is enabled by a software
         * over-ride.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2163
    if (ret_val)
L
Linus Torvalds 已提交
2164 2165 2166 2167
        return ret_val;

    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

2168 2169 2170 2171 2172
    if (hw->phy_type != e1000_phy_ife) {
        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
        if (ret_val)
            return ret_val;
    }
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

    return E1000_SUCCESS;
}

/******************************************************************************
* Force PHY speed and duplex settings to hw->forced_speed_duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t mii_ctrl_reg;
    uint16_t mii_status_reg;
    uint16_t phy_data;
    uint16_t i;

    DEBUGFUNC("e1000_phy_force_speed_duplex");

    /* Turn off Flow control if we are forcing speed and duplex. */
2195
    hw->fc = E1000_FC_NONE;
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

    DEBUGOUT1("hw->fc = %d\n", hw->fc);

    /* Read the Device Control Register. */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(DEVICE_SPEED_MASK);

    /* Clear the Auto Speed Detect Enable bit. */
    ctrl &= ~E1000_CTRL_ASDE;

    /* Read the MII Control Register. */
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2211
    if (ret_val)
L
Linus Torvalds 已提交
2212 2213 2214 2215 2216 2217 2218
        return ret_val;

    /* We need to disable autoneg in order to force link and duplex. */

    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;

    /* Are we forcing Full or Half Duplex? */
2219 2220
    if (hw->forced_speed_duplex == e1000_100_full ||
        hw->forced_speed_duplex == e1000_10_full) {
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        /* We want to force full duplex so we SET the full duplex bits in the
         * Device and MII Control Registers.
         */
        ctrl |= E1000_CTRL_FD;
        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
        DEBUGOUT("Full Duplex\n");
    } else {
        /* We want to force half duplex so we CLEAR the full duplex bits in
         * the Device and MII Control Registers.
         */
        ctrl &= ~E1000_CTRL_FD;
        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
        DEBUGOUT("Half Duplex\n");
    }

    /* Are we forcing 100Mbps??? */
2237
    if (hw->forced_speed_duplex == e1000_100_full ||
L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
       hw->forced_speed_duplex == e1000_100_half) {
        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
        ctrl |= E1000_CTRL_SPD_100;
        mii_ctrl_reg |= MII_CR_SPEED_100;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
        DEBUGOUT("Forcing 100mb ");
    } else {
        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
        mii_ctrl_reg |= MII_CR_SPEED_10;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
        DEBUGOUT("Forcing 10mb ");
    }

    e1000_config_collision_dist(hw);

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);

2257 2258
    if ((hw->phy_type == e1000_phy_m88) ||
        (hw->phy_type == e1000_phy_gg82563)) {
L
Linus Torvalds 已提交
2259
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2260
        if (ret_val)
L
Linus Torvalds 已提交
2261 2262 2263 2264 2265 2266 2267
            return ret_val;

        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
         * forced whenever speed are duplex are forced.
         */
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2268
        if (ret_val)
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274
            return ret_val;

        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);

        /* Need to reset the PHY or these changes will be ignored */
        mii_ctrl_reg |= MII_CR_RESET;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    /* Disable MDI-X support for 10/100 */
    } else if (hw->phy_type == e1000_phy_ife) {
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &= ~IFE_PMC_AUTO_MDIX;
        phy_data &= ~IFE_PMC_FORCE_MDIX;

        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
        if (ret_val)
            return ret_val;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291
    } else {
        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
         * forced whenever speed or duplex are forced.
         */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2292
        if (ret_val)
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297 2298
            return ret_val;

        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2299
        if (ret_val)
L
Linus Torvalds 已提交
2300 2301 2302 2303 2304
            return ret_val;
    }

    /* Write back the modified PHY MII control register. */
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2305
    if (ret_val)
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        return ret_val;

    udelay(1);

    /* The wait_autoneg_complete flag may be a little misleading here.
     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
     * But we do want to delay for a period while forcing only so we
     * don't generate false No Link messages.  So we will wait here
     * only if the user has set wait_autoneg_complete to 1, which is
     * the default.
     */
2317
    if (hw->wait_autoneg_complete) {
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322
        /* We will wait for autoneg to complete. */
        DEBUGOUT("Waiting for forced speed/duplex link.\n");
        mii_status_reg = 0;

        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2323
        for (i = PHY_FORCE_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
2324 2325 2326 2327
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2328
            if (ret_val)
L
Linus Torvalds 已提交
2329 2330 2331
                return ret_val;

            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2332
            if (ret_val)
L
Linus Torvalds 已提交
2333 2334
                return ret_val;

2335
            if (mii_status_reg & MII_SR_LINK_STATUS) break;
2336
            msleep(100);
L
Linus Torvalds 已提交
2337
        }
2338
        if ((i == 0) &&
2339 2340
           ((hw->phy_type == e1000_phy_m88) ||
            (hw->phy_type == e1000_phy_gg82563))) {
L
Linus Torvalds 已提交
2341 2342
            /* We didn't get link.  Reset the DSP and wait again for link. */
            ret_val = e1000_phy_reset_dsp(hw);
2343
            if (ret_val) {
L
Linus Torvalds 已提交
2344 2345 2346 2347 2348
                DEBUGOUT("Error Resetting PHY DSP\n");
                return ret_val;
            }
        }
        /* This loop will early-out if the link condition has been met.  */
2349 2350
        for (i = PHY_FORCE_TIME; i > 0; i--) {
            if (mii_status_reg & MII_SR_LINK_STATUS) break;
2351
            msleep(100);
L
Linus Torvalds 已提交
2352 2353 2354 2355
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2356
            if (ret_val)
L
Linus Torvalds 已提交
2357 2358 2359
                return ret_val;

            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2360
            if (ret_val)
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
                return ret_val;
        }
    }

    if (hw->phy_type == e1000_phy_m88) {
        /* Because we reset the PHY above, we need to re-force TX_CLK in the
         * Extended PHY Specific Control Register to 25MHz clock.  This value
         * defaults back to a 2.5MHz clock when the PHY is reset.
         */
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2371
        if (ret_val)
L
Linus Torvalds 已提交
2372 2373 2374 2375
            return ret_val;

        phy_data |= M88E1000_EPSCR_TX_CLK_25;
        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2376
        if (ret_val)
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381 2382
            return ret_val;

        /* In addition, because of the s/w reset above, we need to enable CRS on
         * TX.  This must be set for both full and half duplex operation.
         */
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2383
        if (ret_val)
L
Linus Torvalds 已提交
2384 2385 2386 2387
            return ret_val;

        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2388
        if (ret_val)
L
Linus Torvalds 已提交
2389 2390
            return ret_val;

2391 2392 2393
        if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
            (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
             hw->forced_speed_duplex == e1000_10_half)) {
L
Linus Torvalds 已提交
2394
            ret_val = e1000_polarity_reversal_workaround(hw);
2395
            if (ret_val)
L
Linus Torvalds 已提交
2396 2397
                return ret_val;
        }
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
    } else if (hw->phy_type == e1000_phy_gg82563) {
        /* The TX_CLK of the Extended PHY Specific Control Register defaults
         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
         * we're not in a forced 10/duplex configuration. */
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
        if ((hw->forced_speed_duplex == e1000_10_full) ||
            (hw->forced_speed_duplex == e1000_10_half))
            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
        else
            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;

        /* Also due to the reset, we need to enable CRS on Tx. */
        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;

        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
        if (ret_val)
            return ret_val;
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
    }
    return E1000_SUCCESS;
}

/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
void
e1000_config_collision_dist(struct e1000_hw *hw)
{
2434
    uint32_t tctl, coll_dist;
L
Linus Torvalds 已提交
2435 2436 2437

    DEBUGFUNC("e1000_config_collision_dist");

2438 2439 2440 2441 2442
    if (hw->mac_type < e1000_82543)
        coll_dist = E1000_COLLISION_DISTANCE_82542;
    else
        coll_dist = E1000_COLLISION_DISTANCE;

L
Linus Torvalds 已提交
2443 2444 2445
    tctl = E1000_READ_REG(hw, TCTL);

    tctl &= ~E1000_TCTL_COLD;
2446
    tctl |= coll_dist << E1000_COLD_SHIFT;
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

    E1000_WRITE_REG(hw, TCTL, tctl);
    E1000_WRITE_FLUSH(hw);
}

/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int32_t
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_config_mac_to_phy");

2470
    /* 82544 or newer MAC, Auto Speed Detection takes care of
2471 2472 2473 2474
    * MAC speed/duplex configuration.*/
    if (hw->mac_type >= e1000_82544)
        return E1000_SUCCESS;

L
Linus Torvalds 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
    /* Read the Device Control Register and set the bits to Force Speed
     * and Duplex.
     */
    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);

    /* Set up duplex in the Device Control and Transmit Control
     * registers depending on negotiated values.
     */
2485
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2486
    if (ret_val)
2487
        return ret_val;
L
Linus Torvalds 已提交
2488

2489
    if (phy_data & M88E1000_PSSR_DPLX)
2490
        ctrl |= E1000_CTRL_FD;
2491
    else
2492
        ctrl &= ~E1000_CTRL_FD;
L
Linus Torvalds 已提交
2493

2494
    e1000_config_collision_dist(hw);
L
Linus Torvalds 已提交
2495

2496 2497 2498
    /* Set up speed in the Device Control register depending on
     * negotiated values.
     */
2499
    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2500
        ctrl |= E1000_CTRL_SPD_1000;
2501
    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2502
        ctrl |= E1000_CTRL_SPD_100;
L
Linus Torvalds 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);
    return E1000_SUCCESS;
}

/******************************************************************************
 * Forces the MAC's flow control settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sets the TFCE and RFCE bits in the device control register to reflect
 * the adapter settings. TFCE and RFCE need to be explicitly set by
 * software when a Copper PHY is used because autonegotiation is managed
 * by the PHY rather than the MAC. Software must also configure these
 * bits when link is forced on a fiber connection.
 *****************************************************************************/
int32_t
e1000_force_mac_fc(struct e1000_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("e1000_force_mac_fc");

    /* Get the current configuration of the Device Control Register */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Because we didn't get link via the internal auto-negotiation
     * mechanism (we either forced link or we got link via PHY
     * auto-neg), we have to manually enable/disable transmit an
     * receive flow control.
     *
     * The "Case" statement below enables/disable flow control
     * according to the "hw->fc" parameter.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause
     *          frames but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          frames but we do not receive pause frames).
     *      3:  Both Rx and TX flow control (symmetric) is enabled.
     *  other:  No other values should be possible at this point.
     */

    switch (hw->fc) {
2549
    case E1000_FC_NONE:
L
Linus Torvalds 已提交
2550 2551
        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
        break;
2552
    case E1000_FC_RX_PAUSE:
L
Linus Torvalds 已提交
2553 2554 2555
        ctrl &= (~E1000_CTRL_TFCE);
        ctrl |= E1000_CTRL_RFCE;
        break;
2556
    case E1000_FC_TX_PAUSE:
L
Linus Torvalds 已提交
2557 2558 2559
        ctrl &= (~E1000_CTRL_RFCE);
        ctrl |= E1000_CTRL_TFCE;
        break;
2560
    case E1000_FC_FULL:
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565 2566 2567 2568
        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    /* Disable TX Flow Control for 82542 (rev 2.0) */
2569
    if (hw->mac_type == e1000_82542_rev2_0)
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
        ctrl &= (~E1000_CTRL_TFCE);

    E1000_WRITE_REG(hw, CTRL, ctrl);
    return E1000_SUCCESS;
}

/******************************************************************************
 * Configures flow control settings after link is established
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Should be called immediately after a valid link has been established.
 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 * and autonegotiation is enabled, the MAC flow control settings will be set
 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 *****************************************************************************/
2587
static int32_t
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_status_reg;
    uint16_t mii_nway_adv_reg;
    uint16_t mii_nway_lp_ability_reg;
    uint16_t speed;
    uint16_t duplex;

    DEBUGFUNC("e1000_config_fc_after_link_up");

    /* Check for the case where we have fiber media and auto-neg failed
     * so we had to force link.  In this case, we need to force the
     * configuration of the MAC to match the "fc" parameter.
     */
2603 2604 2605 2606
    if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
        ((hw->media_type == e1000_media_type_internal_serdes) &&
         (hw->autoneg_failed)) ||
        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
L
Linus Torvalds 已提交
2607
        ret_val = e1000_force_mac_fc(hw);
2608
        if (ret_val) {
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
            DEBUGOUT("Error forcing flow control settings\n");
            return ret_val;
        }
    }

    /* Check for the case where we have copper media and auto-neg is
     * enabled.  In this case, we need to check and see if Auto-Neg
     * has completed, and if so, how the PHY and link partner has
     * flow control configured.
     */
2619
    if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624
        /* Read the MII Status Register and check to see if AutoNeg
         * has completed.  We read this twice because this reg has
         * some "sticky" (latched) bits.
         */
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2625
        if (ret_val)
L
Linus Torvalds 已提交
2626 2627
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2628
        if (ret_val)
L
Linus Torvalds 已提交
2629 2630
            return ret_val;

2631
        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
L
Linus Torvalds 已提交
2632 2633 2634 2635 2636 2637 2638 2639
            /* The AutoNeg process has completed, so we now need to
             * read both the Auto Negotiation Advertisement Register
             * (Address 4) and the Auto_Negotiation Base Page Ability
             * Register (Address 5) to determine how flow control was
             * negotiated.
             */
            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
                                         &mii_nway_adv_reg);
2640
            if (ret_val)
L
Linus Torvalds 已提交
2641 2642 2643
                return ret_val;
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
                                         &mii_nway_lp_ability_reg);
2644
            if (ret_val)
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
                return ret_val;

            /* Two bits in the Auto Negotiation Advertisement Register
             * (Address 4) and two bits in the Auto Negotiation Base
             * Page Ability Register (Address 5) determine flow control
             * for both the PHY and the link partner.  The following
             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
             * 1999, describes these PAUSE resolution bits and how flow
             * control is determined based upon these settings.
             * NOTE:  DC = Don't Care
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
             *-------|---------|-------|---------|--------------------
2659 2660 2661 2662 2663 2664 2665 2666
             *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
             *   0   |    1    |   0   |   DC    | E1000_FC_NONE
             *   0   |    1    |   1   |    0    | E1000_FC_NONE
             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
             *   1   |    0    |   0   |   DC    | E1000_FC_NONE
             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
             *   1   |    1    |   0   |    0    | E1000_FC_NONE
             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
L
Linus Torvalds 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
             *
             */
            /* Are both PAUSE bits set to 1?  If so, this implies
             * Symmetric Flow Control is enabled at both ends.  The
             * ASM_DIR bits are irrelevant per the spec.
             *
             * For Symmetric Flow Control:
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
2678
             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
L
Linus Torvalds 已提交
2679 2680
             *
             */
2681 2682
            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
L
Linus Torvalds 已提交
2683 2684 2685 2686 2687 2688
                /* Now we need to check if the user selected RX ONLY
                 * of pause frames.  In this case, we had to advertise
                 * FULL flow control because we could not advertise RX
                 * ONLY. Hence, we must now check to see if we need to
                 * turn OFF  the TRANSMISSION of PAUSE frames.
                 */
2689 2690
                if (hw->original_fc == E1000_FC_FULL) {
                    hw->fc = E1000_FC_FULL;
2691
                    DEBUGOUT("Flow Control = FULL.\n");
L
Linus Torvalds 已提交
2692
                } else {
2693
                    hw->fc = E1000_FC_RX_PAUSE;
2694
                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701
                }
            }
            /* For receiving PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
2702
             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
L
Linus Torvalds 已提交
2703 2704
             *
             */
2705 2706 2707 2708
            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2709
                hw->fc = E1000_FC_TX_PAUSE;
2710
                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716
            }
            /* For transmitting PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
2717
             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
L
Linus Torvalds 已提交
2718 2719
             *
             */
2720 2721 2722 2723
            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2724
                hw->fc = E1000_FC_RX_PAUSE;
2725
                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
            }
            /* Per the IEEE spec, at this point flow control should be
             * disabled.  However, we want to consider that we could
             * be connected to a legacy switch that doesn't advertise
             * desired flow control, but can be forced on the link
             * partner.  So if we advertised no flow control, that is
             * what we will resolve to.  If we advertised some kind of
             * receive capability (Rx Pause Only or Full Flow Control)
             * and the link partner advertised none, we will configure
             * ourselves to enable Rx Flow Control only.  We can do
             * this safely for two reasons:  If the link partner really
             * didn't want flow control enabled, and we enable Rx, no
             * harm done since we won't be receiving any PAUSE frames
             * anyway.  If the intent on the link partner was to have
             * flow control enabled, then by us enabling RX only, we
             * can at least receive pause frames and process them.
             * This is a good idea because in most cases, since we are
             * predominantly a server NIC, more times than not we will
             * be asked to delay transmission of packets than asking
             * our link partner to pause transmission of frames.
             */
2747 2748
            else if ((hw->original_fc == E1000_FC_NONE ||
                      hw->original_fc == E1000_FC_TX_PAUSE) ||
2749
                      hw->fc_strict_ieee) {
2750
                hw->fc = E1000_FC_NONE;
2751
                DEBUGOUT("Flow Control = NONE.\n");
L
Linus Torvalds 已提交
2752
            } else {
2753
                hw->fc = E1000_FC_RX_PAUSE;
2754
                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760 2761
            }

            /* Now we need to do one last check...  If we auto-
             * negotiated to HALF DUPLEX, flow control should not be
             * enabled per IEEE 802.3 spec.
             */
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2762
            if (ret_val) {
L
Linus Torvalds 已提交
2763 2764 2765 2766
                DEBUGOUT("Error getting link speed and duplex\n");
                return ret_val;
            }

2767
            if (duplex == HALF_DUPLEX)
2768
                hw->fc = E1000_FC_NONE;
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773

            /* Now we call a subroutine to actually force the MAC
             * controller to use the correct flow control settings.
             */
            ret_val = e1000_force_mac_fc(hw);
2774
            if (ret_val) {
L
Linus Torvalds 已提交
2775 2776 2777 2778
                DEBUGOUT("Error forcing flow control settings\n");
                return ret_val;
            }
        } else {
2779
            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
        }
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
int32_t
e1000_check_for_link(struct e1000_hw *hw)
{
    uint32_t rxcw = 0;
    uint32_t ctrl;
    uint32_t status;
    uint32_t rctl;
    uint32_t icr;
    uint32_t signal = 0;
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_for_link");

    ctrl = E1000_READ_REG(hw, CTRL);
    status = E1000_READ_REG(hw, STATUS);

    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
     * set when the optics detect a signal. On older adapters, it will be
     * cleared when there is a signal.  This applies to fiber media only.
     */
2813 2814
    if ((hw->media_type == e1000_media_type_fiber) ||
        (hw->media_type == e1000_media_type_internal_serdes)) {
L
Linus Torvalds 已提交
2815 2816
        rxcw = E1000_READ_REG(hw, RXCW);

2817
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
2818
            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2819
            if (status & E1000_STATUS_LU)
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
                hw->get_link_status = FALSE;
        }
    }

    /* If we have a copper PHY then we only want to go out to the PHY
     * registers to see if Auto-Neg has completed and/or if our link
     * status has changed.  The get_link_status flag will be set if we
     * receive a Link Status Change interrupt or we have Rx Sequence
     * Errors.
     */
2830
    if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836
        /* First we want to see if the MII Status Register reports
         * link.  If so, then we want to get the current speed/duplex
         * of the PHY.
         * Read the register twice since the link bit is sticky.
         */
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2837
        if (ret_val)
L
Linus Torvalds 已提交
2838 2839
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2840
        if (ret_val)
L
Linus Torvalds 已提交
2841 2842
            return ret_val;

2843
        if (phy_data & MII_SR_LINK_STATUS) {
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
            hw->get_link_status = FALSE;
            /* Check if there was DownShift, must be checked immediately after
             * link-up */
            e1000_check_downshift(hw);

            /* If we are on 82544 or 82543 silicon and speed/duplex
             * are forced to 10H or 10F, then we will implement the polarity
             * reversal workaround.  We disable interrupts first, and upon
             * returning, place the devices interrupt state to its previous
             * value except for the link status change interrupt which will
             * happen due to the execution of this workaround.
             */

2857 2858 2859 2860
            if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
                (!hw->autoneg) &&
                (hw->forced_speed_duplex == e1000_10_full ||
                 hw->forced_speed_duplex == e1000_10_half)) {
L
Linus Torvalds 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
                E1000_WRITE_REG(hw, IMC, 0xffffffff);
                ret_val = e1000_polarity_reversal_workaround(hw);
                icr = E1000_READ_REG(hw, ICR);
                E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
                E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
            }

        } else {
            /* No link detected */
            e1000_config_dsp_after_link_change(hw, FALSE);
            return 0;
        }

        /* If we are forcing speed/duplex, then we simply return since
         * we have already determined whether we have link or not.
         */
2877
        if (!hw->autoneg) return -E1000_ERR_CONFIG;
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889

        /* optimize the dsp settings for the igp phy */
        e1000_config_dsp_after_link_change(hw, TRUE);

        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
         * have Si on board that is 82544 or newer, Auto
         * Speed Detection takes care of MAC speed/duplex
         * configuration.  So we only need to configure Collision
         * Distance in the MAC.  Otherwise, we need to force
         * speed/duplex on the MAC to the current PHY speed/duplex
         * settings.
         */
2890
        if (hw->mac_type >= e1000_82544)
L
Linus Torvalds 已提交
2891 2892 2893
            e1000_config_collision_dist(hw);
        else {
            ret_val = e1000_config_mac_to_phy(hw);
2894
            if (ret_val) {
L
Linus Torvalds 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
                DEBUGOUT("Error configuring MAC to PHY settings\n");
                return ret_val;
            }
        }

        /* Configure Flow Control now that Auto-Neg has completed. First, we
         * need to restore the desired flow control settings because we may
         * have had to re-autoneg with a different link partner.
         */
        ret_val = e1000_config_fc_after_link_up(hw);
2905
        if (ret_val) {
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }

        /* At this point we know that we are on copper and we have
         * auto-negotiated link.  These are conditions for checking the link
         * partner capability register.  We use the link speed to determine if
         * TBI compatibility needs to be turned on or off.  If the link is not
         * at gigabit speed, then TBI compatibility is not needed.  If we are
         * at gigabit speed, we turn on TBI compatibility.
         */
2917
        if (hw->tbi_compatibility_en) {
L
Linus Torvalds 已提交
2918
            uint16_t speed, duplex;
2919 2920 2921 2922 2923 2924
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
            if (ret_val) {
                DEBUGOUT("Error getting link speed and duplex\n");
                return ret_val;
            }
            if (speed != SPEED_1000) {
L
Linus Torvalds 已提交
2925 2926 2927
                /* If link speed is not set to gigabit speed, we do not need
                 * to enable TBI compatibility.
                 */
2928
                if (hw->tbi_compatibility_on) {
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
                    /* If we previously were in the mode, turn it off. */
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl &= ~E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                    hw->tbi_compatibility_on = FALSE;
                }
            } else {
                /* If TBI compatibility is was previously off, turn it on. For
                 * compatibility with a TBI link partner, we will store bad
                 * packets. Some frames have an additional byte on the end and
                 * will look like CRC errors to to the hardware.
                 */
2941
                if (!hw->tbi_compatibility_on) {
L
Linus Torvalds 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
                    hw->tbi_compatibility_on = TRUE;
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl |= E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                }
            }
        }
    }
    /* If we don't have link (auto-negotiation failed or link partner cannot
     * auto-negotiate), the cable is plugged in (we have signal), and our
     * link partner is not trying to auto-negotiate with us (we are receiving
     * idles or data), we need to force link up. We also need to give
     * auto-negotiation time to complete, in case the cable was just plugged
     * in. The autoneg_failed flag does this.
     */
2957
    else if ((((hw->media_type == e1000_media_type_fiber) &&
L
Linus Torvalds 已提交
2958
              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2959 2960 2961 2962
              (hw->media_type == e1000_media_type_internal_serdes)) &&
              (!(status & E1000_STATUS_LU)) &&
              (!(rxcw & E1000_RXCW_C))) {
        if (hw->autoneg_failed == 0) {
L
Linus Torvalds 已提交
2963 2964 2965
            hw->autoneg_failed = 1;
            return 0;
        }
2966
        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
L
Linus Torvalds 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

        /* Disable auto-negotiation in the TXCW register */
        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));

        /* Force link-up and also force full-duplex. */
        ctrl = E1000_READ_REG(hw, CTRL);
        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
        E1000_WRITE_REG(hw, CTRL, ctrl);

        /* Configure Flow Control after forcing link up. */
        ret_val = e1000_config_fc_after_link_up(hw);
2978
        if (ret_val) {
L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }
    }
    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
     * auto-negotiation in the TXCW register and disable forced link in the
     * Device Control register in an attempt to auto-negotiate with our link
     * partner.
     */
2988 2989 2990
    else if (((hw->media_type == e1000_media_type_fiber) ||
              (hw->media_type == e1000_media_type_internal_serdes)) &&
              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2991
        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999
        E1000_WRITE_REG(hw, TXCW, hw->txcw);
        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));

        hw->serdes_link_down = FALSE;
    }
    /* If we force link for non-auto-negotiation switch, check link status
     * based on MAC synchronization for internal serdes media type.
     */
3000 3001
    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
L
Linus Torvalds 已提交
3002 3003
        /* SYNCH bit and IV bit are sticky. */
        udelay(10);
3004 3005
        if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
            if (!(rxcw & E1000_RXCW_IV)) {
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012 3013
                hw->serdes_link_down = FALSE;
                DEBUGOUT("SERDES: Link is up.\n");
            }
        } else {
            hw->serdes_link_down = TRUE;
            DEBUGOUT("SERDES: Link is down.\n");
        }
    }
3014 3015
    if ((hw->media_type == e1000_media_type_internal_serdes) &&
        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 *****************************************************************************/
int32_t
e1000_get_speed_and_duplex(struct e1000_hw *hw,
                           uint16_t *speed,
                           uint16_t *duplex)
{
    uint32_t status;
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_get_speed_and_duplex");

3039
    if (hw->mac_type >= e1000_82543) {
L
Linus Torvalds 已提交
3040
        status = E1000_READ_REG(hw, STATUS);
3041
        if (status & E1000_STATUS_SPEED_1000) {
L
Linus Torvalds 已提交
3042 3043
            *speed = SPEED_1000;
            DEBUGOUT("1000 Mbs, ");
3044
        } else if (status & E1000_STATUS_SPEED_100) {
L
Linus Torvalds 已提交
3045 3046 3047 3048 3049 3050 3051
            *speed = SPEED_100;
            DEBUGOUT("100 Mbs, ");
        } else {
            *speed = SPEED_10;
            DEBUGOUT("10 Mbs, ");
        }

3052
        if (status & E1000_STATUS_FD) {
L
Linus Torvalds 已提交
3053
            *duplex = FULL_DUPLEX;
3054
            DEBUGOUT("Full Duplex\n");
L
Linus Torvalds 已提交
3055 3056
        } else {
            *duplex = HALF_DUPLEX;
3057
            DEBUGOUT(" Half Duplex\n");
L
Linus Torvalds 已提交
3058 3059
        }
    } else {
3060
        DEBUGOUT("1000 Mbs, Full Duplex\n");
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068
        *speed = SPEED_1000;
        *duplex = FULL_DUPLEX;
    }

    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
     * if it is operating at half duplex.  Here we set the duplex settings to
     * match the duplex in the link partner's capabilities.
     */
3069
    if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
L
Linus Torvalds 已提交
3070
        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3071
        if (ret_val)
L
Linus Torvalds 已提交
3072 3073
            return ret_val;

3074
        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
L
Linus Torvalds 已提交
3075 3076 3077
            *duplex = HALF_DUPLEX;
        else {
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3078
            if (ret_val)
L
Linus Torvalds 已提交
3079
                return ret_val;
3080
            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
L
Linus Torvalds 已提交
3081 3082 3083 3084 3085
               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
                *duplex = HALF_DUPLEX;
        }
    }

3086
    if ((hw->mac_type == e1000_80003es2lan) &&
3087 3088 3089 3090
        (hw->media_type == e1000_media_type_copper)) {
        if (*speed == SPEED_1000)
            ret_val = e1000_configure_kmrn_for_1000(hw);
        else
3091 3092 3093 3094 3095 3096 3097
            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
        if (ret_val)
            return ret_val;
    }

    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
        ret_val = e1000_kumeran_lock_loss_workaround(hw);
3098 3099 3100 3101
        if (ret_val)
            return ret_val;
    }

L
Linus Torvalds 已提交
3102 3103 3104 3105 3106 3107 3108 3109
    return E1000_SUCCESS;
}

/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
3110
static int32_t
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
e1000_wait_autoneg(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t i;
    uint16_t phy_data;

    DEBUGFUNC("e1000_wait_autoneg");
    DEBUGOUT("Waiting for Auto-Neg to complete.\n");

    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3121
    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
3122 3123 3124 3125
        /* Read the MII Status Register and wait for Auto-Neg
         * Complete bit to be set.
         */
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3126
        if (ret_val)
L
Linus Torvalds 已提交
3127 3128
            return ret_val;
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3129
        if (ret_val)
L
Linus Torvalds 已提交
3130
            return ret_val;
3131
        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
L
Linus Torvalds 已提交
3132 3133
            return E1000_SUCCESS;
        }
3134
        msleep(100);
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    }
    return E1000_SUCCESS;
}

/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw,
                    uint32_t *ctrl)
{
    /* Raise the clock input to the Management Data Clock (by setting the MDC
     * bit), and then delay 10 microseconds.
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
    E1000_WRITE_FLUSH(hw);
    udelay(10);
}

/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw,
                    uint32_t *ctrl)
{
    /* Lower the clock input to the Management Data Clock (by clearing the MDC
     * bit), and then delay 10 microseconds.
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
    E1000_WRITE_FLUSH(hw);
    udelay(10);
}

/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
                         uint32_t data,
                         uint16_t count)
{
    uint32_t ctrl;
    uint32_t mask;

    /* We need to shift "count" number of bits out to the PHY. So, the value
     * in the "data" parameter will be shifted out to the PHY one bit at a
     * time. In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01;
    mask <<= (count - 1);

    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

3204
    while (mask) {
L
Linus Torvalds 已提交
3205 3206 3207 3208 3209
        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
         * then raising and lowering the Management Data Clock. A "0" is
         * shifted out to the PHY by setting the MDIO bit to "0" and then
         * raising and lowering the clock.
         */
3210 3211 3212 3213
        if (data & mask)
            ctrl |= E1000_CTRL_MDIO;
        else
            ctrl &= ~E1000_CTRL_MDIO;
L
Linus Torvalds 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

        E1000_WRITE_REG(hw, CTRL, ctrl);
        E1000_WRITE_FLUSH(hw);

        udelay(10);

        e1000_raise_mdi_clk(hw, &ctrl);
        e1000_lower_mdi_clk(hw, &ctrl);

        mask = mask >> 1;
    }
}

/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint16_t data = 0;
    uint8_t i;

    /* In order to read a register from the PHY, we need to shift in a total
     * of 18 bits from the PHY. The first two bit (turnaround) times are used
     * to avoid contention on the MDIO pin when a read operation is performed.
     * These two bits are ignored by us and thrown away. Bits are "shifted in"
     * by raising the input to the Management Data Clock (setting the MDC bit),
     * and then reading the value of the MDIO bit.
     */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
    ctrl &= ~E1000_CTRL_MDIO_DIR;
    ctrl &= ~E1000_CTRL_MDIO;

    E1000_WRITE_REG(hw, CTRL, ctrl);
    E1000_WRITE_FLUSH(hw);

    /* Raise and Lower the clock before reading in the data. This accounts for
     * the turnaround bits. The first clock occurred when we clocked out the
     * last bit of the Register Address.
     */
    e1000_raise_mdi_clk(hw, &ctrl);
    e1000_lower_mdi_clk(hw, &ctrl);

3264
    for (data = 0, i = 0; i < 16; i++) {
L
Linus Torvalds 已提交
3265 3266 3267 3268
        data = data << 1;
        e1000_raise_mdi_clk(hw, &ctrl);
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Check to see if we shifted in a "1". */
3269 3270
        if (ctrl & E1000_CTRL_MDIO)
            data |= 1;
L
Linus Torvalds 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279
        e1000_lower_mdi_clk(hw, &ctrl);
    }

    e1000_raise_mdi_clk(hw, &ctrl);
    e1000_lower_mdi_clk(hw, &ctrl);

    return data;
}

3280
static int32_t
3281 3282 3283 3284 3285 3286 3287 3288 3289
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
{
    uint32_t swfw_sync = 0;
    uint32_t swmask = mask;
    uint32_t fwmask = mask << 16;
    int32_t timeout = 200;

    DEBUGFUNC("e1000_swfw_sync_acquire");

3290 3291 3292
    if (hw->swfwhw_semaphore_present)
        return e1000_get_software_flag(hw);

3293 3294 3295
    if (!hw->swfw_sync_present)
        return e1000_get_hw_eeprom_semaphore(hw);

3296
    while (timeout) {
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
            if (e1000_get_hw_eeprom_semaphore(hw))
                return -E1000_ERR_SWFW_SYNC;

            swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
            if (!(swfw_sync & (fwmask | swmask))) {
                break;
            }

            /* firmware currently using resource (fwmask) */
            /* or other software thread currently using resource (swmask) */
            e1000_put_hw_eeprom_semaphore(hw);
3308
            mdelay(5);
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
            timeout--;
    }

    if (!timeout) {
        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
        return -E1000_ERR_SWFW_SYNC;
    }

    swfw_sync |= swmask;
    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);

    e1000_put_hw_eeprom_semaphore(hw);
    return E1000_SUCCESS;
}

3324
static void
3325 3326 3327 3328 3329 3330 3331
e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
{
    uint32_t swfw_sync;
    uint32_t swmask = mask;

    DEBUGFUNC("e1000_swfw_sync_release");

3332 3333 3334 3335 3336
    if (hw->swfwhw_semaphore_present) {
        e1000_release_software_flag(hw);
        return;
    }

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    if (!hw->swfw_sync_present) {
        e1000_put_hw_eeprom_semaphore(hw);
        return;
    }

    /* if (e1000_get_hw_eeprom_semaphore(hw))
     *    return -E1000_ERR_SWFW_SYNC; */
    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
        /* empty */

    swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
    swfw_sync &= ~swmask;
    E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);

    e1000_put_hw_eeprom_semaphore(hw);
}

L
Linus Torvalds 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
/*****************************************************************************
* Reads the value from a PHY register, if the value is on a specific non zero
* page, sets the page first.
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
int32_t
e1000_read_phy_reg(struct e1000_hw *hw,
                   uint32_t reg_addr,
                   uint16_t *phy_data)
{
    uint32_t ret_val;
3366
    uint16_t swfw;
L
Linus Torvalds 已提交
3367 3368 3369

    DEBUGFUNC("e1000_read_phy_reg");

3370 3371 3372 3373 3374 3375 3376 3377 3378
    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

3379 3380
    if ((hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
3381
        hw->phy_type == e1000_phy_igp_2) &&
L
Linus Torvalds 已提交
3382 3383 3384
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                                         (uint16_t)reg_addr);
3385
        if (ret_val) {
3386
            e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3387 3388
            return ret_val;
        }
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
    } else if (hw->phy_type == e1000_phy_gg82563) {
        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
            (hw->mac_type == e1000_80003es2lan)) {
            /* Select Configuration Page */
            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            } else {
                /* Use Alternative Page Select register to access
                 * registers 30 and 31
                 */
                ret_val = e1000_write_phy_reg_ex(hw,
                                                 GG82563_PHY_PAGE_SELECT_ALT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            }

            if (ret_val) {
                e1000_swfw_sync_release(hw, swfw);
                return ret_val;
            }
        }
L
Linus Torvalds 已提交
3410 3411 3412 3413 3414
    }

    ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                                    phy_data);

3415
    e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
    return ret_val;
}

int32_t
e1000_read_phy_reg_ex(struct e1000_hw *hw,
                      uint32_t reg_addr,
                      uint16_t *phy_data)
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("e1000_read_phy_reg_ex");

3430
    if (reg_addr > MAX_PHY_REG_ADDRESS) {
L
Linus Torvalds 已提交
3431 3432 3433 3434
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

3435
    if (hw->mac_type > e1000_82543) {
L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        /* Set up Op-code, Phy Address, and register address in the MDI
         * Control register.  The MAC will take care of interfacing with the
         * PHY to retrieve the desired data.
         */
        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
                (E1000_MDIC_OP_READ));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
3447
        for (i = 0; i < 64; i++) {
L
Linus Torvalds 已提交
3448 3449
            udelay(50);
            mdic = E1000_READ_REG(hw, MDIC);
3450
            if (mdic & E1000_MDIC_READY) break;
L
Linus Torvalds 已提交
3451
        }
3452
        if (!(mdic & E1000_MDIC_READY)) {
L
Linus Torvalds 已提交
3453 3454 3455
            DEBUGOUT("MDI Read did not complete\n");
            return -E1000_ERR_PHY;
        }
3456
        if (mdic & E1000_MDIC_ERROR) {
L
Linus Torvalds 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
            DEBUGOUT("MDI Error\n");
            return -E1000_ERR_PHY;
        }
        *phy_data = (uint16_t) mdic;
    } else {
        /* We must first send a preamble through the MDIO pin to signal the
         * beginning of an MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the next few fields that are required for a read
         * operation.  We use this method instead of calling the
         * e1000_shift_out_mdi_bits routine five different times. The format of
         * a MII read instruction consists of a shift out of 14 bits and is
         * defined as follows:
         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
         * followed by a shift in of 18 bits.  This first two bits shifted in
         * are TurnAround bits used to avoid contention on the MDIO pin when a
         * READ operation is performed.  These two bits are thrown away
         * followed by a shift in of 16 bits which contains the desired data.
         */
        mdic = ((reg_addr) | (phy_addr << 5) |
                (PHY_OP_READ << 10) | (PHY_SOF << 12));

        e1000_shift_out_mdi_bits(hw, mdic, 14);

        /* Now that we've shifted out the read command to the MII, we need to
         * "shift in" the 16-bit value (18 total bits) of the requested PHY
         * register address.
         */
        *phy_data = e1000_shift_in_mdi_bits(hw);
    }
    return E1000_SUCCESS;
}

/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
int32_t
e1000_write_phy_reg(struct e1000_hw *hw,
                    uint32_t reg_addr,
                    uint16_t phy_data)
{
    uint32_t ret_val;
3506
    uint16_t swfw;
L
Linus Torvalds 已提交
3507 3508 3509

    DEBUGFUNC("e1000_write_phy_reg");

3510 3511 3512 3513 3514 3515 3516 3517 3518
    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

3519 3520
    if ((hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
3521
        hw->phy_type == e1000_phy_igp_2) &&
L
Linus Torvalds 已提交
3522 3523 3524
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                                         (uint16_t)reg_addr);
3525
        if (ret_val) {
3526
            e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3527 3528
            return ret_val;
        }
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
    } else if (hw->phy_type == e1000_phy_gg82563) {
        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
            (hw->mac_type == e1000_80003es2lan)) {
            /* Select Configuration Page */
            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            } else {
                /* Use Alternative Page Select register to access
                 * registers 30 and 31
                 */
                ret_val = e1000_write_phy_reg_ex(hw,
                                                 GG82563_PHY_PAGE_SELECT_ALT,
                          (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
            }

            if (ret_val) {
                e1000_swfw_sync_release(hw, swfw);
                return ret_val;
            }
        }
L
Linus Torvalds 已提交
3550 3551 3552 3553 3554
    }

    ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
                                     phy_data);

3555
    e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
    return ret_val;
}

int32_t
e1000_write_phy_reg_ex(struct e1000_hw *hw,
                    uint32_t reg_addr,
                    uint16_t phy_data)
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("e1000_write_phy_reg_ex");

3570
    if (reg_addr > MAX_PHY_REG_ADDRESS) {
L
Linus Torvalds 已提交
3571 3572 3573 3574
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

3575
    if (hw->mac_type > e1000_82543) {
L
Linus Torvalds 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
        /* Set up Op-code, Phy Address, register address, and data intended
         * for the PHY register in the MDI Control register.  The MAC will take
         * care of interfacing with the PHY to send the desired data.
         */
        mdic = (((uint32_t) phy_data) |
                (reg_addr << E1000_MDIC_REG_SHIFT) |
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
                (E1000_MDIC_OP_WRITE));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
3588
        for (i = 0; i < 641; i++) {
L
Linus Torvalds 已提交
3589 3590
            udelay(5);
            mdic = E1000_READ_REG(hw, MDIC);
3591
            if (mdic & E1000_MDIC_READY) break;
L
Linus Torvalds 已提交
3592
        }
3593
        if (!(mdic & E1000_MDIC_READY)) {
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
            DEBUGOUT("MDI Write did not complete\n");
            return -E1000_ERR_PHY;
        }
    } else {
        /* We'll need to use the SW defined pins to shift the write command
         * out to the PHY. We first send a preamble to the PHY to signal the
         * beginning of the MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the remaining required fields that will indicate a
         * write operation. We use this method instead of calling the
         * e1000_shift_out_mdi_bits routine for each field in the command. The
         * format of a MII write instruction is as follows:
         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
         */
        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
        mdic <<= 16;
        mdic |= (uint32_t) phy_data;

        e1000_shift_out_mdi_bits(hw, mdic, 32);
    }

    return E1000_SUCCESS;
}

3622
static int32_t
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
e1000_read_kmrn_reg(struct e1000_hw *hw,
                    uint32_t reg_addr,
                    uint16_t *data)
{
    uint32_t reg_val;
    uint16_t swfw;
    DEBUGFUNC("e1000_read_kmrn_reg");

    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

    /* Write register address */
    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
              E1000_KUMCTRLSTA_OFFSET) |
              E1000_KUMCTRLSTA_REN;
    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
    udelay(2);

    /* Read the data returned */
    reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
    *data = (uint16_t)reg_val;

    e1000_swfw_sync_release(hw, swfw);
    return E1000_SUCCESS;
}

3655
static int32_t
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
e1000_write_kmrn_reg(struct e1000_hw *hw,
                     uint32_t reg_addr,
                     uint16_t data)
{
    uint32_t reg_val;
    uint16_t swfw;
    DEBUGFUNC("e1000_write_kmrn_reg");

    if ((hw->mac_type == e1000_80003es2lan) &&
        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
        swfw = E1000_SWFW_PHY1_SM;
    } else {
        swfw = E1000_SWFW_PHY0_SM;
    }
    if (e1000_swfw_sync_acquire(hw, swfw))
        return -E1000_ERR_SWFW_SYNC;

    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
              E1000_KUMCTRLSTA_OFFSET) | data;
    E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
    udelay(2);

    e1000_swfw_sync_release(hw, swfw);
    return E1000_SUCCESS;
}
3681

L
Linus Torvalds 已提交
3682 3683 3684 3685 3686
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
3687
int32_t
L
Linus Torvalds 已提交
3688 3689 3690 3691
e1000_phy_hw_reset(struct e1000_hw *hw)
{
    uint32_t ctrl, ctrl_ext;
    uint32_t led_ctrl;
3692
    int32_t ret_val;
3693
    uint16_t swfw;
L
Linus Torvalds 已提交
3694 3695 3696

    DEBUGFUNC("e1000_phy_hw_reset");

3697 3698 3699 3700 3701 3702
    /* In the case of the phy reset being blocked, it's not an error, we
     * simply return success without performing the reset. */
    ret_val = e1000_check_phy_reset_block(hw);
    if (ret_val)
        return E1000_SUCCESS;

L
Linus Torvalds 已提交
3703 3704
    DEBUGOUT("Resetting Phy...\n");

3705
    if (hw->mac_type > e1000_82543) {
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
        if ((hw->mac_type == e1000_80003es2lan) &&
            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
            swfw = E1000_SWFW_PHY1_SM;
        } else {
            swfw = E1000_SWFW_PHY0_SM;
        }
        if (e1000_swfw_sync_acquire(hw, swfw)) {
            e1000_release_software_semaphore(hw);
            return -E1000_ERR_SWFW_SYNC;
        }
L
Linus Torvalds 已提交
3716 3717
        /* Read the device control register and assert the E1000_CTRL_PHY_RST
         * bit. Then, take it out of reset.
3718
         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
J
Jeff Kirsher 已提交
3719
         * and deassert.  For e1000_82571 hardware and later, we instead delay
3720
         * for 50us between and 10ms after the deassertion.
L
Linus Torvalds 已提交
3721 3722 3723 3724
         */
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
        E1000_WRITE_FLUSH(hw);
3725 3726

        if (hw->mac_type < e1000_82571)
3727
            msleep(10);
3728 3729
        else
            udelay(100);
3730

L
Linus Torvalds 已提交
3731 3732
        E1000_WRITE_REG(hw, CTRL, ctrl);
        E1000_WRITE_FLUSH(hw);
3733

J
Jeff Kirsher 已提交
3734
        if (hw->mac_type >= e1000_82571)
3735
            mdelay(10);
3736
        e1000_swfw_sync_release(hw, swfw);
L
Linus Torvalds 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745
    } else {
        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
         * bit to put the PHY into reset. Then, take it out of reset.
         */
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
3746
        msleep(10);
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
        E1000_WRITE_FLUSH(hw);
    }
    udelay(150);

3753
    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759
        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }
3760 3761 3762

    /* Wait for FW to finish PHY configuration. */
    ret_val = e1000_get_phy_cfg_done(hw);
3763 3764
    if (ret_val != E1000_SUCCESS)
        return ret_val;
3765
    e1000_release_software_semaphore(hw);
3766

3767 3768 3769
    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
        ret_val = e1000_init_lcd_from_nvm(hw);

3770
    return ret_val;
L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
}

/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_phy_reset");

3788 3789 3790 3791 3792 3793 3794 3795
    /* In the case of the phy reset being blocked, it's not an error, we
     * simply return success without performing the reset. */
    ret_val = e1000_check_phy_reset_block(hw);
    if (ret_val)
        return E1000_SUCCESS;

    switch (hw->mac_type) {
    case e1000_82541_rev_2:
3796 3797
    case e1000_82571:
    case e1000_82572:
3798
    case e1000_ich8lan:
3799
        ret_val = e1000_phy_hw_reset(hw);
3800
        if (ret_val)
3801
            return ret_val;
3802

3803 3804
        break;
    default:
L
Linus Torvalds 已提交
3805
        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3806
        if (ret_val)
L
Linus Torvalds 已提交
3807 3808 3809 3810
            return ret_val;

        phy_data |= MII_CR_RESET;
        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3811
        if (ret_val)
L
Linus Torvalds 已提交
3812 3813 3814
            return ret_val;

        udelay(1);
3815 3816
        break;
    }
L
Linus Torvalds 已提交
3817

3818
    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
L
Linus Torvalds 已提交
3819 3820 3821 3822 3823
        e1000_phy_init_script(hw);

    return E1000_SUCCESS;
}

A
Auke Kok 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/******************************************************************************
* Work-around for 82566 power-down: on D3 entry-
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* if successful continue, else issue LCD reset and repeat
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_powerdown_workaround(struct e1000_hw *hw)
{
    int32_t reg;
    uint16_t phy_data;
    int32_t retry = 0;

    DEBUGFUNC("e1000_phy_powerdown_workaround");

    if (hw->phy_type != e1000_phy_igp_3)
        return;

    do {
        /* Disable link */
        reg = E1000_READ_REG(hw, PHY_CTRL);
        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);

        /* Write VR power-down enable */
        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
                            IGP3_VR_CTRL_MODE_SHUT);

        /* Read it back and test */
        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
        if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
            break;

        /* Issue PHY reset and repeat at most one more time */
        reg = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
        retry++;
    } while (retry);

    return;

}

/******************************************************************************
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
3885
static int32_t
A
Auke Kok 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
{
    int32_t ret_val;
    int32_t reg;
    int32_t cnt;
    uint16_t phy_data;

    if (hw->kmrn_lock_loss_workaround_disabled)
        return E1000_SUCCESS;

3896 3897
    /* Make sure link is up before proceeding.  If not just return.
     * Attempting this while link is negotiating fouled up link
A
Auke Kok 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
     * stability */
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);

    if (phy_data & MII_SR_LINK_STATUS) {
        for (cnt = 0; cnt < 10; cnt++) {
            /* read once to clear */
            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
            if (ret_val)
                return ret_val;
            /* and again to get new status */
            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
            if (ret_val)
                return ret_val;

            /* check for PCS lock */
            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
                return E1000_SUCCESS;

            /* Issue PHY reset */
            e1000_phy_hw_reset(hw);
3919
            mdelay(5);
A
Auke Kok 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
        }
        /* Disable GigE link negotiation */
        reg = E1000_READ_REG(hw, PHY_CTRL);
        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);

        /* unable to acquire PCS lock */
        return E1000_ERR_PHY;
    }

    return E1000_SUCCESS;
}

L
Linus Torvalds 已提交
3933 3934 3935 3936 3937
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
A
Auke Kok 已提交
3938
int32_t
L
Linus Torvalds 已提交
3939 3940 3941 3942 3943 3944 3945 3946
e1000_detect_gig_phy(struct e1000_hw *hw)
{
    int32_t phy_init_status, ret_val;
    uint16_t phy_id_high, phy_id_low;
    boolean_t match = FALSE;

    DEBUGFUNC("e1000_detect_gig_phy");

3947 3948 3949
    /* The 82571 firmware may still be configuring the PHY.  In this
     * case, we cannot access the PHY until the configuration is done.  So
     * we explicitly set the PHY values. */
3950 3951
    if (hw->mac_type == e1000_82571 ||
        hw->mac_type == e1000_82572) {
3952 3953 3954 3955 3956
        hw->phy_id = IGP01E1000_I_PHY_ID;
        hw->phy_type = e1000_phy_igp_2;
        return E1000_SUCCESS;
    }

3957 3958 3959 3960 3961 3962 3963 3964 3965
    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
     * around that forces PHY page 0 to be set or the reads fail.  The rest of
     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
     * So for ESB-2 we need to have this set so our reads won't fail.  If the
     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
     * this out as well. */
    if (hw->mac_type == e1000_80003es2lan)
        hw->phy_type = e1000_phy_gg82563;

L
Linus Torvalds 已提交
3966 3967
    /* Read the PHY ID Registers to identify which PHY is onboard. */
    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3968
    if (ret_val)
L
Linus Torvalds 已提交
3969 3970 3971 3972 3973
        return ret_val;

    hw->phy_id = (uint32_t) (phy_id_high << 16);
    udelay(20);
    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3974
    if (ret_val)
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979
        return ret_val;

    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;

3980
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
3981
    case e1000_82543:
3982
        if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3983 3984
        break;
    case e1000_82544:
3985
        if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991
        break;
    case e1000_82540:
    case e1000_82545:
    case e1000_82545_rev_3:
    case e1000_82546:
    case e1000_82546_rev_3:
3992
        if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3993 3994 3995 3996 3997
        break;
    case e1000_82541:
    case e1000_82541_rev_2:
    case e1000_82547:
    case e1000_82547_rev_2:
3998
        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
L
Linus Torvalds 已提交
3999
        break;
4000
    case e1000_82573:
4001
        if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
4002
        break;
4003 4004 4005
    case e1000_80003es2lan:
        if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
        break;
4006 4007 4008 4009 4010 4011
    case e1000_ich8lan:
        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
        break;
L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    default:
        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
        return -E1000_ERR_CONFIG;
    }
    phy_init_status = e1000_set_phy_type(hw);

    if ((match) && (phy_init_status == E1000_SUCCESS)) {
        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
        return E1000_SUCCESS;
    }
    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
    return -E1000_ERR_PHY;
}

/******************************************************************************
* Resets the PHY's DSP
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_reset_dsp(struct e1000_hw *hw)
{
    int32_t ret_val;
    DEBUGFUNC("e1000_phy_reset_dsp");

    do {
4038 4039
        if (hw->phy_type != e1000_phy_gg82563) {
            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4040
            if (ret_val) break;
4041
        }
L
Linus Torvalds 已提交
4042
        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4043
        if (ret_val) break;
L
Linus Torvalds 已提交
4044
        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4045
        if (ret_val) break;
L
Linus Torvalds 已提交
4046
        ret_val = E1000_SUCCESS;
4047
    } while (0);
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

    return ret_val;
}

/******************************************************************************
* Get PHY information from various PHY registers for igp PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
4058
static int32_t
L
Linus Torvalds 已提交
4059 4060 4061 4062
e1000_phy_igp_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
4063 4064
    uint16_t phy_data, min_length, max_length, average;
    e1000_rev_polarity polarity;
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069

    DEBUGFUNC("e1000_phy_igp_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
4070
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079

    /* IGP01E1000 does not need to support it. */
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;

    /* IGP01E1000 always correct polarity reversal */
    phy_info->polarity_correction = e1000_polarity_reversal_enabled;

    /* Check polarity status */
    ret_val = e1000_check_polarity(hw, &polarity);
4080
    if (ret_val)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085
        return ret_val;

    phy_info->cable_polarity = polarity;

    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4086
    if (ret_val)
L
Linus Torvalds 已提交
4087 4088
        return ret_val;

4089 4090
    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
                          IGP01E1000_PSSR_MDIX_SHIFT);
L
Linus Torvalds 已提交
4091

4092
    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
L
Linus Torvalds 已提交
4093 4094 4095
       IGP01E1000_PSSR_SPEED_1000MBPS) {
        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4096
        if (ret_val)
L
Linus Torvalds 已提交
4097 4098
            return ret_val;

4099 4100 4101 4102 4103 4104
        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
L
Linus Torvalds 已提交
4105 4106 4107

        /* Get cable length */
        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4108
        if (ret_val)
L
Linus Torvalds 已提交
4109 4110
            return ret_val;

4111
        /* Translate to old method */
L
Linus Torvalds 已提交
4112 4113
        average = (max_length + min_length) / 2;

4114
        if (average <= e1000_igp_cable_length_50)
L
Linus Torvalds 已提交
4115
            phy_info->cable_length = e1000_cable_length_50;
4116
        else if (average <= e1000_igp_cable_length_80)
L
Linus Torvalds 已提交
4117
            phy_info->cable_length = e1000_cable_length_50_80;
4118
        else if (average <= e1000_igp_cable_length_110)
L
Linus Torvalds 已提交
4119
            phy_info->cable_length = e1000_cable_length_80_110;
4120
        else if (average <= e1000_igp_cable_length_140)
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126 4127 4128
            phy_info->cable_length = e1000_cable_length_110_140;
        else
            phy_info->cable_length = e1000_cable_length_140;
    }

    return E1000_SUCCESS;
}

A
Auke Kok 已提交
4129 4130 4131 4132 4133 4134
/******************************************************************************
* Get PHY information from various PHY registers for ife PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
4135
static int32_t
A
Auke Kok 已提交
4136 4137 4138 4139
e1000_phy_ife_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
4140 4141
    uint16_t phy_data;
    e1000_rev_polarity polarity;
A
Auke Kok 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

    DEBUGFUNC("e1000_phy_ife_get_info");

    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;

    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
    if (ret_val)
        return ret_val;
    phy_info->polarity_correction =
4152 4153 4154
                        ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
                        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
A
Auke Kok 已提交
4155 4156 4157 4158 4159 4160 4161

    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
        ret_val = e1000_check_polarity(hw, &polarity);
        if (ret_val)
            return ret_val;
    } else {
        /* Polarity is forced. */
4162 4163 4164
        polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
                     IFE_PSC_FORCE_POLARITY_SHIFT) ?
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
A
Auke Kok 已提交
4165 4166 4167 4168 4169 4170 4171
    }
    phy_info->cable_polarity = polarity;

    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
    if (ret_val)
        return ret_val;

4172 4173 4174
    phy_info->mdix_mode = (e1000_auto_x_mode)
                     ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
                     IFE_PMC_MDIX_MODE_SHIFT);
A
Auke Kok 已提交
4175 4176 4177 4178

    return E1000_SUCCESS;
}

L
Linus Torvalds 已提交
4179 4180 4181 4182 4183 4184
/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
4185
static int32_t
L
Linus Torvalds 已提交
4186 4187 4188 4189
e1000_phy_m88_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
4190 4191
    uint16_t phy_data;
    e1000_rev_polarity polarity;
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196

    DEBUGFUNC("e1000_phy_m88_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
4197
    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
L
Linus Torvalds 已提交
4198 4199

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4200
    if (ret_val)
L
Linus Torvalds 已提交
4201 4202 4203
        return ret_val;

    phy_info->extended_10bt_distance =
4204 4205 4206 4207
        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;

L
Linus Torvalds 已提交
4208
    phy_info->polarity_correction =
4209 4210 4211
        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
L
Linus Torvalds 已提交
4212 4213 4214

    /* Check polarity status */
    ret_val = e1000_check_polarity(hw, &polarity);
4215
    if (ret_val)
4216
        return ret_val;
L
Linus Torvalds 已提交
4217 4218 4219
    phy_info->cable_polarity = polarity;

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4220
    if (ret_val)
L
Linus Torvalds 已提交
4221 4222
        return ret_val;

4223 4224
    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
                          M88E1000_PSSR_MDIX_SHIFT);
L
Linus Torvalds 已提交
4225 4226 4227 4228 4229

    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
        /* Cable Length Estimation and Local/Remote Receiver Information
         * are only valid at 1000 Mbps.
         */
4230
        if (hw->phy_type != e1000_phy_gg82563) {
4231
            phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4232 4233 4234 4235 4236 4237 4238
                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
        } else {
            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
                                         &phy_data);
            if (ret_val)
                return ret_val;

4239
            phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4240
        }
L
Linus Torvalds 已提交
4241 4242

        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4243
        if (ret_val)
L
Linus Torvalds 已提交
4244 4245
            return ret_val;

4246 4247 4248 4249 4250 4251
        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
L
Linus Torvalds 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281

    }

    return E1000_SUCCESS;
}

/******************************************************************************
* Get PHY information from various PHY registers
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_get_info(struct e1000_hw *hw,
                   struct e1000_phy_info *phy_info)
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_phy_get_info");

    phy_info->cable_length = e1000_cable_length_undefined;
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
    phy_info->cable_polarity = e1000_rev_polarity_undefined;
    phy_info->downshift = e1000_downshift_undefined;
    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
    phy_info->local_rx = e1000_1000t_rx_status_undefined;
    phy_info->remote_rx = e1000_1000t_rx_status_undefined;

4282
    if (hw->media_type != e1000_media_type_copper) {
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287
        DEBUGOUT("PHY info is only valid for copper media\n");
        return -E1000_ERR_CONFIG;
    }

    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4288
    if (ret_val)
L
Linus Torvalds 已提交
4289 4290 4291
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4292
    if (ret_val)
L
Linus Torvalds 已提交
4293 4294
        return ret_val;

4295
    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
L
Linus Torvalds 已提交
4296 4297 4298 4299
        DEBUGOUT("PHY info is only valid if link is up\n");
        return -E1000_ERR_CONFIG;
    }

4300 4301
    if (hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
4302
        hw->phy_type == e1000_phy_igp_2)
L
Linus Torvalds 已提交
4303
        return e1000_phy_igp_get_info(hw, phy_info);
4304 4305
    else if (hw->phy_type == e1000_phy_ife)
        return e1000_phy_ife_get_info(hw, phy_info);
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314
    else
        return e1000_phy_m88_get_info(hw, phy_info);
}

int32_t
e1000_validate_mdi_setting(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_validate_mdi_settings");

4315
    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        DEBUGOUT("Invalid MDI setting detected\n");
        hw->mdix = 1;
        return -E1000_ERR_CONFIG;
    }
    return E1000_SUCCESS;
}


/******************************************************************************
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
4326 4327
 * is configured.  Additionally, if this is ICH8, the flash controller GbE
 * registers must be mapped, or this will crash.
L
Linus Torvalds 已提交
4328 4329 4330
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
4331
int32_t
L
Linus Torvalds 已提交
4332 4333 4334 4335
e1000_init_eeprom_params(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd = E1000_READ_REG(hw, EECD);
4336
    int32_t ret_val = E1000_SUCCESS;
L
Linus Torvalds 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
    uint16_t eeprom_size;

    DEBUGFUNC("e1000_init_eeprom_params");

    switch (hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        eeprom->type = e1000_eeprom_microwire;
        eeprom->word_size = 64;
        eeprom->opcode_bits = 3;
        eeprom->address_bits = 6;
        eeprom->delay_usec = 50;
4351 4352
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
L
Linus Torvalds 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361
        break;
    case e1000_82540:
    case e1000_82545:
    case e1000_82545_rev_3:
    case e1000_82546:
    case e1000_82546_rev_3:
        eeprom->type = e1000_eeprom_microwire;
        eeprom->opcode_bits = 3;
        eeprom->delay_usec = 50;
4362
        if (eecd & E1000_EECD_SIZE) {
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368
            eeprom->word_size = 256;
            eeprom->address_bits = 8;
        } else {
            eeprom->word_size = 64;
            eeprom->address_bits = 6;
        }
4369 4370
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
        break;
    case e1000_82541:
    case e1000_82541_rev_2:
    case e1000_82547:
    case e1000_82547_rev_2:
        if (eecd & E1000_EECD_TYPE) {
            eeprom->type = e1000_eeprom_spi;
            eeprom->opcode_bits = 8;
            eeprom->delay_usec = 1;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->page_size = 32;
                eeprom->address_bits = 16;
            } else {
                eeprom->page_size = 8;
                eeprom->address_bits = 8;
            }
        } else {
            eeprom->type = e1000_eeprom_microwire;
            eeprom->opcode_bits = 3;
            eeprom->delay_usec = 50;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->word_size = 256;
                eeprom->address_bits = 8;
            } else {
                eeprom->word_size = 64;
                eeprom->address_bits = 6;
            }
        }
4399 4400 4401
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
        break;
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
    case e1000_82571:
    case e1000_82572:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
        break;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
    case e1000_82573:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        eeprom->use_eerd = TRUE;
        eeprom->use_eewr = TRUE;
4430
        if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4431 4432 4433 4434 4435 4436 4437 4438
            eeprom->type = e1000_eeprom_flash;
            eeprom->word_size = 2048;

            /* Ensure that the Autonomous FLASH update bit is cleared due to
             * Flash update issue on parts which use a FLASH for NVM. */
            eecd &= ~E1000_EECD_AUPDEN;
            E1000_WRITE_REG(hw, EECD, eecd);
        }
L
Linus Torvalds 已提交
4439
        break;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
    case e1000_80003es2lan:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        eeprom->use_eerd = TRUE;
        eeprom->use_eewr = FALSE;
        break;
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
    case e1000_ich8lan:
    {
        int32_t  i = 0;
        uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);

        eeprom->type = e1000_eeprom_ich8;
        eeprom->use_eerd = FALSE;
        eeprom->use_eewr = FALSE;
        eeprom->word_size = E1000_SHADOW_RAM_WORDS;

        /* Zero the shadow RAM structure. But don't load it from NVM
         * so as to save time for driver init */
        if (hw->eeprom_shadow_ram != NULL) {
            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                hw->eeprom_shadow_ram[i].modified = FALSE;
                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
            }
        }

        hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
                              ICH8_FLASH_SECTOR_SIZE;

        hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
        hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
        hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
        hw->flash_bank_size /= 2 * sizeof(uint16_t);

        break;
    }
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487
    default:
        break;
    }

    if (eeprom->type == e1000_eeprom_spi) {
4488 4489 4490
        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
         * 32KB (incremented by powers of 2).
         */
4491
        if (hw->mac_type <= e1000_82547_rev_2) {
4492 4493 4494
            /* Set to default value for initial eeprom read. */
            eeprom->word_size = 64;
            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4495
            if (ret_val)
4496 4497 4498 4499 4500
                return ret_val;
            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
            /* 256B eeprom size was not supported in earlier hardware, so we
             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
             * is never the result used in the shifting logic below. */
4501
            if (eeprom_size)
4502 4503 4504 4505
                eeprom_size++;
        } else {
            eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
                          E1000_EECD_SIZE_EX_SHIFT);
L
Linus Torvalds 已提交
4506
        }
4507 4508

        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
L
Linus Torvalds 已提交
4509
    }
4510
    return ret_val;
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
}

/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
e1000_raise_ee_clk(struct e1000_hw *hw,
                   uint32_t *eecd)
{
    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
     * wait <delay> microseconds.
     */
    *eecd = *eecd | E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
    E1000_WRITE_FLUSH(hw);
    udelay(hw->eeprom.delay_usec);
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
e1000_lower_ee_clk(struct e1000_hw *hw,
                   uint32_t *eecd)
{
    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
     * wait 50 microseconds.
     */
    *eecd = *eecd & ~E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
    E1000_WRITE_FLUSH(hw);
    udelay(hw->eeprom.delay_usec);
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw,
                        uint16_t data,
                        uint16_t count)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint32_t mask;

    /* We need to shift "count" bits out to the EEPROM. So, value in the
     * "data" parameter will be shifted out to the EEPROM one bit at a time.
     * In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01 << (count - 1);
    eecd = E1000_READ_REG(hw, EECD);
    if (eeprom->type == e1000_eeprom_microwire) {
        eecd &= ~E1000_EECD_DO;
    } else if (eeprom->type == e1000_eeprom_spi) {
        eecd |= E1000_EECD_DO;
    }
    do {
        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
         * and then raising and then lowering the clock (the SK bit controls
         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
         * by setting "DI" to "0" and then raising and then lowering the clock.
         */
        eecd &= ~E1000_EECD_DI;

4586
        if (data & mask)
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
            eecd |= E1000_EECD_DI;

        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);

        udelay(eeprom->delay_usec);

        e1000_raise_ee_clk(hw, &eecd);
        e1000_lower_ee_clk(hw, &eecd);

        mask = mask >> 1;

4599
    } while (mask);
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

    /* We leave the "DI" bit set to "0" when we leave this routine. */
    eecd &= ~E1000_EECD_DI;
    E1000_WRITE_REG(hw, EECD, eecd);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw,
                       uint16_t count)
{
    uint32_t eecd;
    uint32_t i;
    uint16_t data;

    /* In order to read a register from the EEPROM, we need to shift 'count'
     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
     * input to the EEPROM (setting the SK bit), and then reading the value of
     * the "DO" bit.  During this "shifting in" process the "DI" bit should
     * always be clear.
     */

    eecd = E1000_READ_REG(hw, EECD);

    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
    data = 0;

4631
    for (i = 0; i < count; i++) {
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637
        data = data << 1;
        e1000_raise_ee_clk(hw, &eecd);

        eecd = E1000_READ_REG(hw, EECD);

        eecd &= ~(E1000_EECD_DI);
4638
        if (eecd & E1000_EECD_DO)
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
            data |= 1;

        e1000_lower_ee_clk(hw, &eecd);
    }

    return data;
}

/******************************************************************************
 * Prepares EEPROM for access
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 * function should be called before issuing a command to the EEPROM.
 *****************************************************************************/
static int32_t
e1000_acquire_eeprom(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd, i=0;

    DEBUGFUNC("e1000_acquire_eeprom");

4663 4664
    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
        return -E1000_ERR_SWFW_SYNC;
L
Linus Torvalds 已提交
4665 4666
    eecd = E1000_READ_REG(hw, EECD);

4667
    if (hw->mac_type != e1000_82573) {
4668
        /* Request EEPROM Access */
4669
        if (hw->mac_type > e1000_82544) {
4670
            eecd |= E1000_EECD_REQ;
L
Linus Torvalds 已提交
4671
            E1000_WRITE_REG(hw, EECD, eecd);
4672
            eecd = E1000_READ_REG(hw, EECD);
4673
            while ((!(eecd & E1000_EECD_GNT)) &&
4674 4675 4676 4677 4678
                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
                i++;
                udelay(5);
                eecd = E1000_READ_REG(hw, EECD);
            }
4679
            if (!(eecd & E1000_EECD_GNT)) {
4680 4681 4682
                eecd &= ~E1000_EECD_REQ;
                E1000_WRITE_REG(hw, EECD, eecd);
                DEBUGOUT("Could not acquire EEPROM grant\n");
4683
                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4684 4685
                return -E1000_ERR_EEPROM;
            }
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
        }
    }

    /* Setup EEPROM for Read/Write */

    if (eeprom->type == e1000_eeprom_microwire) {
        /* Clear SK and DI */
        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);

        /* Set CS */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
    } else if (eeprom->type == e1000_eeprom_spi) {
        /* Clear SK and CS */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        udelay(1);
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_standby_eeprom(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;

    eecd = E1000_READ_REG(hw, EECD);

4722
    if (eeprom->type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);

        /* Clock high */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);

        /* Select EEPROM */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);

        /* Clock low */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
4745
    } else if (eeprom->type == e1000_eeprom_spi) {
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
        /* Toggle CS to flush commands */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
        eecd &= ~E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
    }
}

/******************************************************************************
 * Terminates a command by inverting the EEPROM's chip select pin
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_release_eeprom(struct e1000_hw *hw)
{
    uint32_t eecd;

    DEBUGFUNC("e1000_release_eeprom");

    eecd = E1000_READ_REG(hw, EECD);

    if (hw->eeprom.type == e1000_eeprom_spi) {
        eecd |= E1000_EECD_CS;  /* Pull CS high */
        eecd &= ~E1000_EECD_SK; /* Lower SCK */

        E1000_WRITE_REG(hw, EECD, eecd);

        udelay(hw->eeprom.delay_usec);
4779
    } else if (hw->eeprom.type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
        /* cleanup eeprom */

        /* CS on Microwire is active-high */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);

        E1000_WRITE_REG(hw, EECD, eecd);

        /* Rising edge of clock */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(hw->eeprom.delay_usec);

        /* Falling edge of clock */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(hw->eeprom.delay_usec);
    }

    /* Stop requesting EEPROM access */
4801
    if (hw->mac_type > e1000_82544) {
L
Linus Torvalds 已提交
4802 4803 4804
        eecd &= ~E1000_EECD_REQ;
        E1000_WRITE_REG(hw, EECD, eecd);
    }
4805

4806
    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
    uint16_t retry_count = 0;
    uint8_t spi_stat_reg;

    DEBUGFUNC("e1000_spi_eeprom_ready");

    /* Read "Status Register" repeatedly until the LSB is cleared.  The
     * EEPROM will signal that the command has been completed by clearing
     * bit 0 of the internal status register.  If it's not cleared within
     * 5 milliseconds, then error out.
     */
    retry_count = 0;
    do {
        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
                                hw->eeprom.opcode_bits);
        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
            break;

        udelay(5);
        retry_count += 5;

        e1000_standby_eeprom(hw);
4839
    } while (retry_count < EEPROM_MAX_RETRY_SPI);
L
Linus Torvalds 已提交
4840 4841 4842 4843

    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
     * only 0-5mSec on 5V devices)
     */
4844
    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
L
Linus Torvalds 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
        DEBUGOUT("SPI EEPROM Status error\n");
        return -E1000_ERR_EEPROM;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
int32_t
e1000_read_eeprom(struct e1000_hw *hw,
                  uint16_t offset,
                  uint16_t words,
                  uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t i = 0;
4868
    int32_t ret_val;
L
Linus Torvalds 已提交
4869 4870

    DEBUGFUNC("e1000_read_eeprom");
4871

L
Linus Torvalds 已提交
4872 4873 4874
    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
4875
    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
    }

4881 4882
    /* FLASH reads without acquiring the semaphore are safe */
    if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4883
        hw->eeprom.use_eerd == FALSE) {
4884
        switch (hw->mac_type) {
4885 4886
        case e1000_80003es2lan:
            break;
4887 4888 4889 4890 4891 4892
        default:
            /* Prepare the EEPROM for reading  */
            if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
                return -E1000_ERR_EEPROM;
            break;
        }
4893 4894
    }

J
Jesse Brandeburg 已提交
4895
    if (eeprom->use_eerd == TRUE) {
4896 4897 4898 4899 4900 4901
        ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
        if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
            (hw->mac_type != e1000_82573))
            e1000_release_eeprom(hw);
        return ret_val;
    }
L
Linus Torvalds 已提交
4902

4903 4904 4905 4906
    if (eeprom->type == e1000_eeprom_ich8)
        return e1000_read_eeprom_ich8(hw, offset, words, data);

    if (eeprom->type == e1000_eeprom_spi) {
L
Linus Torvalds 已提交
4907 4908 4909
        uint16_t word_in;
        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;

4910
        if (e1000_spi_eeprom_ready(hw)) {
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915 4916 4917
            e1000_release_eeprom(hw);
            return -E1000_ERR_EEPROM;
        }

        e1000_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4918
        if ((eeprom->address_bits == 8) && (offset >= 128))
L
Linus Torvalds 已提交
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
            read_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the READ command (opcode + addr)  */
        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);

        /* Read the data.  The address of the eeprom internally increments with
         * each byte (spi) being read, saving on the overhead of eeprom setup
         * and tear-down.  The address counter will roll over if reading beyond
         * the size of the eeprom, thus allowing the entire memory to be read
         * starting from any offset. */
        for (i = 0; i < words; i++) {
            word_in = e1000_shift_in_ee_bits(hw, 16);
            data[i] = (word_in >> 8) | (word_in << 8);
        }
4934
    } else if (eeprom->type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
        for (i = 0; i < words; i++) {
            /* Send the READ command (opcode + addr)  */
            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
                                    eeprom->opcode_bits);
            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
                                    eeprom->address_bits);

            /* Read the data.  For microwire, each word requires the overhead
             * of eeprom setup and tear-down. */
            data[i] = e1000_shift_in_ee_bits(hw, 16);
            e1000_standby_eeprom(hw);
        }
    }

    /* End this read operation */
    e1000_release_eeprom(hw);

    return E1000_SUCCESS;
}

/******************************************************************************
4956
 * Reads a 16 bit word from the EEPROM using the EERD register.
L
Linus Torvalds 已提交
4957 4958
 *
 * hw - Struct containing variables accessed by shared code
4959 4960 4961
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
L
Linus Torvalds 已提交
4962
 *****************************************************************************/
4963
static int32_t
4964 4965 4966 4967
e1000_read_eeprom_eerd(struct e1000_hw *hw,
                  uint16_t offset,
                  uint16_t words,
                  uint16_t *data)
L
Linus Torvalds 已提交
4968
{
4969 4970
    uint32_t i, eerd = 0;
    int32_t error = 0;
L
Linus Torvalds 已提交
4971

4972 4973 4974
    for (i = 0; i < words; i++) {
        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
                         E1000_EEPROM_RW_REG_START;
L
Linus Torvalds 已提交
4975

4976 4977
        E1000_WRITE_REG(hw, EERD, eerd);
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
4978

4979
        if (error) {
4980
            break;
L
Linus Torvalds 已提交
4981
        }
4982
        data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
4983

L
Linus Torvalds 已提交
4984
    }
4985

4986
    return error;
L
Linus Torvalds 已提交
4987 4988 4989
}

/******************************************************************************
4990
 * Writes a 16 bit word from the EEPROM using the EEWR register.
L
Linus Torvalds 已提交
4991 4992
 *
 * hw - Struct containing variables accessed by shared code
4993 4994 4995
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
L
Linus Torvalds 已提交
4996
 *****************************************************************************/
4997
static int32_t
4998 4999 5000 5001
e1000_write_eeprom_eewr(struct e1000_hw *hw,
                   uint16_t offset,
                   uint16_t words,
                   uint16_t *data)
L
Linus Torvalds 已提交
5002
{
5003 5004 5005
    uint32_t    register_value = 0;
    uint32_t    i              = 0;
    int32_t     error          = 0;
L
Linus Torvalds 已提交
5006

5007 5008 5009
    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
        return -E1000_ERR_SWFW_SYNC;

5010
    for (i = 0; i < words; i++) {
5011 5012
        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5013
                         E1000_EEPROM_RW_REG_START;
L
Linus Torvalds 已提交
5014

5015
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5016
        if (error) {
5017
            break;
5018
        }
5019 5020

        E1000_WRITE_REG(hw, EEWR, register_value);
5021

5022
        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5023

5024
        if (error) {
5025
            break;
5026
        }
5027
    }
5028

5029
    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5030 5031 5032 5033 5034 5035 5036 5037
    return error;
}

/******************************************************************************
 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
5038
static int32_t
5039 5040 5041 5042 5043 5044
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
    uint32_t attempts = 100000;
    uint32_t i, reg = 0;
    int32_t done = E1000_ERR_EEPROM;

5045 5046
    for (i = 0; i < attempts; i++) {
        if (eerd == E1000_EEPROM_POLL_READ)
5047
            reg = E1000_READ_REG(hw, EERD);
5048
        else
5049 5050
            reg = E1000_READ_REG(hw, EEWR);

5051
        if (reg & E1000_EEPROM_RW_REG_DONE) {
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
            done = E1000_SUCCESS;
            break;
        }
        udelay(5);
    }

    return done;
}

/***************************************************************************
* Description:     Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
5066
static boolean_t
5067 5068 5069 5070
e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
    uint32_t eecd = 0;

5071 5072
    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");

5073 5074 5075 5076
    if (hw->mac_type == e1000_ich8lan)
        return FALSE;

    if (hw->mac_type == e1000_82573) {
5077 5078 5079 5080 5081 5082
        eecd = E1000_READ_REG(hw, EECD);

        /* Isolate bits 15 & 16 */
        eecd = ((eecd >> 15) & 0x03);

        /* If both bits are set, device is Flash type */
5083
        if (eecd == 0x03) {
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
            return FALSE;
        }
    }
    return TRUE;
}

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *****************************************************************************/
int32_t
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("e1000_validate_eeprom_checksum");

    if ((hw->mac_type == e1000_82573) &&
        (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
         * 10h-12h.  Checksum may need to be fixed. */
        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
        if ((eeprom_data & 0x10) == 0) {
            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
             * has already been fixed.  If the checksum is still wrong and this
             * bit is a 1, we need to return bad checksum.  Otherwise, we need
             * to set this bit to a 1 and update the checksum. */
            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
            if ((eeprom_data & 0x8000) == 0) {
                eeprom_data |= 0x8000;
                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
                e1000_update_eeprom_checksum(hw);
            }
        }
    }

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
    if (hw->mac_type == e1000_ich8lan) {
        /* Drivers must allocate the shadow ram structure for the
         * EEPROM checksum to be updated.  Otherwise, this bit as well
         * as the checksum must both be set correctly for this
         * validation to pass.
         */
        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
        if ((eeprom_data & 0x40) == 0) {
            eeprom_data |= 0x40;
            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
            e1000_update_eeprom_checksum(hw);
        }
    }

    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5142 5143 5144 5145 5146 5147
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }

5148
    if (checksum == (uint16_t) EEPROM_SUM)
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
        return E1000_SUCCESS;
    else {
        DEBUGOUT("EEPROM Checksum Invalid\n");
        return -E1000_ERR_EEPROM;
    }
}

/******************************************************************************
 * Calculates the EEPROM checksum and writes it to the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
 * Writes the difference to word offset 63 of the EEPROM.
 *****************************************************************************/
int32_t
e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
5167
    uint32_t ctrl_ext;
5168 5169 5170 5171 5172
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("e1000_update_eeprom_checksum");

5173 5174
    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5175 5176 5177 5178 5179 5180
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }
    checksum = (uint16_t) EEPROM_SUM - checksum;
5181
    if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
L
Linus Torvalds 已提交
5182 5183
        DEBUGOUT("EEPROM Write Error\n");
        return -E1000_ERR_EEPROM;
5184 5185
    } else if (hw->eeprom.type == e1000_eeprom_flash) {
        e1000_commit_shadow_ram(hw);
5186 5187 5188 5189 5190 5191 5192
    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
        e1000_commit_shadow_ram(hw);
        /* Reload the EEPROM, or else modifications will not appear
         * until after next adapter reset. */
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5193
        msleep(10);
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Parent function for writing words to the different EEPROM types.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - 16 bit word to be written to the EEPROM
 *
 * If e1000_update_eeprom_checksum is not called after this function, the
 * EEPROM will most likely contain an invalid checksum.
 *****************************************************************************/
int32_t
e1000_write_eeprom(struct e1000_hw *hw,
                   uint16_t offset,
                   uint16_t words,
                   uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    int32_t status = 0;

    DEBUGFUNC("e1000_write_eeprom");

    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
5223
    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
L
Linus Torvalds 已提交
5224 5225 5226 5227 5228
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
    }

5229
    /* 82573 writes only through eewr */
5230
    if (eeprom->use_eewr == TRUE)
5231 5232
        return e1000_write_eeprom_eewr(hw, offset, words, data);

5233 5234 5235
    if (eeprom->type == e1000_eeprom_ich8)
        return e1000_write_eeprom_ich8(hw, offset, words, data);

L
Linus Torvalds 已提交
5236 5237 5238 5239
    /* Prepare the EEPROM for writing  */
    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
        return -E1000_ERR_EEPROM;

5240
    if (eeprom->type == e1000_eeprom_microwire) {
L
Linus Torvalds 已提交
5241 5242 5243
        status = e1000_write_eeprom_microwire(hw, offset, words, data);
    } else {
        status = e1000_write_eeprom_spi(hw, offset, words, data);
5244
        msleep(10);
L
Linus Torvalds 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
    }

    /* Done with writing */
    e1000_release_eeprom(hw);

    return status;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in an SPI EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 8 bit words to be written to the EEPROM
 *
 *****************************************************************************/
int32_t
e1000_write_eeprom_spi(struct e1000_hw *hw,
                       uint16_t offset,
                       uint16_t words,
                       uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint16_t widx = 0;

    DEBUGFUNC("e1000_write_eeprom_spi");

    while (widx < words) {
        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;

5276
        if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286

        e1000_standby_eeprom(hw);

        /*  Send the WRITE ENABLE command (8 bit opcode )  */
        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
                                    eeprom->opcode_bits);

        e1000_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5287
        if ((eeprom->address_bits == 8) && (offset >= 128))
L
Linus Torvalds 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
            write_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the Write command (8-bit opcode + addr) */
        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);

        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
                                eeprom->address_bits);

        /* Send the data */

        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
        while (widx < words) {
            uint16_t word_out = data[widx];
            word_out = (word_out >> 8) | (word_out << 8);
            e1000_shift_out_ee_bits(hw, word_out, 16);
            widx++;

            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
             * operation, while the smaller eeproms are capable of an 8-byte
             * PAGE WRITE operation.  Break the inner loop to pass new address
             */
5309
            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
L
Linus Torvalds 已提交
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
                e1000_standby_eeprom(hw);
                break;
            }
        }
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 16 bit words to be written to the EEPROM
 *
 *****************************************************************************/
int32_t
e1000_write_eeprom_microwire(struct e1000_hw *hw,
                             uint16_t offset,
                             uint16_t words,
                             uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint16_t words_written = 0;
    uint16_t i = 0;

    DEBUGFUNC("e1000_write_eeprom_microwire");

    /* Send the write enable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 11).  It's less work to include
     * the 11 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This puts the
     * EEPROM into write/erase mode.
     */
    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

    /* Prepare the EEPROM */
    e1000_standby_eeprom(hw);

    while (words_written < words) {
        /* Send the Write command (3-bit opcode + addr) */
        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
                                eeprom->opcode_bits);

        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
                                eeprom->address_bits);

        /* Send the data */
        e1000_shift_out_ee_bits(hw, data[words_written], 16);

        /* Toggle the CS line.  This in effect tells the EEPROM to execute
         * the previous command.
         */
        e1000_standby_eeprom(hw);

        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
         * signal that the command has been completed by raising the DO signal.
         * If DO does not go high in 10 milliseconds, then error out.
         */
5375
        for (i = 0; i < 200; i++) {
L
Linus Torvalds 已提交
5376
            eecd = E1000_READ_REG(hw, EECD);
5377
            if (eecd & E1000_EECD_DO) break;
L
Linus Torvalds 已提交
5378 5379
            udelay(50);
        }
5380
        if (i == 200) {
L
Linus Torvalds 已提交
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
            DEBUGOUT("EEPROM Write did not complete\n");
            return -E1000_ERR_EEPROM;
        }

        /* Recover from write */
        e1000_standby_eeprom(hw);

        words_written++;
    }

    /* Send the write disable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 10).  It's less work to include
     * the 10 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This takes the
     * EEPROM out of write/erase mode.
     */
    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

    return E1000_SUCCESS;
}

5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
/******************************************************************************
 * Flushes the cached eeprom to NVM. This is done by saving the modified values
 * in the eeprom cache and the non modified values in the currently active bank
 * to the new bank.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
5415
static int32_t
5416 5417 5418 5419 5420 5421 5422
e1000_commit_shadow_ram(struct e1000_hw *hw)
{
    uint32_t attempts = 100000;
    uint32_t eecd = 0;
    uint32_t flop = 0;
    uint32_t i = 0;
    int32_t error = E1000_SUCCESS;
5423 5424 5425 5426 5427 5428 5429
    uint32_t old_bank_offset = 0;
    uint32_t new_bank_offset = 0;
    uint32_t sector_retries = 0;
    uint8_t low_byte = 0;
    uint8_t high_byte = 0;
    uint8_t temp_byte = 0;
    boolean_t sector_write_failed = FALSE;
5430 5431

    if (hw->mac_type == e1000_82573) {
5432 5433
        /* The flop register will be used to determine if flash type is STM */
        flop = E1000_READ_REG(hw, FLOP);
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
        for (i=0; i < attempts; i++) {
            eecd = E1000_READ_REG(hw, EECD);
            if ((eecd & E1000_EECD_FLUPD) == 0) {
                break;
            }
            udelay(5);
        }

        if (i == attempts) {
            return -E1000_ERR_EEPROM;
        }

J
Jesse Brandeburg 已提交
5446
        /* If STM opcode located in bits 15:8 of flop, reset firmware */
5447 5448 5449 5450 5451 5452 5453
        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
            E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
        }

        /* Perform the flash update */
        E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);

J
Jesse Brandeburg 已提交
5454
        for (i=0; i < attempts; i++) {
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
            eecd = E1000_READ_REG(hw, EECD);
            if ((eecd & E1000_EECD_FLUPD) == 0) {
                break;
            }
            udelay(5);
        }

        if (i == attempts) {
            return -E1000_ERR_EEPROM;
        }
    }

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
        /* We're writing to the opposite bank so if we're on bank 1,
         * write to bank 0 etc.  We also need to erase the segment that
         * is going to be written */
        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
            new_bank_offset = hw->flash_bank_size * 2;
            old_bank_offset = 0;
            e1000_erase_ich8_4k_segment(hw, 1);
        } else {
            old_bank_offset = hw->flash_bank_size * 2;
            new_bank_offset = 0;
            e1000_erase_ich8_4k_segment(hw, 0);
        }

        do {
            sector_write_failed = FALSE;
            /* Loop for every byte in the shadow RAM,
             * which is in units of words. */
            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
                /* Determine whether to write the value stored
                 * in the other NVM bank or a modified value stored
                 * in the shadow RAM */
                if (hw->eeprom_shadow_ram[i].modified == TRUE) {
                    low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
                                         &temp_byte);
                    udelay(100);
                    error = e1000_verify_write_ich8_byte(hw,
                                                 (i << 1) + new_bank_offset,
                                                 low_byte);
                    if (error != E1000_SUCCESS)
                        sector_write_failed = TRUE;
                    high_byte =
                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
                                         &temp_byte);
                    udelay(100);
                } else {
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
                                         &low_byte);
                    udelay(100);
                    error = e1000_verify_write_ich8_byte(hw,
                                 (i << 1) + new_bank_offset, low_byte);
                    if (error != E1000_SUCCESS)
                        sector_write_failed = TRUE;
                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
                                         &high_byte);
                }

                /* If the word is 0x13, then make sure the signature bits
                 * (15:14) are 11b until the commit has completed.
                 * This will allow us to write 10b which indicates the
                 * signature is valid.  We want to do this after the write
                 * has completed so that we don't mark the segment valid
                 * while the write is still in progress */
                if (i == E1000_ICH8_NVM_SIG_WORD)
                    high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;

                error = e1000_verify_write_ich8_byte(hw,
                             (i << 1) + new_bank_offset + 1, high_byte);
                if (error != E1000_SUCCESS)
                    sector_write_failed = TRUE;

                if (sector_write_failed == FALSE) {
                    /* Clear the now not used entry in the cache */
                    hw->eeprom_shadow_ram[i].modified = FALSE;
                    hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
                }
            }

            /* Don't bother writing the segment valid bits if sector
             * programming failed. */
            if (sector_write_failed == FALSE) {
                /* Finally validate the new segment by setting bit 15:14
                 * to 10b in word 0x13 , this can be done without an
                 * erase as well since these bits are 11 to start with
                 * and we need to change bit 14 to 0b */
                e1000_read_ich8_byte(hw,
                    E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
                    &high_byte);
                high_byte &= 0xBF;
                error = e1000_verify_write_ich8_byte(hw,
                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
                            high_byte);
                if (error != E1000_SUCCESS)
                    sector_write_failed = TRUE;

                /* And invalidate the previously valid segment by setting
                 * its signature word (0x13) high_byte to 0b. This can be
                 * done without an erase because flash erase sets all bits
                 * to 1's. We can write 1's to 0's without an erase */
                error = e1000_verify_write_ich8_byte(hw,
                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
                            0);
                if (error != E1000_SUCCESS)
                    sector_write_failed = TRUE;
            }
        } while (++sector_retries < 10 && sector_write_failed == TRUE);
    }

5567 5568 5569
    return error;
}

L
Linus Torvalds 已提交
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
/******************************************************************************
 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 * second function of dual function devices
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_read_mac_addr(struct e1000_hw * hw)
{
    uint16_t offset;
    uint16_t eeprom_data, i;

    DEBUGFUNC("e1000_read_mac_addr");

5584
    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
L
Linus Torvalds 已提交
5585
        offset = i >> 1;
5586
        if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
    }
J
Jesse Brandeburg 已提交
5593

5594 5595 5596 5597 5598 5599
    switch (hw->mac_type) {
    default:
        break;
    case e1000_82546:
    case e1000_82546_rev_3:
    case e1000_82571:
5600
    case e1000_80003es2lan:
5601
        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
L
Linus Torvalds 已提交
5602
            hw->perm_mac_addr[5] ^= 0x01;
5603 5604
        break;
    }
L
Linus Torvalds 已提交
5605

5606
    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
        hw->mac_addr[i] = hw->perm_mac_addr[i];
    return E1000_SUCCESS;
}

/******************************************************************************
 * Initializes receive address filters.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive addresss registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
5620
static void
L
Linus Torvalds 已提交
5621 5622 5623
e1000_init_rx_addrs(struct e1000_hw *hw)
{
    uint32_t i;
5624
    uint32_t rar_num;
L
Linus Torvalds 已提交
5625 5626 5627 5628 5629 5630 5631 5632

    DEBUGFUNC("e1000_init_rx_addrs");

    /* Setup the receive address. */
    DEBUGOUT("Programming MAC Address into RAR[0]\n");

    e1000_rar_set(hw, hw->mac_addr, 0);

5633
    rar_num = E1000_RAR_ENTRIES;
5634 5635 5636 5637 5638 5639

    /* Reserve a spot for the Locally Administered Address to work around
     * an 82571 issue in which a reset on one port will reload the MAC on
     * the other port. */
    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
        rar_num -= 1;
5640 5641 5642
    if (hw->mac_type == e1000_ich8lan)
        rar_num = E1000_RAR_ENTRIES_ICH8LAN;

L
Linus Torvalds 已提交
5643 5644
    /* Zero out the other 15 receive addresses. */
    DEBUGOUT("Clearing RAR[1-15]\n");
5645
    for (i = 1; i < rar_num; i++) {
L
Linus Torvalds 已提交
5646
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5647
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5648
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5649
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
    }
}

/******************************************************************************
 * Updates the MAC's list of multicast addresses.
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr_list - the list of new multicast addresses
 * mc_addr_count - number of addresses
 * pad - number of bytes between addresses in the list
 * rar_used_count - offset where to start adding mc addresses into the RAR's
 *
 * The given list replaces any existing list. Clears the last 15 receive
 * address registers and the multicast table. Uses receive address registers
 * for the first 15 multicast addresses, and hashes the rest into the
 * multicast table.
 *****************************************************************************/
5667
#if 0
L
Linus Torvalds 已提交
5668 5669 5670 5671 5672 5673 5674 5675 5676
void
e1000_mc_addr_list_update(struct e1000_hw *hw,
                          uint8_t *mc_addr_list,
                          uint32_t mc_addr_count,
                          uint32_t pad,
                          uint32_t rar_used_count)
{
    uint32_t hash_value;
    uint32_t i;
5677 5678
    uint32_t num_rar_entry;
    uint32_t num_mta_entry;
5679

L
Linus Torvalds 已提交
5680 5681 5682 5683 5684 5685 5686
    DEBUGFUNC("e1000_mc_addr_list_update");

    /* Set the new number of MC addresses that we are being requested to use. */
    hw->num_mc_addrs = mc_addr_count;

    /* Clear RAR[1-15] */
    DEBUGOUT(" Clearing RAR[1-15]\n");
5687
    num_rar_entry = E1000_RAR_ENTRIES;
5688 5689
    if (hw->mac_type == e1000_ich8lan)
        num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
5690 5691 5692 5693 5694 5695
    /* Reserve a spot for the Locally Administered Address to work around
     * an 82571 issue in which a reset on one port will reload the MAC on
     * the other port. */
    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
        num_rar_entry -= 1;

5696
    for (i = rar_used_count; i < num_rar_entry; i++) {
L
Linus Torvalds 已提交
5697
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5698
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5699
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5700
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5701 5702 5703 5704
    }

    /* Clear the MTA */
    DEBUGOUT(" Clearing MTA\n");
5705
    num_mta_entry = E1000_NUM_MTA_REGISTERS;
5706 5707
    if (hw->mac_type == e1000_ich8lan)
        num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
5708
    for (i = 0; i < num_mta_entry; i++) {
L
Linus Torvalds 已提交
5709
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
5710
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5711 5712 5713
    }

    /* Add the new addresses */
5714
    for (i = 0; i < mc_addr_count; i++) {
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
        DEBUGOUT(" Adding the multicast addresses:\n");
        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);

        hash_value = e1000_hash_mc_addr(hw,
                                        mc_addr_list +
                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));

        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);

        /* Place this multicast address in the RAR if there is room, *
         * else put it in the MTA
         */
5733
        if (rar_used_count < num_rar_entry) {
L
Linus Torvalds 已提交
5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
            e1000_rar_set(hw,
                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
                          rar_used_count);
            rar_used_count++;
        } else {
            e1000_mta_set(hw, hash_value);
        }
    }
    DEBUGOUT("MC Update Complete\n");
}
5744
#endif  /*  0  */
L
Linus Torvalds 已提交
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

/******************************************************************************
 * Hashes an address to determine its location in the multicast table
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr - the multicast address to hash
 *****************************************************************************/
uint32_t
e1000_hash_mc_addr(struct e1000_hw *hw,
                   uint8_t *mc_addr)
{
    uint32_t hash_value = 0;

    /* The portion of the address that is used for the hash table is
     * determined by the mc_filter_type setting.
     */
    switch (hw->mc_filter_type) {
    /* [0] [1] [2] [3] [4] [5]
     * 01  AA  00  12  34  56
     * LSB                 MSB
     */
    case 0:
5767 5768 5769 5770 5771 5772 5773
        if (hw->mac_type == e1000_ich8lan) {
            /* [47:38] i.e. 0x158 for above example address */
            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
        } else {
            /* [47:36] i.e. 0x563 for above example address */
            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        }
L
Linus Torvalds 已提交
5774 5775
        break;
    case 1:
5776 5777 5778 5779 5780 5781 5782
        if (hw->mac_type == e1000_ich8lan) {
            /* [46:37] i.e. 0x2B1 for above example address */
            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
        } else {
            /* [46:35] i.e. 0xAC6 for above example address */
            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
        }
L
Linus Torvalds 已提交
5783 5784
        break;
    case 2:
5785 5786 5787 5788 5789 5790 5791
        if (hw->mac_type == e1000_ich8lan) {
            /*[45:36] i.e. 0x163 for above example address */
            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        } else {
            /* [45:34] i.e. 0x5D8 for above example address */
            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        }
L
Linus Torvalds 已提交
5792 5793
        break;
    case 3:
5794 5795 5796 5797 5798 5799 5800
        if (hw->mac_type == e1000_ich8lan) {
            /* [43:34] i.e. 0x18D for above example address */
            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        } else {
            /* [43:32] i.e. 0x634 for above example address */
            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
        }
L
Linus Torvalds 已提交
5801 5802 5803 5804
        break;
    }

    hash_value &= 0xFFF;
5805 5806
    if (hw->mac_type == e1000_ich8lan)
        hash_value &= 0x3FF;
5807

L
Linus Torvalds 已提交
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
    return hash_value;
}

/******************************************************************************
 * Sets the bit in the multicast table corresponding to the hash value.
 *
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 *****************************************************************************/
void
e1000_mta_set(struct e1000_hw *hw,
              uint32_t hash_value)
{
    uint32_t hash_bit, hash_reg;
    uint32_t mta;
    uint32_t temp;

    /* The MTA is a register array of 128 32-bit registers.
     * It is treated like an array of 4096 bits.  We want to set
     * bit BitArray[hash_value]. So we figure out what register
     * the bit is in, read it, OR in the new bit, then write
     * back the new value.  The register is determined by the
     * upper 7 bits of the hash value and the bit within that
     * register are determined by the lower 5 bits of the value.
     */
    hash_reg = (hash_value >> 5) & 0x7F;
5834 5835
    if (hw->mac_type == e1000_ich8lan)
        hash_reg &= 0x1F;
L
Linus Torvalds 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
    hash_bit = hash_value & 0x1F;

    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);

    mta |= (1 << hash_bit);

    /* If we are on an 82544 and we are trying to write an odd offset
     * in the MTA, save off the previous entry before writing and
     * restore the old value after writing.
     */
5846
    if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
L
Linus Torvalds 已提交
5847 5848
        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5849
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5850
        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5851
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5852 5853
    } else {
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5854
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
    }
}

/******************************************************************************
 * Puts an ethernet address into a receive address register.
 *
 * hw - Struct containing variables accessed by shared code
 * addr - Address to put into receive address register
 * index - Receive address register to write
 *****************************************************************************/
void
e1000_rar_set(struct e1000_hw *hw,
              uint8_t *addr,
              uint32_t index)
{
    uint32_t rar_low, rar_high;

    /* HW expects these in little endian so we reverse the byte order
     * from network order (big endian) to little endian
     */
    rar_low = ((uint32_t) addr[0] |
               ((uint32_t) addr[1] << 8) |
               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
5878
    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
L
Linus Torvalds 已提交
5879

5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
     * unit hang.
     *
     * Description:
     * If there are any Rx frames queued up or otherwise present in the HW
     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
     * hang.  To work around this issue, we have to disable receives and
     * flush out all Rx frames before we enable RSS. To do so, we modify we
     * redirect all Rx traffic to manageability and then reset the HW.
     * This flushes away Rx frames, and (since the redirections to
     * manageability persists across resets) keeps new ones from coming in
     * while we work.  Then, we clear the Address Valid AV bit for all MAC
     * addresses and undo the re-direction to manageability.
     * Now, frames are coming in again, but the MAC won't accept them, so
     * far so good.  We now proceed to initialize RSS (if necessary) and
     * configure the Rx unit.  Last, we re-enable the AV bits and continue
     * on our merry way.
     */
    switch (hw->mac_type) {
    case e1000_82571:
    case e1000_82572:
5901
    case e1000_80003es2lan:
5902 5903 5904 5905 5906 5907 5908
        if (hw->leave_av_bit_off == TRUE)
            break;
    default:
        /* Indicate to hardware the Address is Valid. */
        rar_high |= E1000_RAH_AV;
        break;
    }
L
Linus Torvalds 已提交
5909 5910

    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5911
    E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5912
    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5913
    E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
}

/******************************************************************************
 * Writes a value to the specified offset in the VLAN filter table.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - Offset in VLAN filer table to write
 * value - Value to write into VLAN filter table
 *****************************************************************************/
void
e1000_write_vfta(struct e1000_hw *hw,
                 uint32_t offset,
                 uint32_t value)
{
    uint32_t temp;

5930 5931 5932 5933
    if (hw->mac_type == e1000_ich8lan)
        return;

    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
L
Linus Torvalds 已提交
5934 5935
        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5936
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5937
        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5938
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5939 5940
    } else {
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5941
        E1000_WRITE_FLUSH(hw);
L
Linus Torvalds 已提交
5942 5943 5944 5945 5946 5947 5948 5949
    }
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
5950
static void
L
Linus Torvalds 已提交
5951 5952 5953
e1000_clear_vfta(struct e1000_hw *hw)
{
    uint32_t offset;
5954 5955 5956 5957
    uint32_t vfta_value = 0;
    uint32_t vfta_offset = 0;
    uint32_t vfta_bit_in_reg = 0;

5958 5959 5960
    if (hw->mac_type == e1000_ich8lan)
        return;

5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
    if (hw->mac_type == e1000_82573) {
        if (hw->mng_cookie.vlan_id != 0) {
            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
             * ID.  The following operations determine which 32b entry
             * (i.e. offset) into the array we want to set the VLAN ID
             * (i.e. bit) of the manageability unit. */
            vfta_offset = (hw->mng_cookie.vlan_id >>
                           E1000_VFTA_ENTRY_SHIFT) &
                          E1000_VFTA_ENTRY_MASK;
            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
        }
    }
    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
        /* If the offset we want to clear is the same offset of the
         * manageability VLAN ID, then clear all bits except that of the
         * manageability unit */
        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5980
        E1000_WRITE_FLUSH(hw);
5981
    }
L
Linus Torvalds 已提交
5982 5983
}

5984
static int32_t
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
e1000_id_led_init(struct e1000_hw * hw)
{
    uint32_t ledctl;
    const uint32_t ledctl_mask = 0x000000FF;
    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
    uint16_t eeprom_data, i, temp;
    const uint16_t led_mask = 0x0F;

    DEBUGFUNC("e1000_id_led_init");

5996
    if (hw->mac_type < e1000_82540) {
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005
        /* Nothing to do */
        return E1000_SUCCESS;
    }

    ledctl = E1000_READ_REG(hw, LEDCTL);
    hw->ledctl_default = ledctl;
    hw->ledctl_mode1 = hw->ledctl_default;
    hw->ledctl_mode2 = hw->ledctl_default;

6006
    if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
L
Linus Torvalds 已提交
6007 6008 6009
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021

    if ((hw->mac_type == e1000_82573) &&
        (eeprom_data == ID_LED_RESERVED_82573))
        eeprom_data = ID_LED_DEFAULT_82573;
    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
            (eeprom_data == ID_LED_RESERVED_FFFF)) {
        if (hw->mac_type == e1000_ich8lan)
            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
        else
            eeprom_data = ID_LED_DEFAULT;
    }
    for (i = 0; i < 4; i++) {
L
Linus Torvalds 已提交
6022
        temp = (eeprom_data >> (i << 2)) & led_mask;
6023
        switch (temp) {
L
Linus Torvalds 已提交
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
        case ID_LED_ON1_DEF2:
        case ID_LED_ON1_ON2:
        case ID_LED_ON1_OFF2:
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_on << (i << 3);
            break;
        case ID_LED_OFF1_DEF2:
        case ID_LED_OFF1_ON2:
        case ID_LED_OFF1_OFF2:
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_off << (i << 3);
            break;
        default:
            /* Do nothing */
            break;
        }
6040
        switch (temp) {
L
Linus Torvalds 已提交
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
        case ID_LED_DEF1_ON2:
        case ID_LED_ON1_ON2:
        case ID_LED_OFF1_ON2:
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_on << (i << 3);
            break;
        case ID_LED_DEF1_OFF2:
        case ID_LED_ON1_OFF2:
        case ID_LED_OFF1_OFF2:
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_off << (i << 3);
            break;
        default:
            /* Do nothing */
            break;
        }
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Prepares SW controlable LED for use and saves the current state of the LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_setup_led(struct e1000_hw *hw)
{
    uint32_t ledctl;
    int32_t ret_val = E1000_SUCCESS;

    DEBUGFUNC("e1000_setup_led");

6074
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        /* No setup necessary */
        break;
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        /* Turn off PHY Smart Power Down (if enabled) */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                     &hw->phy_spd_default);
6088
        if (ret_val)
L
Linus Torvalds 已提交
6089 6090 6091 6092
            return ret_val;
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                      (uint16_t)(hw->phy_spd_default &
                                      ~IGP01E1000_GMII_SPD));
6093
        if (ret_val)
L
Linus Torvalds 已提交
6094 6095 6096
            return ret_val;
        /* Fall Through */
    default:
6097
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
            ledctl = E1000_READ_REG(hw, LEDCTL);
            /* Save current LEDCTL settings */
            hw->ledctl_default = ledctl;
            /* Turn off LED0 */
            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
                        E1000_LEDCTL_LED0_BLINK |
                        E1000_LEDCTL_LED0_MODE_MASK);
            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
                       E1000_LEDCTL_LED0_MODE_SHIFT);
            E1000_WRITE_REG(hw, LEDCTL, ledctl);
6108
        } else if (hw->media_type == e1000_media_type_copper)
L
Linus Torvalds 已提交
6109 6110 6111 6112 6113 6114 6115
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
        break;
    }

    return E1000_SUCCESS;
}

6116

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
/******************************************************************************
 * Used on 82571 and later Si that has LED blink bits.
 * Callers must use their own timer and should have already called
 * e1000_id_led_init()
 * Call e1000_cleanup led() to stop blinking
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_blink_led_start(struct e1000_hw *hw)
{
    int16_t  i;
    uint32_t ledctl_blink = 0;

    DEBUGFUNC("e1000_id_led_blink_on");

    if (hw->mac_type < e1000_82571) {
        /* Nothing to do */
        return E1000_SUCCESS;
    }
    if (hw->media_type == e1000_media_type_fiber) {
        /* always blink LED0 for PCI-E fiber */
        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
    } else {
        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
        ledctl_blink = hw->ledctl_mode2;
        for (i=0; i < 4; i++)
            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
                E1000_LEDCTL_MODE_LED_ON)
                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
    }

    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);

    return E1000_SUCCESS;
}

L
Linus Torvalds 已提交
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
/******************************************************************************
 * Restores the saved state of the SW controlable LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_cleanup_led(struct e1000_hw *hw)
{
    int32_t ret_val = E1000_SUCCESS;

    DEBUGFUNC("e1000_cleanup_led");

6167
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        /* No cleanup necessary */
        break;
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        /* Turn on PHY Smart Power Down (if previously enabled) */
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                      hw->phy_spd_default);
6181
        if (ret_val)
L
Linus Torvalds 已提交
6182 6183 6184
            return ret_val;
        /* Fall Through */
    default:
6185 6186 6187 6188
        if (hw->phy_type == e1000_phy_ife) {
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
            break;
        }
L
Linus Torvalds 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
        /* Restore LEDCTL settings */
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
        break;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Turns on the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_led_on(struct e1000_hw *hw)
{
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);

    DEBUGFUNC("e1000_led_on");

6209
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6210 6211 6212 6213 6214 6215 6216 6217
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
        /* Set SW Defineable Pin 0 to turn on the LED */
        ctrl |= E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        break;
    case e1000_82544:
6218
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
            /* Set SW Defineable Pin 0 to turn on the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else {
            /* Clear SW Defineable Pin 0 to turn on the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        }
        break;
    default:
6229
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6230 6231 6232
            /* Clear SW Defineable Pin 0 to turn on the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
6233 6234 6235 6236
        } else if (hw->phy_type == e1000_phy_ife) {
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
        } else if (hw->media_type == e1000_media_type_copper) {
L
Linus Torvalds 已提交
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
            return E1000_SUCCESS;
        }
        break;
    }

    E1000_WRITE_REG(hw, CTRL, ctrl);

    return E1000_SUCCESS;
}

/******************************************************************************
 * Turns off the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_led_off(struct e1000_hw *hw)
{
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);

    DEBUGFUNC("e1000_led_off");

6260
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
6261 6262 6263 6264 6265 6266 6267 6268
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
        /* Clear SW Defineable Pin 0 to turn off the LED */
        ctrl &= ~E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        break;
    case e1000_82544:
6269
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
            /* Clear SW Defineable Pin 0 to turn off the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else {
            /* Set SW Defineable Pin 0 to turn off the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        }
        break;
    default:
6280
        if (hw->media_type == e1000_media_type_fiber) {
L
Linus Torvalds 已提交
6281 6282 6283
            /* Set SW Defineable Pin 0 to turn off the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
6284 6285 6286 6287
        } else if (hw->phy_type == e1000_phy_ife) {
            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
        } else if (hw->media_type == e1000_media_type_copper) {
L
Linus Torvalds 已提交
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
            return E1000_SUCCESS;
        }
        break;
    }

    E1000_WRITE_REG(hw, CTRL, ctrl);

    return E1000_SUCCESS;
}

/******************************************************************************
 * Clears all hardware statistics counters.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
6304
void
L
Linus Torvalds 已提交
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
    volatile uint32_t temp;

    temp = E1000_READ_REG(hw, CRCERRS);
    temp = E1000_READ_REG(hw, SYMERRS);
    temp = E1000_READ_REG(hw, MPC);
    temp = E1000_READ_REG(hw, SCC);
    temp = E1000_READ_REG(hw, ECOL);
    temp = E1000_READ_REG(hw, MCC);
    temp = E1000_READ_REG(hw, LATECOL);
    temp = E1000_READ_REG(hw, COLC);
    temp = E1000_READ_REG(hw, DC);
    temp = E1000_READ_REG(hw, SEC);
    temp = E1000_READ_REG(hw, RLEC);
    temp = E1000_READ_REG(hw, XONRXC);
    temp = E1000_READ_REG(hw, XONTXC);
    temp = E1000_READ_REG(hw, XOFFRXC);
    temp = E1000_READ_REG(hw, XOFFTXC);
    temp = E1000_READ_REG(hw, FCRUC);
6325 6326

    if (hw->mac_type != e1000_ich8lan) {
L
Linus Torvalds 已提交
6327 6328 6329 6330 6331 6332
    temp = E1000_READ_REG(hw, PRC64);
    temp = E1000_READ_REG(hw, PRC127);
    temp = E1000_READ_REG(hw, PRC255);
    temp = E1000_READ_REG(hw, PRC511);
    temp = E1000_READ_REG(hw, PRC1023);
    temp = E1000_READ_REG(hw, PRC1522);
6333 6334
    }

L
Linus Torvalds 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
    temp = E1000_READ_REG(hw, GPRC);
    temp = E1000_READ_REG(hw, BPRC);
    temp = E1000_READ_REG(hw, MPRC);
    temp = E1000_READ_REG(hw, GPTC);
    temp = E1000_READ_REG(hw, GORCL);
    temp = E1000_READ_REG(hw, GORCH);
    temp = E1000_READ_REG(hw, GOTCL);
    temp = E1000_READ_REG(hw, GOTCH);
    temp = E1000_READ_REG(hw, RNBC);
    temp = E1000_READ_REG(hw, RUC);
    temp = E1000_READ_REG(hw, RFC);
    temp = E1000_READ_REG(hw, ROC);
    temp = E1000_READ_REG(hw, RJC);
    temp = E1000_READ_REG(hw, TORL);
    temp = E1000_READ_REG(hw, TORH);
    temp = E1000_READ_REG(hw, TOTL);
    temp = E1000_READ_REG(hw, TOTH);
    temp = E1000_READ_REG(hw, TPR);
    temp = E1000_READ_REG(hw, TPT);
6354 6355

    if (hw->mac_type != e1000_ich8lan) {
L
Linus Torvalds 已提交
6356 6357 6358 6359 6360 6361
    temp = E1000_READ_REG(hw, PTC64);
    temp = E1000_READ_REG(hw, PTC127);
    temp = E1000_READ_REG(hw, PTC255);
    temp = E1000_READ_REG(hw, PTC511);
    temp = E1000_READ_REG(hw, PTC1023);
    temp = E1000_READ_REG(hw, PTC1522);
6362 6363
    }

L
Linus Torvalds 已提交
6364 6365 6366
    temp = E1000_READ_REG(hw, MPTC);
    temp = E1000_READ_REG(hw, BPTC);

6367
    if (hw->mac_type < e1000_82543) return;
L
Linus Torvalds 已提交
6368 6369 6370 6371 6372 6373 6374 6375

    temp = E1000_READ_REG(hw, ALGNERRC);
    temp = E1000_READ_REG(hw, RXERRC);
    temp = E1000_READ_REG(hw, TNCRS);
    temp = E1000_READ_REG(hw, CEXTERR);
    temp = E1000_READ_REG(hw, TSCTC);
    temp = E1000_READ_REG(hw, TSCTFC);

6376
    if (hw->mac_type <= e1000_82544) return;
L
Linus Torvalds 已提交
6377 6378 6379 6380

    temp = E1000_READ_REG(hw, MGTPRC);
    temp = E1000_READ_REG(hw, MGTPDC);
    temp = E1000_READ_REG(hw, MGTPTC);
6381

6382
    if (hw->mac_type <= e1000_82547_rev_2) return;
6383 6384 6385

    temp = E1000_READ_REG(hw, IAC);
    temp = E1000_READ_REG(hw, ICRXOC);
6386 6387 6388

    if (hw->mac_type == e1000_ich8lan) return;

6389 6390 6391 6392 6393 6394 6395
    temp = E1000_READ_REG(hw, ICRXPTC);
    temp = E1000_READ_REG(hw, ICRXATC);
    temp = E1000_READ_REG(hw, ICTXPTC);
    temp = E1000_READ_REG(hw, ICTXATC);
    temp = E1000_READ_REG(hw, ICTXQEC);
    temp = E1000_READ_REG(hw, ICTXQMTC);
    temp = E1000_READ_REG(hw, ICRXDMTC);
L
Linus Torvalds 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
}

/******************************************************************************
 * Resets Adaptive IFS to its default state.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Call this after e1000_init_hw. You may override the IFS defaults by setting
 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
 * before calling this function.
 *****************************************************************************/
void
e1000_reset_adaptive(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_reset_adaptive");

6413 6414
    if (hw->adaptive_ifs) {
        if (!hw->ifs_params_forced) {
L
Linus Torvalds 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
            hw->current_ifs_val = 0;
            hw->ifs_min_val = IFS_MIN;
            hw->ifs_max_val = IFS_MAX;
            hw->ifs_step_size = IFS_STEP;
            hw->ifs_ratio = IFS_RATIO;
        }
        hw->in_ifs_mode = FALSE;
        E1000_WRITE_REG(hw, AIT, 0);
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Called during the callback/watchdog routine to update IFS value based on
 * the ratio of transmits to collisions.
 *
 * hw - Struct containing variables accessed by shared code
 * tx_packets - Number of transmits since last callback
 * total_collisions - Number of collisions since last callback
 *****************************************************************************/
void
e1000_update_adaptive(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_update_adaptive");

6441 6442 6443
    if (hw->adaptive_ifs) {
        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
L
Linus Torvalds 已提交
6444
                hw->in_ifs_mode = TRUE;
6445 6446
                if (hw->current_ifs_val < hw->ifs_max_val) {
                    if (hw->current_ifs_val == 0)
L
Linus Torvalds 已提交
6447 6448 6449 6450 6451 6452 6453
                        hw->current_ifs_val = hw->ifs_min_val;
                    else
                        hw->current_ifs_val += hw->ifs_step_size;
                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
                }
            }
        } else {
6454
            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
L
Linus Torvalds 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
                hw->current_ifs_val = 0;
                hw->in_ifs_mode = FALSE;
                E1000_WRITE_REG(hw, AIT, 0);
            }
        }
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
 *
 * hw - Struct containing variables accessed by shared code
 * frame_len - The length of the frame in question
 * mac_addr - The Ethernet destination address of the frame in question
 *****************************************************************************/
void
e1000_tbi_adjust_stats(struct e1000_hw *hw,
                       struct e1000_hw_stats *stats,
                       uint32_t frame_len,
                       uint8_t *mac_addr)
{
    uint64_t carry_bit;

    /* First adjust the frame length. */
    frame_len--;
    /* We need to adjust the statistics counters, since the hardware
     * counters overcount this packet as a CRC error and undercount
     * the packet as a good packet
     */
    /* This packet should not be counted as a CRC error.    */
    stats->crcerrs--;
    /* This packet does count as a Good Packet Received.    */
    stats->gprc++;

    /* Adjust the Good Octets received counters             */
    carry_bit = 0x80000000 & stats->gorcl;
    stats->gorcl += frame_len;
    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
     * Received Count) was one before the addition,
     * AND it is zero after, then we lost the carry out,
     * need to add one to Gorch (Good Octets Received Count High).
     * This could be simplified if all environments supported
     * 64-bit integers.
     */
6501
    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
L
Linus Torvalds 已提交
6502 6503 6504 6505 6506
        stats->gorch++;
    /* Is this a broadcast or multicast?  Check broadcast first,
     * since the test for a multicast frame will test positive on
     * a broadcast frame.
     */
6507
    if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
L
Linus Torvalds 已提交
6508 6509
        /* Broadcast packet */
        stats->bprc++;
6510
    else if (*mac_addr & 0x01)
L
Linus Torvalds 已提交
6511 6512 6513
        /* Multicast packet */
        stats->mprc++;

6514
    if (frame_len == hw->max_frame_size) {
L
Linus Torvalds 已提交
6515 6516 6517
        /* In this case, the hardware has overcounted the number of
         * oversize frames.
         */
6518
        if (stats->roc > 0)
L
Linus Torvalds 已提交
6519 6520 6521 6522 6523 6524
            stats->roc--;
    }

    /* Adjust the bin counters when the extra byte put the frame in the
     * wrong bin. Remember that the frame_len was adjusted above.
     */
6525
    if (frame_len == 64) {
L
Linus Torvalds 已提交
6526 6527
        stats->prc64++;
        stats->prc127--;
6528
    } else if (frame_len == 127) {
L
Linus Torvalds 已提交
6529 6530
        stats->prc127++;
        stats->prc255--;
6531
    } else if (frame_len == 255) {
L
Linus Torvalds 已提交
6532 6533
        stats->prc255++;
        stats->prc511--;
6534
    } else if (frame_len == 511) {
L
Linus Torvalds 已提交
6535 6536
        stats->prc511++;
        stats->prc1023--;
6537
    } else if (frame_len == 1023) {
L
Linus Torvalds 已提交
6538 6539
        stats->prc1023++;
        stats->prc1522--;
6540
    } else if (frame_len == 1522) {
L
Linus Torvalds 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
        stats->prc1522++;
    }
}

/******************************************************************************
 * Gets the current PCI bus type, speed, and width of the hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_get_bus_info(struct e1000_hw *hw)
{
    uint32_t status;

    switch (hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
        hw->bus_type = e1000_bus_type_unknown;
        hw->bus_speed = e1000_bus_speed_unknown;
        hw->bus_width = e1000_bus_width_unknown;
        break;
6562
    case e1000_82572:
6563
    case e1000_82573:
J
Jeff Kirsher 已提交
6564 6565 6566 6567 6568
        hw->bus_type = e1000_bus_type_pci_express;
        hw->bus_speed = e1000_bus_speed_2500;
        hw->bus_width = e1000_bus_width_pciex_1;
        break;
    case e1000_82571:
6569
    case e1000_ich8lan:
6570
    case e1000_80003es2lan:
6571 6572 6573 6574
        hw->bus_type = e1000_bus_type_pci_express;
        hw->bus_speed = e1000_bus_speed_2500;
        hw->bus_width = e1000_bus_width_pciex_4;
        break;
L
Linus Torvalds 已提交
6575 6576 6577 6578 6579
    default:
        status = E1000_READ_REG(hw, STATUS);
        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
                       e1000_bus_type_pcix : e1000_bus_type_pci;

6580
        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
L
Linus Torvalds 已提交
6581 6582
            hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
                            e1000_bus_speed_66 : e1000_bus_speed_120;
6583
        } else if (hw->bus_type == e1000_bus_type_pci) {
L
Linus Torvalds 已提交
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
                            e1000_bus_speed_66 : e1000_bus_speed_33;
        } else {
            switch (status & E1000_STATUS_PCIX_SPEED) {
            case E1000_STATUS_PCIX_SPEED_66:
                hw->bus_speed = e1000_bus_speed_66;
                break;
            case E1000_STATUS_PCIX_SPEED_100:
                hw->bus_speed = e1000_bus_speed_100;
                break;
            case E1000_STATUS_PCIX_SPEED_133:
                hw->bus_speed = e1000_bus_speed_133;
                break;
            default:
                hw->bus_speed = e1000_bus_speed_reserved;
                break;
            }
        }
        hw->bus_width = (status & E1000_STATUS_BUS64) ?
                        e1000_bus_width_64 : e1000_bus_width_32;
        break;
    }
}
/******************************************************************************
 * Reads a value from one of the devices registers using port I/O (as opposed
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to read from
 *****************************************************************************/
6614
#if 0
L
Linus Torvalds 已提交
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
uint32_t
e1000_read_reg_io(struct e1000_hw *hw,
                  uint32_t offset)
{
    unsigned long io_addr = hw->io_base;
    unsigned long io_data = hw->io_base + 4;

    e1000_io_write(hw, io_addr, offset);
    return e1000_io_read(hw, io_data);
}
6625
#endif  /*  0  */
L
Linus Torvalds 已提交
6626 6627 6628 6629 6630 6631 6632 6633 6634

/******************************************************************************
 * Writes a value to one of the devices registers using port I/O (as opposed to
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to write to
 * value - value to write
 *****************************************************************************/
6635
static void
L
Linus Torvalds 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
e1000_write_reg_io(struct e1000_hw *hw,
                   uint32_t offset,
                   uint32_t value)
{
    unsigned long io_addr = hw->io_base;
    unsigned long io_data = hw->io_base + 4;

    e1000_io_write(hw, io_addr, offset);
    e1000_io_write(hw, io_data, value);
}


/******************************************************************************
 * Estimates the cable length.
 *
 * hw - Struct containing variables accessed by shared code
 * min_length - The estimated minimum length
 * max_length - The estimated maximum length
 *
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS
 *
 * This function always returns a ranged length (minimum & maximum).
 * So for M88 phy's, this function interprets the one value returned from the
 * register to the minimum and maximum range.
 * For IGP phy's, the function calculates the range by the AGC registers.
 *****************************************************************************/
6663
static int32_t
L
Linus Torvalds 已提交
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
e1000_get_cable_length(struct e1000_hw *hw,
                       uint16_t *min_length,
                       uint16_t *max_length)
{
    int32_t ret_val;
    uint16_t agc_value = 0;
    uint16_t i, phy_data;
    uint16_t cable_length;

    DEBUGFUNC("e1000_get_cable_length");

    *min_length = *max_length = 0;

    /* Use old method for Phy older than IGP */
6678
    if (hw->phy_type == e1000_phy_m88) {
6679

L
Linus Torvalds 已提交
6680 6681
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
6682
        if (ret_val)
L
Linus Torvalds 已提交
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
            return ret_val;
        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;

        /* Convert the enum value to ranged values */
        switch (cable_length) {
        case e1000_cable_length_50:
            *min_length = 0;
            *max_length = e1000_igp_cable_length_50;
            break;
        case e1000_cable_length_50_80:
            *min_length = e1000_igp_cable_length_50;
            *max_length = e1000_igp_cable_length_80;
            break;
        case e1000_cable_length_80_110:
            *min_length = e1000_igp_cable_length_80;
            *max_length = e1000_igp_cable_length_110;
            break;
        case e1000_cable_length_110_140:
            *min_length = e1000_igp_cable_length_110;
            *max_length = e1000_igp_cable_length_140;
            break;
        case e1000_cable_length_140:
            *min_length = e1000_igp_cable_length_140;
            *max_length = e1000_igp_cable_length_170;
            break;
        default:
            return -E1000_ERR_PHY;
            break;
        }
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
    } else if (hw->phy_type == e1000_phy_gg82563) {
        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
                                     &phy_data);
        if (ret_val)
            return ret_val;
        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;

        switch (cable_length) {
        case e1000_gg_cable_length_60:
            *min_length = 0;
            *max_length = e1000_igp_cable_length_60;
            break;
        case e1000_gg_cable_length_60_115:
            *min_length = e1000_igp_cable_length_60;
            *max_length = e1000_igp_cable_length_115;
            break;
        case e1000_gg_cable_length_115_150:
            *min_length = e1000_igp_cable_length_115;
            *max_length = e1000_igp_cable_length_150;
            break;
        case e1000_gg_cable_length_150:
            *min_length = e1000_igp_cable_length_150;
            *max_length = e1000_igp_cable_length_180;
            break;
        default:
            return -E1000_ERR_PHY;
            break;
        }
6741
    } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6742 6743
        uint16_t cur_agc_value;
        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
L
Linus Torvalds 已提交
6744 6745 6746 6747 6748 6749
        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                                         {IGP01E1000_PHY_AGC_A,
                                                          IGP01E1000_PHY_AGC_B,
                                                          IGP01E1000_PHY_AGC_C,
                                                          IGP01E1000_PHY_AGC_D};
        /* Read the AGC registers for all channels */
6750
        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
L
Linus Torvalds 已提交
6751 6752

            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6753
            if (ret_val)
L
Linus Torvalds 已提交
6754 6755
                return ret_val;

6756
            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
L
Linus Torvalds 已提交
6757

6758 6759 6760
            /* Value bound check. */
            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
                (cur_agc_value == 0))
L
Linus Torvalds 已提交
6761 6762
                return -E1000_ERR_PHY;

6763
            agc_value += cur_agc_value;
L
Linus Torvalds 已提交
6764 6765

            /* Update minimal AGC value. */
6766 6767
            if (min_agc_value > cur_agc_value)
                min_agc_value = cur_agc_value;
L
Linus Torvalds 已提交
6768 6769 6770
        }

        /* Remove the minimal AGC result for length < 50m */
6771 6772
        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
            agc_value -= min_agc_value;
L
Linus Torvalds 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787

            /* Get the average length of the remaining 3 channels */
            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
        } else {
            /* Get the average length of all the 4 channels. */
            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
        }

        /* Set the range of the calculated length. */
        *min_length = ((e1000_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) > 0) ?
                       (e1000_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) : 0;
        *max_length = e1000_igp_cable_length_table[agc_value] +
                      IGP01E1000_AGC_RANGE;
6788 6789 6790 6791
    } else if (hw->phy_type == e1000_phy_igp_2 ||
               hw->phy_type == e1000_phy_igp_3) {
        uint16_t cur_agc_index, max_agc_index = 0;
        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
        uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
                                                         {IGP02E1000_PHY_AGC_A,
                                                          IGP02E1000_PHY_AGC_B,
                                                          IGP02E1000_PHY_AGC_C,
                                                          IGP02E1000_PHY_AGC_D};
        /* Read the AGC registers for all channels */
        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
            if (ret_val)
                return ret_val;

6803
            /* Getting bits 15:9, which represent the combination of course and
6804 6805
             * fine gain values.  The result is a number that can be put into
             * the lookup table to obtain the approximate cable length. */
6806 6807
            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
                            IGP02E1000_AGC_LENGTH_MASK;
6808

6809 6810 6811 6812
            /* Array index bound check. */
            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
                (cur_agc_index == 0))
                return -E1000_ERR_PHY;
6813

6814 6815 6816 6817 6818 6819 6820 6821 6822
            /* Remove min & max AGC values from calculation. */
            if (e1000_igp_2_cable_length_table[min_agc_index] >
                e1000_igp_2_cable_length_table[cur_agc_index])
                min_agc_index = cur_agc_index;
            if (e1000_igp_2_cable_length_table[max_agc_index] <
                e1000_igp_2_cable_length_table[cur_agc_index])
                max_agc_index = cur_agc_index;

            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6823 6824
        }

6825 6826
        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
                      e1000_igp_2_cable_length_table[max_agc_index]);
6827 6828 6829 6830 6831 6832
        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

        /* Calculate cable length with the error range of +/- 10 meters. */
        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
        *max_length = agc_value + IGP02E1000_AGC_RANGE;
L
Linus Torvalds 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Check the cable polarity
 *
 * hw - Struct containing variables accessed by shared code
 * polarity - output parameter : 0 - Polarity is not reversed
 *                               1 - Polarity is reversed.
 *
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS
 *
 * For phy's older then IGP, this function simply reads the polarity bit in the
 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
 * IGP01E1000_PHY_PCS_INIT_REG.
 *****************************************************************************/
6854
static int32_t
L
Linus Torvalds 已提交
6855
e1000_check_polarity(struct e1000_hw *hw,
6856
                     e1000_rev_polarity *polarity)
L
Linus Torvalds 已提交
6857 6858 6859 6860 6861 6862
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_polarity");

6863 6864
    if ((hw->phy_type == e1000_phy_m88) ||
        (hw->phy_type == e1000_phy_gg82563)) {
L
Linus Torvalds 已提交
6865 6866 6867
        /* return the Polarity bit in the Status register. */
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
6868
        if (ret_val)
L
Linus Torvalds 已提交
6869
            return ret_val;
6870 6871 6872 6873
        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;

6874 6875
    } else if (hw->phy_type == e1000_phy_igp ||
              hw->phy_type == e1000_phy_igp_3 ||
6876
              hw->phy_type == e1000_phy_igp_2) {
L
Linus Torvalds 已提交
6877 6878 6879
        /* Read the Status register to check the speed */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
                                     &phy_data);
6880
        if (ret_val)
L
Linus Torvalds 已提交
6881 6882 6883 6884
            return ret_val;

        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
         * find the polarity status */
6885
        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
L
Linus Torvalds 已提交
6886 6887 6888 6889 6890
           IGP01E1000_PSSR_SPEED_1000MBPS) {

            /* Read the GIG initialization PCS register (0x00B4) */
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
                                         &phy_data);
6891
            if (ret_val)
L
Linus Torvalds 已提交
6892 6893 6894
                return ret_val;

            /* Check the polarity bits */
6895 6896
            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
L
Linus Torvalds 已提交
6897 6898 6899
        } else {
            /* For 10 Mbps, read the polarity bit in the status register. (for
             * 100 Mbps this bit is always 0) */
6900 6901
            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
L
Linus Torvalds 已提交
6902
        }
6903 6904 6905 6906 6907
    } else if (hw->phy_type == e1000_phy_ife) {
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
                                     &phy_data);
        if (ret_val)
            return ret_val;
6908 6909 6910
        *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
                     IFE_PESC_POLARITY_REVERSED_SHIFT) ?
                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
L
Linus Torvalds 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Check if Downshift occured
 *
 * hw - Struct containing variables accessed by shared code
 * downshift - output parameter : 0 - No Downshift ocured.
 *                                1 - Downshift ocured.
 *
 * returns: - E1000_ERR_XXX
6923
 *            E1000_SUCCESS
L
Linus Torvalds 已提交
6924 6925 6926 6927 6928 6929
 *
 * For phy's older then IGP, this function reads the Downshift bit in the Phy
 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
 * Link Health register.  In IGP this bit is latched high, so the driver must
 * read it immediately after link is established.
 *****************************************************************************/
6930
static int32_t
L
Linus Torvalds 已提交
6931 6932 6933 6934 6935 6936 6937
e1000_check_downshift(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_downshift");

6938 6939
    if (hw->phy_type == e1000_phy_igp ||
        hw->phy_type == e1000_phy_igp_3 ||
6940
        hw->phy_type == e1000_phy_igp_2) {
L
Linus Torvalds 已提交
6941 6942
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
                                     &phy_data);
6943
        if (ret_val)
L
Linus Torvalds 已提交
6944 6945 6946
            return ret_val;

        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6947 6948
    } else if ((hw->phy_type == e1000_phy_m88) ||
               (hw->phy_type == e1000_phy_gg82563)) {
L
Linus Torvalds 已提交
6949 6950
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
6951
        if (ret_val)
L
Linus Torvalds 已提交
6952 6953 6954 6955
            return ret_val;

        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
6956 6957 6958
    } else if (hw->phy_type == e1000_phy_ife) {
        /* e1000_phy_ife supports 10/100 speed only */
        hw->speed_downgraded = FALSE;
L
Linus Torvalds 已提交
6959
    }
6960

L
Linus Torvalds 已提交
6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
 * gigabit link is achieved to improve link quality.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

6976
static int32_t
L
Linus Torvalds 已提交
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
e1000_config_dsp_after_link_change(struct e1000_hw *hw,
                                   boolean_t link_up)
{
    int32_t ret_val;
    uint16_t phy_data, phy_saved_data, speed, duplex, i;
    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                        {IGP01E1000_PHY_AGC_PARAM_A,
                                        IGP01E1000_PHY_AGC_PARAM_B,
                                        IGP01E1000_PHY_AGC_PARAM_C,
                                        IGP01E1000_PHY_AGC_PARAM_D};
    uint16_t min_length, max_length;

    DEBUGFUNC("e1000_config_dsp_after_link_change");

6991
    if (hw->phy_type != e1000_phy_igp)
L
Linus Torvalds 已提交
6992 6993
        return E1000_SUCCESS;

6994
    if (link_up) {
L
Linus Torvalds 已提交
6995
        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6996
        if (ret_val) {
L
Linus Torvalds 已提交
6997 6998 6999 7000
            DEBUGOUT("Error getting link speed and duplex\n");
            return ret_val;
        }

7001
        if (speed == SPEED_1000) {
L
Linus Torvalds 已提交
7002

7003 7004 7005
            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
            if (ret_val)
                return ret_val;
L
Linus Torvalds 已提交
7006

7007
            if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
L
Linus Torvalds 已提交
7008 7009
                min_length >= e1000_igp_cable_length_50) {

7010
                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
L
Linus Torvalds 已提交
7011 7012
                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
                                                 &phy_data);
7013
                    if (ret_val)
L
Linus Torvalds 已提交
7014 7015 7016 7017 7018 7019
                        return ret_val;

                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;

                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
                                                  phy_data);
7020
                    if (ret_val)
L
Linus Torvalds 已提交
7021 7022 7023 7024 7025
                        return ret_val;
                }
                hw->dsp_config_state = e1000_dsp_config_activated;
            }

7026
            if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
L
Linus Torvalds 已提交
7027 7028 7029 7030 7031 7032 7033 7034
               (min_length < e1000_igp_cable_length_50)) {

                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
                uint32_t idle_errs = 0;

                /* clear previous idle error counts */
                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
                                             &phy_data);
7035
                if (ret_val)
L
Linus Torvalds 已提交
7036 7037
                    return ret_val;

7038
                for (i = 0; i < ffe_idle_err_timeout; i++) {
L
Linus Torvalds 已提交
7039 7040 7041
                    udelay(1000);
                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
                                                 &phy_data);
7042
                    if (ret_val)
L
Linus Torvalds 已提交
7043 7044 7045
                        return ret_val;

                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
7046
                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
L
Linus Torvalds 已提交
7047 7048 7049 7050 7051
                        hw->ffe_config_state = e1000_ffe_config_active;

                        ret_val = e1000_write_phy_reg(hw,
                                    IGP01E1000_PHY_DSP_FFE,
                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
7052
                        if (ret_val)
L
Linus Torvalds 已提交
7053 7054 7055 7056
                            return ret_val;
                        break;
                    }

7057
                    if (idle_errs)
L
Linus Torvalds 已提交
7058 7059 7060 7061 7062
                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
                }
            }
        }
    } else {
7063
        if (hw->dsp_config_state == e1000_dsp_config_activated) {
L
Linus Torvalds 已提交
7064 7065 7066 7067
            /* Save off the current value of register 0x2F5B to be restored at
             * the end of the routines. */
            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

7068
            if (ret_val)
L
Linus Torvalds 已提交
7069 7070 7071 7072 7073
                return ret_val;

            /* Disable the PHY transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

7074
            if (ret_val)
L
Linus Torvalds 已提交
7075 7076
                return ret_val;

7077
            mdelay(20);
L
Linus Torvalds 已提交
7078 7079 7080

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_FORCE_GIGA);
7081
            if (ret_val)
L
Linus Torvalds 已提交
7082
                return ret_val;
7083
            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
L
Linus Torvalds 已提交
7084
                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
7085
                if (ret_val)
L
Linus Torvalds 已提交
7086 7087 7088 7089 7090 7091
                    return ret_val;

                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;

                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7092
                if (ret_val)
L
Linus Torvalds 已提交
7093 7094 7095 7096 7097
                    return ret_val;
            }

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
7098
            if (ret_val)
L
Linus Torvalds 已提交
7099 7100
                return ret_val;

7101
            mdelay(20);
L
Linus Torvalds 已提交
7102 7103 7104 7105

            /* Now enable the transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

7106
            if (ret_val)
L
Linus Torvalds 已提交
7107 7108 7109 7110 7111
                return ret_val;

            hw->dsp_config_state = e1000_dsp_config_enabled;
        }

7112
        if (hw->ffe_config_state == e1000_ffe_config_active) {
L
Linus Torvalds 已提交
7113 7114 7115 7116
            /* Save off the current value of register 0x2F5B to be restored at
             * the end of the routines. */
            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

7117
            if (ret_val)
L
Linus Torvalds 已提交
7118 7119 7120 7121 7122
                return ret_val;

            /* Disable the PHY transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

7123
            if (ret_val)
L
Linus Torvalds 已提交
7124 7125
                return ret_val;

7126
            mdelay(20);
L
Linus Torvalds 已提交
7127 7128 7129

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_FORCE_GIGA);
7130
            if (ret_val)
L
Linus Torvalds 已提交
7131 7132 7133
                return ret_val;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
7134
            if (ret_val)
L
Linus Torvalds 已提交
7135 7136 7137 7138
                return ret_val;

            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
7139
            if (ret_val)
L
Linus Torvalds 已提交
7140 7141
                return ret_val;

7142
            mdelay(20);
L
Linus Torvalds 已提交
7143 7144 7145 7146

            /* Now enable the transmitter */
            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

7147
            if (ret_val)
L
Linus Torvalds 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
                return ret_val;

            hw->ffe_config_state = e1000_ffe_config_enabled;
        }
    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 * Set PHY to class A mode
 * Assumes the following operations will follow to enable the new class mode.
 *  1. Do a PHY soft reset
 *  2. Restart auto-negotiation or force link.
 *
 * hw - Struct containing variables accessed by shared code
 ****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_set_phy_mode");

7172 7173
    if ((hw->mac_type == e1000_82545_rev_3) &&
        (hw->media_type == e1000_media_type_copper)) {
L
Linus Torvalds 已提交
7174
        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7175
        if (ret_val) {
L
Linus Torvalds 已提交
7176 7177 7178
            return ret_val;
        }

7179 7180
        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
            (eeprom_data & EEPROM_PHY_CLASS_A)) {
L
Linus Torvalds 已提交
7181
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7182
            if (ret_val)
L
Linus Torvalds 已提交
7183 7184
                return ret_val;
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7185
            if (ret_val)
L
Linus Torvalds 已提交
7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
                return ret_val;

            hw->phy_reset_disable = FALSE;
        }
    }

    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * This function sets the lplu state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

7209
static int32_t
L
Linus Torvalds 已提交
7210 7211 7212
e1000_set_d3_lplu_state(struct e1000_hw *hw,
                        boolean_t active)
{
7213
    uint32_t phy_ctrl = 0;
L
Linus Torvalds 已提交
7214 7215 7216 7217
    int32_t ret_val;
    uint16_t phy_data;
    DEBUGFUNC("e1000_set_d3_lplu_state");

7218 7219
    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
        && hw->phy_type != e1000_phy_igp_3)
L
Linus Torvalds 已提交
7220 7221 7222 7223 7224
        return E1000_SUCCESS;

    /* During driver activity LPLU should not be used or it will attain link
     * from the lowest speeds starting from 10Mbps. The capability is used for
     * Dx transitions and states */
7225
    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7226
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7227
        if (ret_val)
7228
            return ret_val;
7229 7230 7231 7232 7233
    } else if (hw->mac_type == e1000_ich8lan) {
        /* MAC writes into PHY register based on the state transition
         * and start auto-negotiation. SW driver can overwrite the settings
         * in CSR PHY power control E1000_PHY_CTRL register. */
        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7234 7235
    } else {
        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7236
        if (ret_val)
L
Linus Torvalds 已提交
7237
            return ret_val;
7238 7239
    }

7240 7241 7242
    if (!active) {
        if (hw->mac_type == e1000_82541_rev_2 ||
            hw->mac_type == e1000_82547_rev_2) {
7243 7244
            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7245
            if (ret_val)
7246 7247
                return ret_val;
        } else {
7248 7249 7250 7251
            if (hw->mac_type == e1000_ich8lan) {
                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
            } else {
7252 7253 7254 7255 7256
                phy_data &= ~IGP02E1000_PM_D3_LPLU;
                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                              phy_data);
                if (ret_val)
                    return ret_val;
7257
            }
7258
        }
L
Linus Torvalds 已提交
7259 7260 7261 7262 7263 7264 7265 7266

        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
         * Dx states where the power conservation is most important.  During
         * driver activity we should enable SmartSpeed, so performance is
         * maintained. */
        if (hw->smart_speed == e1000_smart_speed_on) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
7267
            if (ret_val)
L
Linus Torvalds 已提交
7268 7269 7270 7271 7272
                return ret_val;

            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7273
            if (ret_val)
L
Linus Torvalds 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
                return ret_val;
        } else if (hw->smart_speed == e1000_smart_speed_off) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
	    if (ret_val)
                return ret_val;

            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7284
            if (ret_val)
L
Linus Torvalds 已提交
7285 7286 7287
                return ret_val;
        }

7288 7289 7290
    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
L
Linus Torvalds 已提交
7291

7292
        if (hw->mac_type == e1000_82541_rev_2 ||
7293
            hw->mac_type == e1000_82547_rev_2) {
7294 7295
            phy_data |= IGP01E1000_GMII_FLEX_SPD;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7296
            if (ret_val)
7297 7298
                return ret_val;
        } else {
7299 7300 7301 7302
            if (hw->mac_type == e1000_ich8lan) {
                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
            } else {
7303 7304 7305 7306 7307
                phy_data |= IGP02E1000_PM_D3_LPLU;
                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                              phy_data);
                if (ret_val)
                    return ret_val;
7308
            }
7309 7310 7311 7312
        }

        /* When LPLU is enabled we should disable SmartSpeed */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7313
        if (ret_val)
7314 7315 7316 7317
            return ret_val;

        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7318
        if (ret_val)
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
            return ret_val;

    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * This function sets the lplu d0 state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

7339
static int32_t
7340 7341 7342
e1000_set_d0_lplu_state(struct e1000_hw *hw,
                        boolean_t active)
{
7343
    uint32_t phy_ctrl = 0;
7344 7345 7346 7347
    int32_t ret_val;
    uint16_t phy_data;
    DEBUGFUNC("e1000_set_d0_lplu_state");

7348
    if (hw->mac_type <= e1000_82547_rev_2)
7349 7350
        return E1000_SUCCESS;

7351 7352 7353
    if (hw->mac_type == e1000_ich8lan) {
        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
    } else {
7354
        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7355
        if (ret_val)
L
Linus Torvalds 已提交
7356
            return ret_val;
7357
    }
L
Linus Torvalds 已提交
7358

7359
    if (!active) {
7360 7361 7362 7363
        if (hw->mac_type == e1000_ich8lan) {
            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        } else {
7364 7365 7366 7367
            phy_data &= ~IGP02E1000_PM_D0_LPLU;
            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
            if (ret_val)
                return ret_val;
7368
        }
7369 7370 7371 7372 7373 7374 7375 7376

        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
         * Dx states where the power conservation is most important.  During
         * driver activity we should enable SmartSpeed, so performance is
         * maintained. */
        if (hw->smart_speed == e1000_smart_speed_on) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
7377
            if (ret_val)
7378 7379 7380 7381 7382
                return ret_val;

            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7383
            if (ret_val)
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
                return ret_val;
        } else if (hw->smart_speed == e1000_smart_speed_off) {
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                         &phy_data);
	    if (ret_val)
                return ret_val;

            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                          phy_data);
7394
            if (ret_val)
7395 7396 7397 7398 7399
                return ret_val;
        }


    } else {
7400

7401 7402 7403 7404
        if (hw->mac_type == e1000_ich8lan) {
            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
        } else {
7405
            phy_data |= IGP02E1000_PM_D0_LPLU;
7406 7407 7408
            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
            if (ret_val)
                return ret_val;
7409
        }
7410

L
Linus Torvalds 已提交
7411 7412
        /* When LPLU is enabled we should disable SmartSpeed */
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7413
        if (ret_val)
L
Linus Torvalds 已提交
7414 7415 7416 7417
            return ret_val;

        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7418
        if (ret_val)
L
Linus Torvalds 已提交
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
            return ret_val;

    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t
e1000_set_vco_speed(struct e1000_hw *hw)
{
    int32_t  ret_val;
    uint16_t default_page = 0;
    uint16_t phy_data;

    DEBUGFUNC("e1000_set_vco_speed");

7439
    switch (hw->mac_type) {
L
Linus Torvalds 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
       break;
    default:
        return E1000_SUCCESS;
    }

    /* Set PHY register 30, page 5, bit 8 to 0 */

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7450
    if (ret_val)
L
Linus Torvalds 已提交
7451 7452 7453
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7454
    if (ret_val)
L
Linus Torvalds 已提交
7455 7456 7457
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7458
    if (ret_val)
L
Linus Torvalds 已提交
7459 7460 7461 7462
        return ret_val;

    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7463
    if (ret_val)
L
Linus Torvalds 已提交
7464 7465 7466 7467 7468
        return ret_val;

    /* Set PHY register 30, page 4, bit 11 to 1 */

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7469
    if (ret_val)
L
Linus Torvalds 已提交
7470 7471 7472
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7473
    if (ret_val)
L
Linus Torvalds 已提交
7474 7475 7476 7477
        return ret_val;

    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7478
    if (ret_val)
L
Linus Torvalds 已提交
7479 7480 7481
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7482
    if (ret_val)
L
Linus Torvalds 已提交
7483 7484 7485 7486 7487 7488
        return ret_val;

    return E1000_SUCCESS;
}


7489 7490 7491 7492 7493 7494 7495 7496 7497
/*****************************************************************************
 * This function reads the cookie from ARC ram.
 *
 * returns: - E1000_SUCCESS .
 ****************************************************************************/
int32_t
e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
{
    uint8_t i;
7498
    uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7499
    uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
L
Linus Torvalds 已提交
7500

7501 7502
    length = (length >> 2);
    offset = (offset >> 2);
L
Linus Torvalds 已提交
7503

7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
    for (i = 0; i < length; i++) {
        *((uint32_t *) buffer + i) =
            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
    }
    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function checks whether the HOST IF is enabled for command operaton
 * and also checks whether the previous command is completed.
 * It busy waits in case of previous command is not completed.
 *
7517
 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7518 7519 7520
 *            timeout
 *          - E1000_SUCCESS for success.
 ****************************************************************************/
7521
static int32_t
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
e1000_mng_enable_host_if(struct e1000_hw * hw)
{
    uint32_t hicr;
    uint8_t i;

    /* Check that the host interface is enabled. */
    hicr = E1000_READ_REG(hw, HICR);
    if ((hicr & E1000_HICR_EN) == 0) {
        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
        return -E1000_ERR_HOST_INTERFACE_COMMAND;
    }
    /* check the previous command is completed */
    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
        hicr = E1000_READ_REG(hw, HICR);
        if (!(hicr & E1000_HICR_C))
            break;
7538
        mdelay(1);
7539 7540
    }

7541
    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
        DEBUGOUT("Previous command timeout failed .\n");
        return -E1000_ERR_HOST_INTERFACE_COMMAND;
    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 * This function writes the buffer content at the offset given on the host if.
 * It also does alignment considerations to do the writes in most efficient way.
 * Also fills up the sum of the buffer in *buffer parameter.
 *
 * returns  - E1000_SUCCESS for success.
 ****************************************************************************/
7555
static int32_t
7556 7557 7558 7559 7560
e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
                        uint16_t length, uint16_t offset, uint8_t *sum)
{
    uint8_t *tmp;
    uint8_t *bufptr = buffer;
7561
    uint32_t data = 0;
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
    uint16_t remaining, i, j, prev_bytes;

    /* sum = only sum of the data and it is not checksum */

    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
        return -E1000_ERR_PARAM;
    }

    tmp = (uint8_t *)&data;
    prev_bytes = offset & 0x3;
    offset &= 0xFFFC;
    offset >>= 2;

    if (prev_bytes) {
        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
        for (j = prev_bytes; j < sizeof(uint32_t); j++) {
            *(tmp + j) = *bufptr++;
            *sum += *(tmp + j);
        }
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
        length -= j - prev_bytes;
        offset++;
    }

    remaining = length & 0x3;
    length -= remaining;

    /* Calculate length in DWORDs */
    length >>= 2;

    /* The device driver writes the relevant command block into the
     * ram area. */
    for (i = 0; i < length; i++) {
        for (j = 0; j < sizeof(uint32_t); j++) {
            *(tmp + j) = *bufptr++;
            *sum += *(tmp + j);
        }

        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
    }
    if (remaining) {
        for (j = 0; j < sizeof(uint32_t); j++) {
            if (j < remaining)
                *(tmp + j) = *bufptr++;
            else
                *(tmp + j) = 0;

            *sum += *(tmp + j);
        }
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
    }

    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function writes the command header after does the checksum calculation.
 *
 * returns  - E1000_SUCCESS for success.
 ****************************************************************************/
7623
static int32_t
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640
e1000_mng_write_cmd_header(struct e1000_hw * hw,
                           struct e1000_host_mng_command_header * hdr)
{
    uint16_t i;
    uint8_t sum;
    uint8_t *buffer;

    /* Write the whole command header structure which includes sum of
     * the buffer */

    uint16_t length = sizeof(struct e1000_host_mng_command_header);

    sum = hdr->checksum;
    hdr->checksum = 0;

    buffer = (uint8_t *) hdr;
    i = length;
7641
    while (i--)
7642 7643 7644 7645 7646 7647
        sum += buffer[i];

    hdr->checksum = 0 - sum;

    length >>= 2;
    /* The device driver writes the relevant command block into the ram area. */
7648
    for (i = 0; i < length; i++) {
7649
        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7650 7651
        E1000_WRITE_FLUSH(hw);
    }
7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662

    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function indicates to ARC that a new command is pending which completes
 * one write operation by the driver.
 *
 * returns  - E1000_SUCCESS for success.
 ****************************************************************************/
7663
static int32_t
7664
e1000_mng_write_commit(struct e1000_hw * hw)
7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
{
    uint32_t hicr;

    hicr = E1000_READ_REG(hw, HICR);
    /* Setting this bit tells the ARC that a new command is pending. */
    E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);

    return E1000_SUCCESS;
}


/*****************************************************************************
 * This function checks the mode of the firmware.
 *
 * returns  - TRUE when the mode is IAMT or FALSE.
 ****************************************************************************/
boolean_t
7682
e1000_check_mng_mode(struct e1000_hw *hw)
7683 7684 7685 7686 7687
{
    uint32_t fwsm;

    fwsm = E1000_READ_REG(hw, FWSM);

7688 7689 7690 7691 7692 7693
    if (hw->mac_type == e1000_ich8lan) {
        if ((fwsm & E1000_FWSM_MODE_MASK) ==
            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
            return TRUE;
    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835
        return TRUE;

    return FALSE;
}


/*****************************************************************************
 * This function writes the dhcp info .
 ****************************************************************************/
int32_t
e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
			  uint16_t length)
{
    int32_t ret_val;
    struct e1000_host_mng_command_header hdr;

    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
    hdr.command_length = length;
    hdr.reserved1 = 0;
    hdr.reserved2 = 0;
    hdr.checksum = 0;

    ret_val = e1000_mng_enable_host_if(hw);
    if (ret_val == E1000_SUCCESS) {
        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
                                          &(hdr.checksum));
        if (ret_val == E1000_SUCCESS) {
            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
            if (ret_val == E1000_SUCCESS)
                ret_val = e1000_mng_write_commit(hw);
        }
    }
    return ret_val;
}


/*****************************************************************************
 * This function calculates the checksum.
 *
 * returns  - checksum of buffer contents.
 ****************************************************************************/
uint8_t
e1000_calculate_mng_checksum(char *buffer, uint32_t length)
{
    uint8_t sum = 0;
    uint32_t i;

    if (!buffer)
        return 0;

    for (i=0; i < length; i++)
        sum += buffer[i];

    return (uint8_t) (0 - sum);
}

/*****************************************************************************
 * This function checks whether tx pkt filtering needs to be enabled or not.
 *
 * returns  - TRUE for packet filtering or FALSE.
 ****************************************************************************/
boolean_t
e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
    /* called in init as well as watchdog timer functions */

    int32_t ret_val, checksum;
    boolean_t tx_filter = FALSE;
    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
    uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);

    if (e1000_check_mng_mode(hw)) {
        ret_val = e1000_mng_enable_host_if(hw);
        if (ret_val == E1000_SUCCESS) {
            ret_val = e1000_host_if_read_cookie(hw, buffer);
            if (ret_val == E1000_SUCCESS) {
                checksum = hdr->checksum;
                hdr->checksum = 0;
                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
                    checksum == e1000_calculate_mng_checksum((char *)buffer,
                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
                    if (hdr->status &
                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
                        tx_filter = TRUE;
                } else
                    tx_filter = TRUE;
            } else
                tx_filter = TRUE;
        }
    }

    hw->tx_pkt_filtering = tx_filter;
    return tx_filter;
}

/******************************************************************************
 * Verifies the hardware needs to allow ARPs to be processed by the host
 *
 * hw - Struct containing variables accessed by shared code
 *
 * returns: - TRUE/FALSE
 *
 *****************************************************************************/
uint32_t
e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
    uint32_t manc;
    uint32_t fwsm, factps;

    if (hw->asf_firmware_present) {
        manc = E1000_READ_REG(hw, MANC);

        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
            return FALSE;
        if (e1000_arc_subsystem_valid(hw) == TRUE) {
            fwsm = E1000_READ_REG(hw, FWSM);
            factps = E1000_READ_REG(hw, FACTPS);

            if (((fwsm & E1000_FWSM_MODE_MASK) ==
                (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
                (factps & E1000_FACTPS_MNGCG))
                return TRUE;
        } else
            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
                return TRUE;
    }
    return FALSE;
}

static int32_t
e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_status_reg;
    uint16_t i;

    /* Polarity reversal workaround for forced 10F/10H links. */

    /* Disable the transmitter on the PHY */

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7836
    if (ret_val)
L
Linus Torvalds 已提交
7837 7838
        return ret_val;
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7839
    if (ret_val)
L
Linus Torvalds 已提交
7840 7841 7842
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7843
    if (ret_val)
L
Linus Torvalds 已提交
7844 7845 7846
        return ret_val;

    /* This loop will early-out if the NO link condition has been met. */
7847
    for (i = PHY_FORCE_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
7848 7849 7850 7851 7852
        /* Read the MII Status Register and wait for Link Status bit
         * to be clear.
         */

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7853
        if (ret_val)
L
Linus Torvalds 已提交
7854 7855 7856
            return ret_val;

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7857
        if (ret_val)
L
Linus Torvalds 已提交
7858 7859
            return ret_val;

7860
        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7861
        mdelay(100);
L
Linus Torvalds 已提交
7862 7863 7864
    }

    /* Recommended delay time after link has been lost */
7865
    mdelay(1000);
L
Linus Torvalds 已提交
7866 7867 7868 7869

    /* Now we will re-enable th transmitter on the PHY */

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7870
    if (ret_val)
L
Linus Torvalds 已提交
7871
        return ret_val;
7872
    mdelay(50);
L
Linus Torvalds 已提交
7873
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7874
    if (ret_val)
L
Linus Torvalds 已提交
7875
        return ret_val;
7876
    mdelay(50);
L
Linus Torvalds 已提交
7877
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7878
    if (ret_val)
L
Linus Torvalds 已提交
7879
        return ret_val;
7880
    mdelay(50);
L
Linus Torvalds 已提交
7881
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7882
    if (ret_val)
L
Linus Torvalds 已提交
7883 7884 7885
        return ret_val;

    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7886
    if (ret_val)
L
Linus Torvalds 已提交
7887 7888 7889
        return ret_val;

    /* This loop will early-out if the link condition has been met. */
7890
    for (i = PHY_FORCE_TIME; i > 0; i--) {
L
Linus Torvalds 已提交
7891 7892 7893 7894 7895
        /* Read the MII Status Register and wait for Link Status bit
         * to be set.
         */

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7896
        if (ret_val)
L
Linus Torvalds 已提交
7897 7898 7899
            return ret_val;

        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7900
        if (ret_val)
L
Linus Torvalds 已提交
7901 7902
            return ret_val;

7903
        if (mii_status_reg & MII_SR_LINK_STATUS) break;
7904
        mdelay(100);
L
Linus Torvalds 已提交
7905 7906 7907 7908
    }
    return E1000_SUCCESS;
}

7909 7910 7911 7912 7913 7914 7915 7916 7917
/***************************************************************************
 *
 * Disables PCI-Express master access.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - none.
 *
 ***************************************************************************/
7918
static void
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
e1000_set_pci_express_master_disable(struct e1000_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("e1000_set_pci_express_master_disable");

    if (hw->bus_type != e1000_bus_type_pci_express)
        return;

    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
    E1000_WRITE_REG(hw, CTRL, ctrl);
}

/***************************************************************************
 *
 * Enables PCI-Express master access.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - none.
 *
 ***************************************************************************/
7942
#if 0
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
void
e1000_enable_pciex_master(struct e1000_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("e1000_enable_pciex_master");

    if (hw->bus_type != e1000_bus_type_pci_express)
        return;

    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
    E1000_WRITE_REG(hw, CTRL, ctrl);
}
7957
#endif  /*  0  */
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981

/*******************************************************************************
 *
 * Disables PCI-Express master access and verifies there are no pending requests
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
 *            caused the master requests to be disabled.
 *            E1000_SUCCESS master requests disabled.
 *
 ******************************************************************************/
int32_t
e1000_disable_pciex_master(struct e1000_hw *hw)
{
    int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */

    DEBUGFUNC("e1000_disable_pciex_master");

    if (hw->bus_type != e1000_bus_type_pci_express)
        return E1000_SUCCESS;

    e1000_set_pci_express_master_disable(hw);

7982 7983
    while (timeout) {
        if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7984 7985 7986 7987 7988 7989
            break;
        else
            udelay(100);
        timeout--;
    }

7990
    if (!timeout) {
7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
        DEBUGOUT("Master requests are pending.\n");
        return -E1000_ERR_MASTER_REQUESTS_PENDING;
    }

    return E1000_SUCCESS;
}

/*******************************************************************************
 *
 * Check for EEPROM Auto Read bit done.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to reset MAC
 *            E1000_SUCCESS at any other case.
 *
 ******************************************************************************/
8008
static int32_t
8009 8010 8011 8012 8013 8014 8015 8016
e1000_get_auto_rd_done(struct e1000_hw *hw)
{
    int32_t timeout = AUTO_READ_DONE_TIMEOUT;

    DEBUGFUNC("e1000_get_auto_rd_done");

    switch (hw->mac_type) {
    default:
8017
        msleep(5);
8018
        break;
8019 8020
    case e1000_82571:
    case e1000_82572:
8021
    case e1000_82573:
8022
    case e1000_80003es2lan:
8023 8024 8025 8026
    case e1000_ich8lan:
        while (timeout) {
            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
                break;
8027
            else msleep(1);
8028 8029 8030
            timeout--;
        }

8031
        if (!timeout) {
8032 8033 8034 8035 8036 8037
            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
            return -E1000_ERR_RESET;
        }
        break;
    }

J
Jeff Kirsher 已提交
8038 8039 8040 8041
    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
     * Need to wait for PHY configuration completion before accessing NVM
     * and PHY. */
    if (hw->mac_type == e1000_82573)
8042
        msleep(25);
J
Jeff Kirsher 已提交
8043

8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
    return E1000_SUCCESS;
}

/***************************************************************************
 * Checks if the PHY configuration is done
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to reset MAC
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
8056
static int32_t
8057 8058
e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
8059 8060 8061
    int32_t timeout = PHY_CFG_TIMEOUT;
    uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;

8062 8063
    DEBUGFUNC("e1000_get_phy_cfg_done");

8064 8065
    switch (hw->mac_type) {
    default:
8066
        mdelay(10);
8067
        break;
8068 8069 8070 8071 8072
    case e1000_80003es2lan:
        /* Separate *_CFG_DONE_* bit for each port */
        if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
        /* Fall Through */
8073 8074 8075 8076 8077 8078
    case e1000_82571:
    case e1000_82572:
        while (timeout) {
            if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
                break;
            else
8079
                msleep(1);
8080 8081 8082 8083 8084 8085 8086 8087 8088
            timeout--;
        }

        if (!timeout) {
            DEBUGOUT("MNG configuration cycle has not completed.\n");
            return -E1000_ERR_RESET;
        }
        break;
    }
8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
 * adapter or Eeprom access.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
8104
static int32_t
8105 8106 8107 8108 8109 8110 8111
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
    int32_t timeout;
    uint32_t swsm;

    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");

8112
    if (!hw->eeprom_semaphore_present)
8113 8114
        return E1000_SUCCESS;

8115 8116 8117 8118 8119
    if (hw->mac_type == e1000_80003es2lan) {
        /* Get the SW semaphore. */
        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
            return -E1000_ERR_EEPROM;
    }
8120 8121 8122

    /* Get the FW semaphore. */
    timeout = hw->eeprom.word_size + 1;
8123
    while (timeout) {
8124 8125 8126 8127 8128
        swsm = E1000_READ_REG(hw, SWSM);
        swsm |= E1000_SWSM_SWESMBI;
        E1000_WRITE_REG(hw, SWSM, swsm);
        /* if we managed to set the bit we got the semaphore. */
        swsm = E1000_READ_REG(hw, SWSM);
8129
        if (swsm & E1000_SWSM_SWESMBI)
8130 8131 8132 8133 8134 8135
            break;

        udelay(50);
        timeout--;
    }

8136
    if (!timeout) {
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153
        /* Release semaphores */
        e1000_put_hw_eeprom_semaphore(hw);
        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
        return -E1000_ERR_EEPROM;
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 * This function clears HW semaphore bits.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - None.
 *
 ***************************************************************************/
8154
static void
8155 8156 8157 8158 8159 8160
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
    uint32_t swsm;

    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");

8161
    if (!hw->eeprom_semaphore_present)
8162 8163 8164
        return;

    swsm = E1000_READ_REG(hw, SWSM);
8165 8166 8167 8168
    if (hw->mac_type == e1000_80003es2lan) {
        /* Release both semaphores. */
        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
    } else
8169
        swsm &= ~(E1000_SWSM_SWESMBI);
8170 8171 8172
    E1000_WRITE_REG(hw, SWSM, swsm);
}

8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
/***************************************************************************
 *
 * Obtaining software semaphore bit (SMBI) before resetting PHY.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
8183
static int32_t
8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
e1000_get_software_semaphore(struct e1000_hw *hw)
{
    int32_t timeout = hw->eeprom.word_size + 1;
    uint32_t swsm;

    DEBUGFUNC("e1000_get_software_semaphore");

    if (hw->mac_type != e1000_80003es2lan)
        return E1000_SUCCESS;

8194
    while (timeout) {
8195 8196
        swsm = E1000_READ_REG(hw, SWSM);
        /* If SMBI bit cleared, it is now set and we hold the semaphore */
8197
        if (!(swsm & E1000_SWSM_SMBI))
8198
            break;
8199
        mdelay(1);
8200 8201 8202
        timeout--;
    }

8203
    if (!timeout) {
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217
        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
        return -E1000_ERR_RESET;
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Release semaphore bit (SMBI).
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8218
static void
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
e1000_release_software_semaphore(struct e1000_hw *hw)
{
    uint32_t swsm;

    DEBUGFUNC("e1000_release_software_semaphore");

    if (hw->mac_type != e1000_80003es2lan)
        return;

    swsm = E1000_READ_REG(hw, SWSM);
    /* Release the SW semaphores.*/
    swsm &= ~E1000_SWSM_SMBI;
    E1000_WRITE_REG(hw, SWSM, swsm);
}

8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
/******************************************************************************
 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
 * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
 * the caller to figure out how to deal with it.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * returns: - E1000_BLK_PHY_RESET
 *            E1000_SUCCESS
 *
 *****************************************************************************/
int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
    uint32_t manc = 0;
8249 8250 8251 8252 8253 8254 8255
    uint32_t fwsm = 0;

    if (hw->mac_type == e1000_ich8lan) {
        fwsm = E1000_READ_REG(hw, FWSM);
        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
                                            : E1000_BLK_PHY_RESET;
    }
J
Jesse Brandeburg 已提交
8256 8257

    if (hw->mac_type > e1000_82547_rev_2)
8258 8259 8260 8261 8262
        manc = E1000_READ_REG(hw, MANC);
    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
	    E1000_BLK_PHY_RESET : E1000_SUCCESS;
}

8263
static uint8_t
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273
e1000_arc_subsystem_valid(struct e1000_hw *hw)
{
    uint32_t fwsm;

    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
     * may not be provided a DMA clock when no manageability features are
     * enabled.  We do not want to perform any reads/writes to these registers
     * if this is the case.  We read FWSM to determine the manageability mode.
     */
    switch (hw->mac_type) {
8274 8275
    case e1000_82571:
    case e1000_82572:
8276
    case e1000_82573:
8277
    case e1000_80003es2lan:
8278
        fwsm = E1000_READ_REG(hw, FWSM);
8279
        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8280 8281
            return TRUE;
        break;
8282 8283
    case e1000_ich8lan:
        return TRUE;
8284 8285 8286 8287 8288 8289 8290
    default:
        break;
    }
    return FALSE;
}


A
Auke Kok 已提交
8291 8292 8293 8294 8295 8296 8297 8298 8299
/******************************************************************************
 * Configure PCI-Ex no-snoop
 *
 * hw - Struct containing variables accessed by shared code.
 * no_snoop - Bitmap of no-snoop events.
 *
 * returns: E1000_SUCCESS
 *
 *****************************************************************************/
8300
static int32_t
A
Auke Kok 已提交
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
{
    uint32_t gcr_reg = 0;

    DEBUGFUNC("e1000_set_pci_ex_no_snoop");

    if (hw->bus_type == e1000_bus_type_unknown)
        e1000_get_bus_info(hw);

    if (hw->bus_type != e1000_bus_type_pci_express)
        return E1000_SUCCESS;

    if (no_snoop) {
        gcr_reg = E1000_READ_REG(hw, GCR);
        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
        gcr_reg |= no_snoop;
        E1000_WRITE_REG(hw, GCR, gcr_reg);
    }
    if (hw->mac_type == e1000_ich8lan) {
        uint32_t ctrl_ext;

        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);

        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Get software semaphore FLAG bit (SWFLAG).
 * SWFLAG is used to synchronize the access to all shared resource between
 * SW, FW and HW.
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8341
static int32_t
A
Auke Kok 已提交
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357
e1000_get_software_flag(struct e1000_hw *hw)
{
    int32_t timeout = PHY_CFG_TIMEOUT;
    uint32_t extcnf_ctrl;

    DEBUGFUNC("e1000_get_software_flag");

    if (hw->mac_type == e1000_ich8lan) {
        while (timeout) {
            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);

            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
                break;
8358
            mdelay(1);
A
Auke Kok 已提交
8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379
            timeout--;
        }

        if (!timeout) {
            DEBUGOUT("FW or HW locks the resource too long.\n");
            return -E1000_ERR_CONFIG;
        }
    }

    return E1000_SUCCESS;
}

/***************************************************************************
 *
 * Release software semaphore FLAG bit (SWFLAG).
 * SWFLAG is used to synchronize the access to all shared resource between
 * SW, FW and HW.
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8380
static void
A
Auke Kok 已提交
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403
e1000_release_software_flag(struct e1000_hw *hw)
{
    uint32_t extcnf_ctrl;

    DEBUGFUNC("e1000_release_software_flag");

    if (hw->mac_type == e1000_ich8lan) {
        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
    }

    return;
}

/***************************************************************************
 *
 * Disable dynamic power down mode in ife PHY.
 * It can be used to workaround band-gap problem.
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8404
#if 0
A
Auke Kok 已提交
8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
int32_t
e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
{
    uint16_t phy_data;
    int32_t ret_val = E1000_SUCCESS;

    DEBUGFUNC("e1000_ife_disable_dynamic_power_down");

    if (hw->phy_type == e1000_phy_ife) {
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data |=  IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
        ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
    }

    return ret_val;
}
8424
#endif  /*  0  */
A
Auke Kok 已提交
8425 8426 8427 8428 8429 8430 8431 8432 8433

/***************************************************************************
 *
 * Enable dynamic power down mode in ife PHY.
 * It can be used to workaround band-gap problem.
 *
 * hw: Struct containing variables accessed by shared code
 *
 ***************************************************************************/
8434
#if 0
A
Auke Kok 已提交
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
int32_t
e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
{
    uint16_t phy_data;
    int32_t ret_val = E1000_SUCCESS;

    DEBUGFUNC("e1000_ife_enable_dynamic_power_down");

    if (hw->phy_type == e1000_phy_ife) {
        ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
        if (ret_val)
            return ret_val;

        phy_data &=  ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
        ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
    }

    return ret_val;
}
8454
#endif  /*  0  */
A
Auke Kok 已提交
8455 8456 8457 8458 8459 8460 8461 8462 8463 8464

/******************************************************************************
 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
 * register.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
8465
static int32_t
A
Auke Kok 已提交
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
                       uint16_t *data)
{
    int32_t  error = E1000_SUCCESS;
    uint32_t flash_bank = 0;
    uint32_t act_offset = 0;
    uint32_t bank_offset = 0;
    uint16_t word = 0;
    uint16_t i = 0;

    /* We need to know which is the valid flash bank.  In the event
     * that we didn't allocate eeprom_shadow_ram, we may not be
     * managing flash_bank.  So it cannot be trusted and needs
     * to be updated with each read.
     */
    /* Value of bit 22 corresponds to the flash bank we're on. */
    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;

    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
    bank_offset = flash_bank * (hw->flash_bank_size * 2);

    error = e1000_get_software_flag(hw);
    if (error != E1000_SUCCESS)
        return error;

    for (i = 0; i < words; i++) {
        if (hw->eeprom_shadow_ram != NULL &&
            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
        } else {
            /* The NVM part needs a byte offset, hence * 2 */
            act_offset = bank_offset + ((offset + i) * 2);
            error = e1000_read_ich8_word(hw, act_offset, &word);
            if (error != E1000_SUCCESS)
                break;
            data[i] = word;
        }
    }

    e1000_release_software_flag(hw);

    return error;
}

/******************************************************************************
 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
 * register.  Actually, writes are written to the shadow ram cache in the hw
 * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
 * the NVM, which occurs when the NVM checksum is updated.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of word in the EEPROM to write
 * words - number of words to write
 * data - words to write to the EEPROM
 *****************************************************************************/
8521
static int32_t
A
Auke Kok 已提交
8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
                        uint16_t *data)
{
    uint32_t i = 0;
    int32_t error = E1000_SUCCESS;

    error = e1000_get_software_flag(hw);
    if (error != E1000_SUCCESS)
        return error;

    /* A driver can write to the NVM only if it has eeprom_shadow_ram
     * allocated.  Subsequent reads to the modified words are read from
     * this cached structure as well.  Writes will only go into this
     * cached structure unless it's followed by a call to
     * e1000_update_eeprom_checksum() where it will commit the changes
     * and clear the "modified" field.
     */
    if (hw->eeprom_shadow_ram != NULL) {
        for (i = 0; i < words; i++) {
            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
            } else {
                error = -E1000_ERR_EEPROM;
                break;
            }
        }
    } else {
        /* Drivers have the option to not allocate eeprom_shadow_ram as long
         * as they don't perform any NVM writes.  An attempt in doing so
         * will result in this error.
         */
        error = -E1000_ERR_EEPROM;
    }

    e1000_release_software_flag(hw);

    return error;
}

/******************************************************************************
 * This function does initial flash setup so that a new read/write/erase cycle
 * can be started.
 *
 * hw - The pointer to the hw structure
 ****************************************************************************/
8568
static int32_t
A
Auke Kok 已提交
8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
e1000_ich8_cycle_init(struct e1000_hw *hw)
{
    union ich8_hws_flash_status hsfsts;
    int32_t error = E1000_ERR_EEPROM;
    int32_t i     = 0;

    DEBUGFUNC("e1000_ich8_cycle_init");

    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);

    /* May be check the Flash Des Valid bit in Hw status */
    if (hsfsts.hsf_status.fldesvalid == 0) {
        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
        return error;
    }

    /* Clear FCERR in Hw status by writing 1 */
    /* Clear DAEL in Hw status by writing a 1 */
    hsfsts.hsf_status.flcerr = 1;
    hsfsts.hsf_status.dael = 1;

    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);

    /* Either we should have a hardware SPI cycle in progress bit to check
     * against, in order to start a new cycle or FDONE bit should be changed
     * in the hardware so that it is 1 after harware reset, which can then be
     * used as an indication whether a cycle is in progress or has been
     * completed .. we should also have some software semaphore mechanism to
     * guard FDONE or the cycle in progress bit so that two threads access to
     * those bits can be sequentiallized or a way so that 2 threads dont
     * start the cycle at the same time */

    if (hsfsts.hsf_status.flcinprog == 0) {
        /* There is no cycle running at present, so we can start a cycle */
        /* Begin by setting Flash Cycle Done. */
        hsfsts.hsf_status.flcdone = 1;
        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
        error = E1000_SUCCESS;
    } else {
        /* otherwise poll for sometime so the current cycle has a chance
         * to end before giving up. */
        for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
            if (hsfsts.hsf_status.flcinprog == 0) {
                error = E1000_SUCCESS;
                break;
            }
            udelay(1);
        }
        if (error == E1000_SUCCESS) {
            /* Successful in waiting for previous cycle to timeout,
             * now set the Flash Cycle Done. */
            hsfsts.hsf_status.flcdone = 1;
            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
        } else {
            DEBUGOUT("Flash controller busy, cannot get access");
        }
    }
    return error;
}

/******************************************************************************
 * This function starts a flash cycle and waits for its completion
 *
 * hw - The pointer to the hw structure
 ****************************************************************************/
8635
static int32_t
A
Auke Kok 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
{
    union ich8_hws_flash_ctrl hsflctl;
    union ich8_hws_flash_status hsfsts;
    int32_t error = E1000_ERR_EEPROM;
    uint32_t i = 0;

    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
    hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
    hsflctl.hsf_ctrl.flcgo = 1;
    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

    /* wait till FDONE bit is set to 1 */
    do {
        hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
        if (hsfsts.hsf_status.flcdone == 1)
            break;
        udelay(1);
        i++;
    } while (i < timeout);
    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
        error = E1000_SUCCESS;
    }
    return error;
}

/******************************************************************************
 * Reads a byte or word from the NVM using the ICH8 flash access registers.
 *
 * hw - The pointer to the hw structure
 * index - The index of the byte or word to read.
 * size - Size of data to read, 1=byte 2=word
 * data - Pointer to the word to store the value read.
 *****************************************************************************/
8670
static int32_t
A
Auke Kok 已提交
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748
e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
                     uint32_t size, uint16_t* data)
{
    union ich8_hws_flash_status hsfsts;
    union ich8_hws_flash_ctrl hsflctl;
    uint32_t flash_linear_address;
    uint32_t flash_data = 0;
    int32_t error = -E1000_ERR_EEPROM;
    int32_t count = 0;

    DEBUGFUNC("e1000_read_ich8_data");

    if (size < 1  || size > 2 || data == 0x0 ||
        index > ICH8_FLASH_LINEAR_ADDR_MASK)
        return error;

    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
                           hw->flash_base_addr;

    do {
        udelay(1);
        /* Steps */
        error = e1000_ich8_cycle_init(hw);
        if (error != E1000_SUCCESS)
            break;

        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
        hsflctl.hsf_ctrl.fldbcount = size - 1;
        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

        /* Write the last 24 bits of index into Flash Linear address field in
         * Flash Address */
        /* TODO: TBD maybe check the index against the size of flash */

        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);

        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);

        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
         * sequence a few more times, else read in (shift in) the Flash Data0,
         * the order is least significant byte first msb to lsb */
        if (error == E1000_SUCCESS) {
            flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
            if (size == 1) {
                *data = (uint8_t)(flash_data & 0x000000FF);
            } else if (size == 2) {
                *data = (uint16_t)(flash_data & 0x0000FFFF);
            }
            break;
        } else {
            /* If we've gotten here, then things are probably completely hosed,
             * but if the error condition is detected, it won't hurt to give
             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
             */
            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
            if (hsfsts.hsf_status.flcerr == 1) {
                /* Repeat for some time before giving up. */
                continue;
            } else if (hsfsts.hsf_status.flcdone == 0) {
                DEBUGOUT("Timeout error - flash cycle did not complete.");
                break;
            }
        }
    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);

    return error;
}

/******************************************************************************
 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
 *
 * hw - The pointer to the hw structure
 * index - The index of the byte/word to read.
 * size - Size of data to read, 1=byte 2=word
 * data - The byte(s) to write to the NVM.
 *****************************************************************************/
8749
static int32_t
A
Auke Kok 已提交
8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823
e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
                      uint16_t data)
{
    union ich8_hws_flash_status hsfsts;
    union ich8_hws_flash_ctrl hsflctl;
    uint32_t flash_linear_address;
    uint32_t flash_data = 0;
    int32_t error = -E1000_ERR_EEPROM;
    int32_t count = 0;

    DEBUGFUNC("e1000_write_ich8_data");

    if (size < 1  || size > 2 || data > size * 0xff ||
        index > ICH8_FLASH_LINEAR_ADDR_MASK)
        return error;

    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
                           hw->flash_base_addr;

    do {
        udelay(1);
        /* Steps */
        error = e1000_ich8_cycle_init(hw);
        if (error != E1000_SUCCESS)
            break;

        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
        hsflctl.hsf_ctrl.fldbcount = size -1;
        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

        /* Write the last 24 bits of index into Flash Linear address field in
         * Flash Address */
        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);

        if (size == 1)
            flash_data = (uint32_t)data & 0x00FF;
        else
            flash_data = (uint32_t)data;

        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);

        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
         * sequence a few more times else done */
        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
        if (error == E1000_SUCCESS) {
            break;
        } else {
            /* If we're here, then things are most likely completely hosed,
             * but if the error condition is detected, it won't hurt to give
             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
             */
            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
            if (hsfsts.hsf_status.flcerr == 1) {
                /* Repeat for some time before giving up. */
                continue;
            } else if (hsfsts.hsf_status.flcdone == 0) {
                DEBUGOUT("Timeout error - flash cycle did not complete.");
                break;
            }
        }
    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);

    return error;
}

/******************************************************************************
 * Reads a single byte from the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The index of the byte to read.
 * data - Pointer to a byte to store the value read.
 *****************************************************************************/
8824
static int32_t
A
Auke Kok 已提交
8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846
e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
{
    int32_t status = E1000_SUCCESS;
    uint16_t word = 0;

    status = e1000_read_ich8_data(hw, index, 1, &word);
    if (status == E1000_SUCCESS) {
        *data = (uint8_t)word;
    }

    return status;
}

/******************************************************************************
 * Writes a single byte to the NVM using the ICH8 flash access registers.
 * Performs verification by reading back the value and then going through
 * a retry algorithm before giving up.
 *
 * hw - pointer to e1000_hw structure
 * index - The index of the byte to write.
 * byte - The byte to write to the NVM.
 *****************************************************************************/
8847
static int32_t
A
Auke Kok 已提交
8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877
e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
{
    int32_t error = E1000_SUCCESS;
    int32_t program_retries;
    uint8_t temp_byte;

    e1000_write_ich8_byte(hw, index, byte);
    udelay(100);

    for (program_retries = 0; program_retries < 100; program_retries++) {
        e1000_read_ich8_byte(hw, index, &temp_byte);
        if (temp_byte == byte)
            break;
        udelay(10);
        e1000_write_ich8_byte(hw, index, byte);
        udelay(100);
    }
    if (program_retries == 100)
        error = E1000_ERR_EEPROM;

    return error;
}

/******************************************************************************
 * Writes a single byte to the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The index of the byte to read.
 * data - The byte to write to the NVM.
 *****************************************************************************/
8878
static int32_t
A
Auke Kok 已提交
8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895
e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
{
    int32_t status = E1000_SUCCESS;
    uint16_t word = (uint16_t)data;

    status = e1000_write_ich8_data(hw, index, 1, word);

    return status;
}

/******************************************************************************
 * Reads a word from the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The starting byte index of the word to read.
 * data - Pointer to a word to store the value read.
 *****************************************************************************/
8896
static int32_t
A
Auke Kok 已提交
8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910
e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
{
    int32_t status = E1000_SUCCESS;
    status = e1000_read_ich8_data(hw, index, 2, data);
    return status;
}

/******************************************************************************
 * Writes a word to the NVM using the ICH8 flash access registers.
 *
 * hw - pointer to e1000_hw structure
 * index - The starting byte index of the word to read.
 * data - The word to write to the NVM.
 *****************************************************************************/
8911
#if 0
A
Auke Kok 已提交
8912 8913 8914 8915 8916 8917 8918
int32_t
e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
{
    int32_t status = E1000_SUCCESS;
    status = e1000_write_ich8_data(hw, index, 2, data);
    return status;
}
8919
#endif  /*  0  */
A
Auke Kok 已提交
8920 8921 8922 8923 8924 8925 8926 8927

/******************************************************************************
 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
 * segment N is 4096 * N + flash_reg_addr.
 *
 * hw - pointer to e1000_hw structure
 * segment - 0 for first segment, 1 for second segment, etc.
 *****************************************************************************/
8928
static int32_t
A
Auke Kok 已提交
8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024
e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
{
    union ich8_hws_flash_status hsfsts;
    union ich8_hws_flash_ctrl hsflctl;
    uint32_t flash_linear_address;
    int32_t  count = 0;
    int32_t  error = E1000_ERR_EEPROM;
    int32_t  iteration, seg_size;
    int32_t  sector_size;
    int32_t  j = 0;
    int32_t  error_flag = 0;

    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);

    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
     *     consecutive sectors.  The start index for the nth Hw sector can be
     *     calculated as = segment * 4096 + n * 256
     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
     *     The start index for the nth Hw sector can be calculated
     *     as = segment * 4096
     * 10: Error condition
     * 11: The Hw sector size is much bigger than the size asked to
     *     erase...error condition */
    if (hsfsts.hsf_status.berasesz == 0x0) {
        /* Hw sector size 256 */
        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
        iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
    } else if (hsfsts.hsf_status.berasesz == 0x1) {
        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
        iteration = 1;
    } else if (hsfsts.hsf_status.berasesz == 0x3) {
        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
        iteration = 1;
    } else {
        return error;
    }

    for (j = 0; j < iteration ; j++) {
        do {
            count++;
            /* Steps */
            error = e1000_ich8_cycle_init(hw);
            if (error != E1000_SUCCESS) {
                error_flag = 1;
                break;
            }

            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
             * Control */
            hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
            hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);

            /* Write the last 24 bits of an index within the block into Flash
             * Linear address field in Flash Address.  This probably needs to
             * be calculated here based off the on-chip segment size and the
             * software segment size assumed (4K) */
            /* TBD */
            flash_linear_address = segment * sector_size + j * seg_size;
            flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
            flash_linear_address += hw->flash_base_addr;

            E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);

            error = e1000_ich8_flash_cycle(hw, 1000000);
            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
             * sequence a few more times else Done */
            if (error == E1000_SUCCESS) {
                break;
            } else {
                hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
                if (hsfsts.hsf_status.flcerr == 1) {
                    /* repeat for some time before giving up */
                    continue;
                } else if (hsfsts.hsf_status.flcdone == 0) {
                    error_flag = 1;
                    break;
                }
            }
        } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
        if (error_flag == 1)
            break;
    }
    if (error_flag != 1)
        error = E1000_SUCCESS;
    return error;
}

/******************************************************************************
 *
 * Reverse duplex setting without breaking the link.
 *
 * hw: Struct containing variables accessed by shared code
 *
 *****************************************************************************/
9025
#if 0
A
Auke Kok 已提交
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
int32_t
e1000_duplex_reversal(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t phy_data;

    if (hw->phy_type != e1000_phy_igp_3)
        return E1000_SUCCESS;

    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
    if (ret_val)
        return ret_val;

    phy_data ^= MII_CR_FULL_DUPLEX;

    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
    if (ret_val)
        return ret_val;

    ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
    if (ret_val)
        return ret_val;

    phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
    ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);

    return ret_val;
}
9054
#endif  /*  0  */
A
Auke Kok 已提交
9055

9056
static int32_t
A
Auke Kok 已提交
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089
e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
                                      uint32_t cnf_base_addr, uint32_t cnf_size)
{
    uint32_t ret_val = E1000_SUCCESS;
    uint16_t word_addr, reg_data, reg_addr;
    uint16_t i;

    /* cnf_base_addr is in DWORD */
    word_addr = (uint16_t)(cnf_base_addr << 1);

    /* cnf_size is returned in size of dwords */
    for (i = 0; i < cnf_size; i++) {
        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
        if (ret_val)
            return ret_val;

        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
        if (ret_val)
            return ret_val;

        ret_val = e1000_get_software_flag(hw);
        if (ret_val != E1000_SUCCESS)
            return ret_val;

        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);

        e1000_release_software_flag(hw);
    }

    return ret_val;
}


9090
static int32_t
A
Auke Kok 已提交
9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
e1000_init_lcd_from_nvm(struct e1000_hw *hw)
{
    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;

    if (hw->phy_type != e1000_phy_igp_3)
          return E1000_SUCCESS;

    /* Check if SW needs configure the PHY */
    reg_data = E1000_READ_REG(hw, FEXTNVM);
    if (!(reg_data & FEXTNVM_SW_CONFIG))
        return E1000_SUCCESS;

    /* Wait for basic configuration completes before proceeding*/
    loop = 0;
    do {
        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
        udelay(100);
        loop++;
    } while ((!reg_data) && (loop < 50));

    /* Clear the Init Done bit for the next init event */
    reg_data = E1000_READ_REG(hw, STATUS);
    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
    E1000_WRITE_REG(hw, STATUS, reg_data);

    /* Make sure HW does not configure LCD from PHY extended configuration
       before SW configuration */
    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
        cnf_size >>= 16;
        if (cnf_size) {
            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
            /* cnf_base_addr is in DWORD */
            cnf_base_addr >>= 16;

            /* Configure LCD from extended configuration region. */
            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
                                                            cnf_size);
            if (ret_val)
                return ret_val;
        }
    }

    return E1000_SUCCESS;
}


9141