blk-mq.c 89.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
8 9 10 11 12
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
13
#include <linux/kmemleak.h>
14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/delay.h>
27
#include <linux/crash_dump.h>
28
#include <linux/prefetch.h>
29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
33
#include <linux/t10-pi.h>
34 35
#include "blk.h"
#include "blk-mq.h"
36
#include "blk-mq-debugfs.h"
37
#include "blk-mq-tag.h"
38
#include "blk-pm.h"
39
#include "blk-stat.h"
40
#include "blk-mq-sched.h"
41
#include "blk-rq-qos.h"
42

43 44 45
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
48
	int ddir, sectors, bucket;
49

J
Jens Axboe 已提交
50
	ddir = rq_data_dir(rq);
51
	sectors = blk_rq_stats_sectors(rq);
52

53
	bucket = ddir + 2 * ilog2(sectors);
54 55 56 57 58 59 60 61 62

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

63
/*
64 65
 * Check if any of the ctx, dispatch list or elevator
 * have pending work in this hardware queue.
66
 */
67
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68
{
69 70
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
71
			blk_mq_sched_has_work(hctx);
72 73
}

74 75 76 77 78 79
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
80 81 82 83
	const int bit = ctx->index_hw[hctx->type];

	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
		sbitmap_set_bit(&hctx->ctx_map, bit);
84 85 86 87 88
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
89 90 91
	const int bit = ctx->index_hw[hctx->type];

	sbitmap_clear_bit(&hctx->ctx_map, bit);
92 93
}

94 95
struct mq_inflight {
	struct hd_struct *part;
96
	unsigned int inflight[2];
97 98
};

99
static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 101 102 103 104
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

105
	if (rq->part == mi->part)
106
		mi->inflight[rq_data_dir(rq)]++;
107 108

	return true;
109 110
}

111
unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112
{
113
	struct mq_inflight mi = { .part = part };
114 115

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116

117
	return mi.inflight[0] + mi.inflight[1];
118 119 120 121 122
}

void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
			 unsigned int inflight[2])
{
123
	struct mq_inflight mi = { .part = part };
124

125
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 127
	inflight[0] = mi.inflight[0];
	inflight[1] = mi.inflight[1];
128 129
}

130
void blk_freeze_queue_start(struct request_queue *q)
131
{
132 133
	mutex_lock(&q->mq_freeze_lock);
	if (++q->mq_freeze_depth == 1) {
134
		percpu_ref_kill(&q->q_usage_counter);
135
		mutex_unlock(&q->mq_freeze_lock);
J
Jens Axboe 已提交
136
		if (queue_is_mq(q))
137
			blk_mq_run_hw_queues(q, false);
138 139
	} else {
		mutex_unlock(&q->mq_freeze_lock);
140
	}
141
}
142
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143

144
void blk_mq_freeze_queue_wait(struct request_queue *q)
145
{
146
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147
}
148
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149

150 151 152 153 154 155 156 157
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158

159 160 161 162
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
163
void blk_freeze_queue(struct request_queue *q)
164
{
165 166 167 168 169 170 171
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
172
	blk_freeze_queue_start(q);
173 174
	blk_mq_freeze_queue_wait(q);
}
175 176 177 178 179 180 181 182 183

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
184
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185

186
void blk_mq_unfreeze_queue(struct request_queue *q)
187
{
188 189 190 191
	mutex_lock(&q->mq_freeze_lock);
	q->mq_freeze_depth--;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
	if (!q->mq_freeze_depth) {
192
		percpu_ref_resurrect(&q->q_usage_counter);
193
		wake_up_all(&q->mq_freeze_wq);
194
	}
195
	mutex_unlock(&q->mq_freeze_lock);
196
}
197
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198

199 200 201 202 203 204
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
205
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
206 207 208
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

209
/**
210
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211 212 213
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
214 215 216
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
217 218 219 220 221 222 223
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

224
	blk_mq_quiesce_queue_nowait(q);
225

226 227
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
228
			synchronize_srcu(hctx->srcu);
229 230 231 232 233 234 235 236
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

237 238 239 240 241 242 243 244 245
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
246
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247

248 249
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
250 251 252
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

253 254 255 256 257 258 259 260 261 262
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

263
/*
264 265
 * Only need start/end time stamping if we have iostat or
 * blk stats enabled, or using an IO scheduler.
266 267 268
 */
static inline bool blk_mq_need_time_stamp(struct request *rq)
{
269
	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
270 271
}

272
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273
		unsigned int tag, unsigned int op, u64 alloc_time_ns)
274
{
275 276
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
277
	req_flags_t rq_flags = 0;
278

279 280 281 282
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
283
		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284
			rq_flags = RQF_MQ_INFLIGHT;
285 286 287 288 289 290 291
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

292
	/* csd/requeue_work/fifo_time is initialized before use */
293 294
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
295
	rq->mq_hctx = data->hctx;
296
	rq->rq_flags = rq_flags;
297
	rq->cmd_flags = op;
298 299
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
300
	if (blk_queue_io_stat(data->q))
301
		rq->rq_flags |= RQF_IO_STAT;
302
	INIT_LIST_HEAD(&rq->queuelist);
303 304 305 306
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307 308 309
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
	rq->alloc_time_ns = alloc_time_ns;
#endif
310 311 312 313
	if (blk_mq_need_time_stamp(rq))
		rq->start_time_ns = ktime_get_ns();
	else
		rq->start_time_ns = 0;
314
	rq->io_start_time_ns = 0;
315
	rq->stats_sectors = 0;
316 317 318 319 320 321
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	/* tag was already set */
	rq->extra_len = 0;
322
	WRITE_ONCE(rq->deadline, 0);
323

324 325
	rq->timeout = 0;

326 327 328
	rq->end_io = NULL;
	rq->end_io_data = NULL;

329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
K
Keith Busch 已提交
330
	refcount_set(&rq->ref, 1);
331
	return rq;
332 333
}

334
static struct request *blk_mq_get_request(struct request_queue *q,
335 336
					  struct bio *bio,
					  struct blk_mq_alloc_data *data)
337 338 339
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
340
	unsigned int tag;
341
	bool clear_ctx_on_error = false;
342
	u64 alloc_time_ns = 0;
343 344

	blk_queue_enter_live(q);
345 346 347 348 349

	/* alloc_time includes depth and tag waits */
	if (blk_queue_rq_alloc_time(q))
		alloc_time_ns = ktime_get_ns();

350
	data->q = q;
351 352
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
353
		clear_ctx_on_error = true;
354
	}
355
	if (likely(!data->hctx))
356
		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357
						data->ctx);
358
	if (data->cmd_flags & REQ_NOWAIT)
359
		data->flags |= BLK_MQ_REQ_NOWAIT;
360 361 362 363 364 365

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
366 367
		 * dispatch list. Don't include reserved tags in the
		 * limiting, as it isn't useful.
368
		 */
369 370
		if (!op_is_flush(data->cmd_flags) &&
		    e->type->ops.limit_depth &&
371
		    !(data->flags & BLK_MQ_REQ_RESERVED))
372
			e->type->ops.limit_depth(data->cmd_flags, data);
373 374
	} else {
		blk_mq_tag_busy(data->hctx);
375 376
	}

377 378
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
379
		if (clear_ctx_on_error)
380
			data->ctx = NULL;
381 382
		blk_queue_exit(q);
		return NULL;
383 384
	}

385
	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386
	if (!op_is_flush(data->cmd_flags)) {
387
		rq->elv.icq = NULL;
388
		if (e && e->type->ops.prepare_request) {
D
Damien Le Moal 已提交
389 390
			if (e->type->icq_cache)
				blk_mq_sched_assign_ioc(rq);
391

392
			e->type->ops.prepare_request(rq, bio);
393
			rq->rq_flags |= RQF_ELVPRIV;
394
		}
395 396 397
	}
	data->hctx->queued++;
	return rq;
398 399
}

400
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401
		blk_mq_req_flags_t flags)
402
{
403
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404
	struct request *rq;
405
	int ret;
406

407
	ret = blk_queue_enter(q, flags);
408 409
	if (ret)
		return ERR_PTR(ret);
410

411
	rq = blk_mq_get_request(q, NULL, &alloc_data);
412
	blk_queue_exit(q);
413

414
	if (!rq)
415
		return ERR_PTR(-EWOULDBLOCK);
416 417 418 419

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
420 421
	return rq;
}
422
EXPORT_SYMBOL(blk_mq_alloc_request);
423

424
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
426
{
427
	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
M
Ming Lin 已提交
428
	struct request *rq;
429
	unsigned int cpu;
M
Ming Lin 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

444
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
445 446 447
	if (ret)
		return ERR_PTR(ret);

448 449 450 451
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
452 453 454 455
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
456
	}
457
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
459

460
	rq = blk_mq_get_request(q, NULL, &alloc_data);
461
	blk_queue_exit(q);
462

463 464 465 466
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
467 468 469
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

K
Keith Busch 已提交
470 471 472 473
static void __blk_mq_free_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
474
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
K
Keith Busch 已提交
475 476
	const int sched_tag = rq->internal_tag;

477
	blk_pm_mark_last_busy(rq);
478
	rq->mq_hctx = NULL;
K
Keith Busch 已提交
479
	if (rq->tag != -1)
480
		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
K
Keith Busch 已提交
481
	if (sched_tag != -1)
482
		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
K
Keith Busch 已提交
483 484 485 486
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

487
void blk_mq_free_request(struct request *rq)
488 489
{
	struct request_queue *q = rq->q;
490 491
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
492
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493

494
	if (rq->rq_flags & RQF_ELVPRIV) {
495 496
		if (e && e->type->ops.finish_request)
			e->type->ops.finish_request(rq);
497 498 499 500 501
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
502

503
	ctx->rq_completed[rq_is_sync(rq)]++;
504
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
505
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
506

507 508 509
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

510
	rq_qos_done(q, rq);
511

K
Keith Busch 已提交
512 513 514
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
	if (refcount_dec_and_test(&rq->ref))
		__blk_mq_free_request(rq);
515
}
J
Jens Axboe 已提交
516
EXPORT_SYMBOL_GPL(blk_mq_free_request);
517

518
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519
{
520 521 522 523
	u64 now = 0;

	if (blk_mq_need_time_stamp(rq))
		now = ktime_get_ns();
524

525 526
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
527
		blk_stat_add(rq, now);
528 529
	}

530 531 532
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq, now);

533
	blk_account_io_done(rq, now);
M
Ming Lei 已提交
534

C
Christoph Hellwig 已提交
535
	if (rq->end_io) {
536
		rq_qos_done(rq->q, rq);
537
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
538
	} else {
539
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
540
	}
541
}
542
EXPORT_SYMBOL(__blk_mq_end_request);
543

544
void blk_mq_end_request(struct request *rq, blk_status_t error)
545 546 547
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
548
	__blk_mq_end_request(rq, error);
549
}
550
EXPORT_SYMBOL(blk_mq_end_request);
551

552
static void __blk_mq_complete_request_remote(void *data)
553
{
554
	struct request *rq = data;
555
	struct request_queue *q = rq->q;
556

557
	q->mq_ops->complete(rq);
558 559
}

560
static void __blk_mq_complete_request(struct request *rq)
561 562
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
563
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
564
	bool shared = false;
565 566
	int cpu;

567
	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
568 569 570 571 572 573 574 575 576
	/*
	 * Most of single queue controllers, there is only one irq vector
	 * for handling IO completion, and the only irq's affinity is set
	 * as all possible CPUs. On most of ARCHs, this affinity means the
	 * irq is handled on one specific CPU.
	 *
	 * So complete IO reqeust in softirq context in case of single queue
	 * for not degrading IO performance by irqsoff latency.
	 */
577
	if (q->nr_hw_queues == 1) {
578 579 580 581
		__blk_complete_request(rq);
		return;
	}

582 583 584 585 586 587
	/*
	 * For a polled request, always complete locallly, it's pointless
	 * to redirect the completion.
	 */
	if ((rq->cmd_flags & REQ_HIPRI) ||
	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588
		q->mq_ops->complete(rq);
589 590
		return;
	}
591 592

	cpu = get_cpu();
593
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
C
Christoph Hellwig 已提交
594 595 596
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597
		rq->csd.func = __blk_mq_complete_request_remote;
598 599
		rq->csd.info = rq;
		rq->csd.flags = 0;
600
		smp_call_function_single_async(ctx->cpu, &rq->csd);
601
	} else {
602
		q->mq_ops->complete(rq);
603
	}
604 605
	put_cpu();
}
606

607
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608
	__releases(hctx->srcu)
609 610 611 612
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
613
		srcu_read_unlock(hctx->srcu, srcu_idx);
614 615 616
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617
	__acquires(hctx->srcu)
618
{
619 620 621
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
622
		rcu_read_lock();
623
	} else
624
		*srcu_idx = srcu_read_lock(hctx->srcu);
625 626
}

627 628 629 630 631 632 633 634
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
635
bool blk_mq_complete_request(struct request *rq)
636
{
K
Keith Busch 已提交
637
	if (unlikely(blk_should_fake_timeout(rq->q)))
638
		return false;
K
Keith Busch 已提交
639
	__blk_mq_complete_request(rq);
640
	return true;
641 642
}
EXPORT_SYMBOL(blk_mq_complete_request);
643

644 645 646 647 648 649 650 651
/**
 * blk_mq_start_request - Start processing a request
 * @rq: Pointer to request to be started
 *
 * Function used by device drivers to notify the block layer that a request
 * is going to be processed now, so blk layer can do proper initializations
 * such as starting the timeout timer.
 */
652
void blk_mq_start_request(struct request *rq)
653 654 655 656 657
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

658
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659
		rq->io_start_time_ns = ktime_get_ns();
660
		rq->stats_sectors = blk_rq_sectors(rq);
661
		rq->rq_flags |= RQF_STATS;
662
		rq_qos_issue(q, rq);
663 664
	}

665
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
666

667
	blk_add_timer(rq);
K
Keith Busch 已提交
668
	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
669 670 671 672 673 674 675 676 677

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
678 679 680 681 682

#ifdef CONFIG_BLK_DEV_INTEGRITY
	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
		q->integrity.profile->prepare_fn(rq);
#endif
683
}
684
EXPORT_SYMBOL(blk_mq_start_request);
685

686
static void __blk_mq_requeue_request(struct request *rq)
687 688 689
{
	struct request_queue *q = rq->q;

690 691
	blk_mq_put_driver_tag(rq);

692
	trace_block_rq_requeue(q, rq);
693
	rq_qos_requeue(q, rq);
694

K
Keith Busch 已提交
695 696
	if (blk_mq_request_started(rq)) {
		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
697
		rq->rq_flags &= ~RQF_TIMED_OUT;
698 699 700
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
701 702
}

703
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
704 705 706
{
	__blk_mq_requeue_request(rq);

707 708 709
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

J
Jens Axboe 已提交
710
	BUG_ON(!list_empty(&rq->queuelist));
711
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
712 713 714
}
EXPORT_SYMBOL(blk_mq_requeue_request);

715 716 717
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
718
		container_of(work, struct request_queue, requeue_work.work);
719 720 721
	LIST_HEAD(rq_list);
	struct request *rq, *next;

722
	spin_lock_irq(&q->requeue_lock);
723
	list_splice_init(&q->requeue_list, &rq_list);
724
	spin_unlock_irq(&q->requeue_lock);
725 726

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
727
		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
728 729
			continue;

730
		rq->rq_flags &= ~RQF_SOFTBARRIER;
731
		list_del_init(&rq->queuelist);
732 733 734 735 736 737
		/*
		 * If RQF_DONTPREP, rq has contained some driver specific
		 * data, so insert it to hctx dispatch list to avoid any
		 * merge.
		 */
		if (rq->rq_flags & RQF_DONTPREP)
738
			blk_mq_request_bypass_insert(rq, false, false);
739 740
		else
			blk_mq_sched_insert_request(rq, true, false, false);
741 742 743 744 745
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
746
		blk_mq_sched_insert_request(rq, false, false, false);
747 748
	}

749
	blk_mq_run_hw_queues(q, false);
750 751
}

752 753
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
754 755 756 757 758 759
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
760
	 * request head insertion from the workqueue.
761
	 */
762
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
763 764 765

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
766
		rq->rq_flags |= RQF_SOFTBARRIER;
767 768 769 770 771
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
772 773 774

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
775 776 777 778
}

void blk_mq_kick_requeue_list(struct request_queue *q)
{
779
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 781 782
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

783 784 785
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
786 787
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
788 789 790
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

791 792
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
793 794
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
795
		return tags->rqs[tag];
796
	}
797 798

	return NULL;
799 800 801
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

802 803
static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
			       void *priv, bool reserved)
804 805
{
	/*
806 807
	 * If we find a request that is inflight and the queue matches,
	 * we know the queue is busy. Return false to stop the iteration.
808
	 */
809
	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
810 811 812 813 814 815 816 817 818
		bool *busy = priv;

		*busy = true;
		return false;
	}

	return true;
}

819
bool blk_mq_queue_inflight(struct request_queue *q)
820 821 822
{
	bool busy = false;

823
	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
824 825
	return busy;
}
826
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
827

828
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
829
{
830
	req->rq_flags |= RQF_TIMED_OUT;
831 832 833 834 835 836 837
	if (req->q->mq_ops->timeout) {
		enum blk_eh_timer_return ret;

		ret = req->q->mq_ops->timeout(req, reserved);
		if (ret == BLK_EH_DONE)
			return;
		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
838
	}
839 840

	blk_add_timer(req);
841
}
842

K
Keith Busch 已提交
843
static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
844
{
K
Keith Busch 已提交
845
	unsigned long deadline;
846

K
Keith Busch 已提交
847 848
	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
		return false;
849 850
	if (rq->rq_flags & RQF_TIMED_OUT)
		return false;
851

852
	deadline = READ_ONCE(rq->deadline);
K
Keith Busch 已提交
853 854
	if (time_after_eq(jiffies, deadline))
		return true;
855

K
Keith Busch 已提交
856 857 858 859 860
	if (*next == 0)
		*next = deadline;
	else if (time_after(*next, deadline))
		*next = deadline;
	return false;
861 862
}

863
static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
864 865
		struct request *rq, void *priv, bool reserved)
{
K
Keith Busch 已提交
866 867 868 869 870 871 872
	unsigned long *next = priv;

	/*
	 * Just do a quick check if it is expired before locking the request in
	 * so we're not unnecessarilly synchronizing across CPUs.
	 */
	if (!blk_mq_req_expired(rq, next))
873
		return true;
K
Keith Busch 已提交
874 875 876 877 878 879 880 881 882 883 884

	/*
	 * We have reason to believe the request may be expired. Take a
	 * reference on the request to lock this request lifetime into its
	 * currently allocated context to prevent it from being reallocated in
	 * the event the completion by-passes this timeout handler.
	 *
	 * If the reference was already released, then the driver beat the
	 * timeout handler to posting a natural completion.
	 */
	if (!refcount_inc_not_zero(&rq->ref))
885
		return true;
K
Keith Busch 已提交
886

887
	/*
K
Keith Busch 已提交
888 889 890 891
	 * The request is now locked and cannot be reallocated underneath the
	 * timeout handler's processing. Re-verify this exact request is truly
	 * expired; if it is not expired, then the request was completed and
	 * reallocated as a new request.
892
	 */
K
Keith Busch 已提交
893
	if (blk_mq_req_expired(rq, next))
894
		blk_mq_rq_timed_out(rq, reserved);
895 896 897 898

	if (is_flush_rq(rq, hctx))
		rq->end_io(rq, 0);
	else if (refcount_dec_and_test(&rq->ref))
K
Keith Busch 已提交
899
		__blk_mq_free_request(rq);
900 901

	return true;
902 903
}

904
static void blk_mq_timeout_work(struct work_struct *work)
905
{
906 907
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
K
Keith Busch 已提交
908
	unsigned long next = 0;
909
	struct blk_mq_hw_ctx *hctx;
910
	int i;
911

912 913 914 915 916 917 918 919 920
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
921
	 * blk_freeze_queue_start, and the moment the last request is
922 923 924 925
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
926 927
		return;

K
Keith Busch 已提交
928
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
929

K
Keith Busch 已提交
930 931
	if (next != 0) {
		mod_timer(&q->timeout, next);
932
	} else {
933 934 935 936 937 938
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
939 940 941 942 943
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
944
	}
945
	blk_queue_exit(q);
946 947
}

948 949 950 951 952 953 954 955 956 957
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
958
	enum hctx_type type = hctx->type;
959 960

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
961
	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
962
	sbitmap_clear_bit(sb, bitnr);
963 964 965 966
	spin_unlock(&ctx->lock);
	return true;
}

967 968 969 970
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
971
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972
{
973 974 975 976
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
977

978
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
979
}
980
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
981

982 983 984 985 986 987 988 989 990 991 992
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
M
Ming Lei 已提交
993
	enum hctx_type type = hctx->type;
994 995

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
996 997
	if (!list_empty(&ctx->rq_lists[type])) {
		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
998
		list_del_init(&dispatch_data->rq->queuelist);
M
Ming Lei 已提交
999
		if (list_empty(&ctx->rq_lists[type]))
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
1010
	unsigned off = start ? start->index_hw[hctx->type] : 0;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1022 1023 1024 1025
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1026

1027
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1028 1029
}

1030
bool blk_mq_get_driver_tag(struct request *rq)
1031 1032 1033
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
1034
		.hctx = rq->mq_hctx,
1035
		.flags = BLK_MQ_REQ_NOWAIT,
1036
		.cmd_flags = rq->cmd_flags,
1037
	};
1038
	bool shared;
1039

1040
	if (rq->tag != -1)
1041
		return true;
1042

1043 1044 1045
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1046
	shared = blk_mq_tag_busy(data.hctx);
1047 1048
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1049
		if (shared) {
1050 1051 1052
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1053 1054 1055
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1056
	return rq->tag != -1;
1057 1058
}

1059 1060
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1061 1062 1063 1064 1065
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1066
	spin_lock(&hctx->dispatch_wait_lock);
1067 1068 1069 1070 1071 1072 1073
	if (!list_empty(&wait->entry)) {
		struct sbitmap_queue *sbq;

		list_del_init(&wait->entry);
		sbq = &hctx->tags->bitmap_tags;
		atomic_dec(&sbq->ws_active);
	}
1074 1075
	spin_unlock(&hctx->dispatch_wait_lock);

1076 1077 1078 1079
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1080 1081
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1082 1083
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1084 1085
 * marking us as waiting.
 */
1086
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1087
				 struct request *rq)
1088
{
1089
	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1090
	struct wait_queue_head *wq;
1091 1092
	wait_queue_entry_t *wait;
	bool ret;
1093

1094
	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1095
		blk_mq_sched_mark_restart_hctx(hctx);
1096

1097 1098 1099 1100 1101 1102 1103 1104
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
1105
		return blk_mq_get_driver_tag(rq);
1106 1107
	}

1108
	wait = &hctx->dispatch_wait;
1109 1110 1111
	if (!list_empty_careful(&wait->entry))
		return false;

1112
	wq = &bt_wait_ptr(sbq, hctx)->wait;
1113 1114 1115

	spin_lock_irq(&wq->lock);
	spin_lock(&hctx->dispatch_wait_lock);
1116
	if (!list_empty(&wait->entry)) {
1117 1118
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1119
		return false;
1120 1121
	}

1122
	atomic_inc(&sbq->ws_active);
1123 1124
	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	__add_wait_queue(wq, wait);
1125

1126
	/*
1127 1128 1129
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1130
	 */
1131
	ret = blk_mq_get_driver_tag(rq);
1132
	if (!ret) {
1133 1134
		spin_unlock(&hctx->dispatch_wait_lock);
		spin_unlock_irq(&wq->lock);
1135
		return false;
1136
	}
1137 1138 1139 1140 1141 1142

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	list_del_init(&wait->entry);
1143
	atomic_dec(&sbq->ws_active);
1144 1145
	spin_unlock(&hctx->dispatch_wait_lock);
	spin_unlock_irq(&wq->lock);
1146 1147

	return true;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
/*
 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
 * - EWMA is one simple way to compute running average value
 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
 * - take 4 as factor for avoiding to get too small(0) result, and this
 *   factor doesn't matter because EWMA decreases exponentially
 */
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
	unsigned int ewma;

	if (hctx->queue->elevator)
		return;

	ewma = hctx->dispatch_busy;

	if (!ewma && !busy)
		return;

	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
	if (busy)
		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;

	hctx->dispatch_busy = ewma;
}

1179 1180
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void blk_mq_handle_dev_resource(struct request *rq,
				       struct list_head *list)
{
	struct request *next =
		list_first_entry_or_null(list, struct request, queuelist);

	/*
	 * If an I/O scheduler has been configured and we got a driver tag for
	 * the next request already, free it.
	 */
	if (next)
		blk_mq_put_driver_tag(next);

	list_add(&rq->queuelist, list);
	__blk_mq_requeue_request(rq);
}

1198 1199 1200
/*
 * Returns true if we did some work AND can potentially do more.
 */
1201
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1202
			     bool got_budget)
1203
{
1204
	struct blk_mq_hw_ctx *hctx;
1205
	struct request *rq, *nxt;
1206
	bool no_tag = false;
1207
	int errors, queued;
1208
	blk_status_t ret = BLK_STS_OK;
1209

1210 1211 1212
	if (list_empty(list))
		return false;

1213 1214
	WARN_ON(!list_is_singular(list) && got_budget);

1215 1216 1217
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1218
	errors = queued = 0;
1219
	do {
1220
		struct blk_mq_queue_data bd;
1221

1222
		rq = list_first_entry(list, struct request, queuelist);
1223

1224
		hctx = rq->mq_hctx;
1225 1226 1227
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

1228
		if (!blk_mq_get_driver_tag(rq)) {
1229
			/*
1230
			 * The initial allocation attempt failed, so we need to
1231 1232 1233 1234
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1235
			 */
1236
			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1237
				blk_mq_put_dispatch_budget(hctx);
1238 1239 1240 1241 1242 1243
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1244 1245 1246 1247
				break;
			}
		}

1248 1249
		list_del_init(&rq->queuelist);

1250
		bd.rq = rq;
1251 1252 1253 1254 1255 1256 1257 1258 1259

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
1260
			bd.last = !blk_mq_get_driver_tag(nxt);
1261
		}
1262 1263

		ret = q->mq_ops->queue_rq(hctx, &bd);
1264
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1265
			blk_mq_handle_dev_resource(rq, list);
1266
			break;
1267 1268 1269
		}

		if (unlikely(ret != BLK_STS_OK)) {
1270
			errors++;
1271
			blk_mq_end_request(rq, BLK_STS_IOERR);
1272
			continue;
1273 1274
		}

1275
		queued++;
1276
	} while (!list_empty(list));
1277

1278
	hctx->dispatched[queued_to_index(queued)]++;
1279 1280 1281 1282 1283

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1284
	if (!list_empty(list)) {
1285 1286
		bool needs_restart;

J
Jens Axboe 已提交
1287 1288 1289 1290 1291 1292 1293 1294
		/*
		 * If we didn't flush the entire list, we could have told
		 * the driver there was more coming, but that turned out to
		 * be a lie.
		 */
		if (q->mq_ops->commit_rqs)
			q->mq_ops->commit_rqs(hctx);

1295
		spin_lock(&hctx->lock);
1296
		list_splice_tail_init(list, &hctx->dispatch);
1297
		spin_unlock(&hctx->lock);
1298

1299
		/*
1300 1301 1302
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1303
		 *
1304 1305 1306 1307
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1308
		 *
1309 1310 1311 1312 1313 1314 1315
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1316
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1317
		 *   and dm-rq.
1318 1319 1320 1321
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1322
		 */
1323 1324
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1325
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1326
			blk_mq_run_hw_queue(hctx, true);
1327 1328
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1329

1330
		blk_mq_update_dispatch_busy(hctx, true);
1331
		return false;
1332 1333
	} else
		blk_mq_update_dispatch_busy(hctx, false);
1334

1335 1336 1337 1338 1339 1340 1341
	/*
	 * If the host/device is unable to accept more work, inform the
	 * caller of that.
	 */
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
		return false;

1342
	return (queued + errors) != 0;
1343 1344
}

1345 1346 1347 1348 1349 1350
/**
 * __blk_mq_run_hw_queue - Run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 *
 * Send pending requests to the hardware.
 */
1351 1352 1353 1354
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1355 1356 1357
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1371
	 */
1372 1373 1374 1375 1376 1377 1378
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1379

1380 1381 1382 1383 1384 1385
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1386
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1387

1388 1389 1390
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1391 1392
}

1393 1394 1395 1396 1397 1398 1399 1400 1401
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1402 1403 1404 1405 1406 1407 1408 1409
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1410
	bool tried = false;
1411
	int next_cpu = hctx->next_cpu;
1412

1413 1414
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1415 1416

	if (--hctx->next_cpu_batch <= 0) {
1417
select_cpu:
1418
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1419
				cpu_online_mask);
1420
		if (next_cpu >= nr_cpu_ids)
1421
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1422 1423 1424
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1425 1426 1427 1428
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1429
	if (!cpu_online(next_cpu)) {
1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1439
		hctx->next_cpu = next_cpu;
1440 1441 1442
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1443 1444 1445

	hctx->next_cpu = next_cpu;
	return next_cpu;
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456
/**
 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * If !@async, try to run the queue now. Else, run the queue asynchronously and
 * with a delay of @msecs.
 */
1457 1458
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1459
{
1460
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1461 1462
		return;

1463
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1464 1465
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1466
			__blk_mq_run_hw_queue(hctx);
1467
			put_cpu();
1468 1469
			return;
		}
1470

1471
		put_cpu();
1472
	}
1473

1474 1475
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1476 1477
}

1478 1479 1480 1481 1482 1483 1484
/**
 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
 * @hctx: Pointer to the hardware queue to run.
 * @msecs: Microseconds of delay to wait before running the queue.
 *
 * Run a hardware queue asynchronously with a delay of @msecs.
 */
1485 1486 1487 1488 1489 1490
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1491 1492 1493 1494 1495 1496 1497 1498 1499
/**
 * blk_mq_run_hw_queue - Start to run a hardware queue.
 * @hctx: Pointer to the hardware queue to run.
 * @async: If we want to run the queue asynchronously.
 *
 * Check if the request queue is not in a quiesced state and if there are
 * pending requests to be sent. If this is true, run the queue to send requests
 * to hardware.
 */
1500
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1501
{
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1513 1514 1515 1516
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1517

1518
	if (need_run)
1519
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1520
}
O
Omar Sandoval 已提交
1521
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1522

1523 1524 1525 1526 1527
/**
 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
 * @q: Pointer to the request queue to run.
 * @async: If we want to run the queue asynchronously.
 */
1528
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1529 1530 1531 1532 1533
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1534
		if (blk_mq_hctx_stopped(hctx))
1535 1536
			continue;

1537
		blk_mq_run_hw_queue(hctx, async);
1538 1539
	}
}
1540
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1562 1563 1564
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1565
 * BLK_STS_RESOURCE is usually returned.
1566 1567 1568 1569 1570
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1571 1572
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1573
	cancel_delayed_work(&hctx->run_work);
1574

1575
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1576
}
1577
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1578

1579 1580 1581
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1582
 * BLK_STS_RESOURCE is usually returned.
1583 1584 1585 1586 1587
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1588 1589
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1590 1591 1592 1593 1594
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1595 1596 1597
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1598 1599 1600
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1601

1602
	blk_mq_run_hw_queue(hctx, false);
1603 1604 1605
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1626
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1627 1628 1629 1630
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1631 1632
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1633 1634 1635
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1636
static void blk_mq_run_work_fn(struct work_struct *work)
1637 1638 1639
{
	struct blk_mq_hw_ctx *hctx;

1640
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1641

1642
	/*
M
Ming Lei 已提交
1643
	 * If we are stopped, don't run the queue.
1644
	 */
M
Ming Lei 已提交
1645
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1646
		return;
1647 1648 1649 1650

	__blk_mq_run_hw_queue(hctx);
}

1651 1652 1653
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1654
{
J
Jens Axboe 已提交
1655
	struct blk_mq_ctx *ctx = rq->mq_ctx;
M
Ming Lei 已提交
1656
	enum hctx_type type = hctx->type;
J
Jens Axboe 已提交
1657

1658 1659
	lockdep_assert_held(&ctx->lock);

1660 1661
	trace_block_rq_insert(hctx->queue, rq);

1662
	if (at_head)
M
Ming Lei 已提交
1663
		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1664
	else
M
Ming Lei 已提交
1665
		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1666
}
1667

1668 1669
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1670 1671 1672
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1673 1674
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1675
	__blk_mq_insert_req_list(hctx, rq, at_head);
1676 1677 1678
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1679 1680 1681 1682 1683
/**
 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
 * @rq: Pointer to request to be inserted.
 * @run_queue: If we should run the hardware queue after inserting the request.
 *
1684 1685 1686
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1687 1688
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
				  bool run_queue)
1689
{
1690
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1691 1692

	spin_lock(&hctx->lock);
1693 1694 1695 1696
	if (at_head)
		list_add(&rq->queuelist, &hctx->dispatch);
	else
		list_add_tail(&rq->queuelist, &hctx->dispatch);
1697 1698
	spin_unlock(&hctx->lock);

1699 1700
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1701 1702
}

1703 1704
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1705 1706

{
1707
	struct request *rq;
M
Ming Lei 已提交
1708
	enum hctx_type type = hctx->type;
1709

1710 1711 1712 1713
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
1714
	list_for_each_entry(rq, list, queuelist) {
J
Jens Axboe 已提交
1715
		BUG_ON(rq->mq_ctx != ctx);
1716
		trace_block_rq_insert(hctx->queue, rq);
1717
	}
1718 1719

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
1720
	list_splice_tail_init(list, &ctx->rq_lists[type]);
1721
	blk_mq_hctx_mark_pending(hctx, ctx);
1722 1723 1724
	spin_unlock(&ctx->lock);
}

J
Jens Axboe 已提交
1725
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1726 1727 1728 1729
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

P
Pavel Begunkov 已提交
1730 1731 1732 1733
	if (rqa->mq_ctx != rqb->mq_ctx)
		return rqa->mq_ctx > rqb->mq_ctx;
	if (rqa->mq_hctx != rqb->mq_hctx)
		return rqa->mq_hctx > rqb->mq_hctx;
J
Jens Axboe 已提交
1734 1735

	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1736 1737 1738 1739 1740 1741
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	LIST_HEAD(list);

1742 1743
	if (list_empty(&plug->mq_list))
		return;
1744 1745
	list_splice_init(&plug->mq_list, &list);

1746 1747
	if (plug->rq_count > 2 && plug->multiple_queues)
		list_sort(NULL, &list, plug_rq_cmp);
1748

1749 1750
	plug->rq_count = 0;

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	do {
		struct list_head rq_list;
		struct request *rq, *head_rq = list_entry_rq(list.next);
		struct list_head *pos = &head_rq->queuelist; /* skip first */
		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
		unsigned int depth = 1;

		list_for_each_continue(pos, &list) {
			rq = list_entry_rq(pos);
			BUG_ON(!rq->q);
			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
				break;
			depth++;
1765 1766
		}

1767 1768
		list_cut_before(&rq_list, &list, pos);
		trace_block_unplug(head_rq->q, depth, !from_schedule);
1769
		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1770
						from_schedule);
1771
	} while(!list_empty(&list));
1772 1773
}

1774 1775
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
		unsigned int nr_segs)
1776
{
1777 1778 1779 1780 1781
	if (bio->bi_opf & REQ_RAHEAD)
		rq->cmd_flags |= REQ_FAILFAST_MASK;

	rq->__sector = bio->bi_iter.bi_sector;
	rq->write_hint = bio->bi_write_hint;
1782
	blk_rq_bio_prep(rq, bio, nr_segs);
1783

1784
	blk_account_io_start(rq, true);
1785 1786
}

1787 1788
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
1789
					    blk_qc_t *cookie, bool last)
1790 1791 1792 1793
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1794
		.last = last,
1795
	};
1796
	blk_qc_t new_cookie;
1797
	blk_status_t ret;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
1809
		blk_mq_update_dispatch_busy(hctx, false);
1810 1811 1812
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1813
	case BLK_STS_DEV_RESOURCE:
1814
		blk_mq_update_dispatch_busy(hctx, true);
1815 1816 1817
		__blk_mq_requeue_request(rq);
		break;
	default:
1818
		blk_mq_update_dispatch_busy(hctx, false);
1819 1820 1821 1822 1823 1824 1825
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

1826
static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1827
						struct request *rq,
1828
						blk_qc_t *cookie,
1829
						bool bypass_insert, bool last)
1830 1831
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1832 1833
	bool run_queue = true;

1834
	/*
1835
	 * RCU or SRCU read lock is needed before checking quiesced flag.
1836
	 *
1837 1838 1839
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
	 * and avoid driver to try to dispatch again.
1840
	 */
1841
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1842
		run_queue = false;
1843 1844
		bypass_insert = false;
		goto insert;
M
Ming Lei 已提交
1845
	}
1846

1847 1848
	if (q->elevator && !bypass_insert)
		goto insert;
1849

1850
	if (!blk_mq_get_dispatch_budget(hctx))
1851
		goto insert;
1852

1853
	if (!blk_mq_get_driver_tag(rq)) {
1854
		blk_mq_put_dispatch_budget(hctx);
1855
		goto insert;
1856
	}
1857

1858 1859 1860 1861 1862
	return __blk_mq_issue_directly(hctx, rq, cookie, last);
insert:
	if (bypass_insert)
		return BLK_STS_RESOURCE;

1863
	blk_mq_request_bypass_insert(rq, false, run_queue);
1864 1865 1866
	return BLK_STS_OK;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
/**
 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
 * @hctx: Pointer of the associated hardware queue.
 * @rq: Pointer to request to be sent.
 * @cookie: Request queue cookie.
 *
 * If the device has enough resources to accept a new request now, send the
 * request directly to device driver. Else, insert at hctx->dispatch queue, so
 * we can try send it another time in the future. Requests inserted at this
 * queue have higher priority.
 */
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	blk_status_t ret;
	int srcu_idx;

	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);

	hctx_lock(hctx, &srcu_idx);

	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1890
		blk_mq_request_bypass_insert(rq, false, true);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

	hctx_unlock(hctx, srcu_idx);
}

blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1906
	hctx_unlock(hctx, srcu_idx);
1907 1908

	return ret;
1909 1910
}

1911 1912 1913 1914
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
		struct list_head *list)
{
	while (!list_empty(list)) {
1915
		blk_status_t ret;
1916 1917 1918 1919
		struct request *rq = list_first_entry(list, struct request,
				queuelist);

		list_del_init(&rq->queuelist);
1920 1921 1922 1923
		ret = blk_mq_request_issue_directly(rq, list_empty(list));
		if (ret != BLK_STS_OK) {
			if (ret == BLK_STS_RESOURCE ||
					ret == BLK_STS_DEV_RESOURCE) {
1924
				blk_mq_request_bypass_insert(rq, false,
1925
							list_empty(list));
1926 1927 1928 1929
				break;
			}
			blk_mq_end_request(rq, ret);
		}
1930
	}
J
Jens Axboe 已提交
1931 1932 1933 1934 1935 1936

	/*
	 * If we didn't flush the entire list, we could have told
	 * the driver there was more coming, but that turned out to
	 * be a lie.
	 */
1937
	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
J
Jens Axboe 已提交
1938
		hctx->queue->mq_ops->commit_rqs(hctx);
1939 1940
}

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
	list_add_tail(&rq->queuelist, &plug->mq_list);
	plug->rq_count++;
	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
		struct request *tmp;

		tmp = list_first_entry(&plug->mq_list, struct request,
						queuelist);
		if (tmp->q != rq->q)
			plug->multiple_queues = true;
	}
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
/**
 * blk_mq_make_request - Create and send a request to block device.
 * @q: Request queue pointer.
 * @bio: Bio pointer.
 *
 * Builds up a request structure from @q and @bio and send to the device. The
 * request may not be queued directly to hardware if:
 * * This request can be merged with another one
 * * We want to place request at plug queue for possible future merging
 * * There is an IO scheduler active at this queue
 *
 * It will not queue the request if there is an error with the bio, or at the
 * request creation.
 *
 * Returns: Request queue cookie.
 */
1971
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1972
{
1973
	const int is_sync = op_is_sync(bio->bi_opf);
1974
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1975
	struct blk_mq_alloc_data data = { .flags = 0};
1976
	struct request *rq;
1977
	struct blk_plug *plug;
1978
	struct request *same_queue_rq = NULL;
1979
	unsigned int nr_segs;
1980
	blk_qc_t cookie;
1981 1982

	blk_queue_bounce(q, &bio);
1983
	__blk_queue_split(q, &bio, &nr_segs);
1984

1985
	if (!bio_integrity_prep(bio))
1986
		return BLK_QC_T_NONE;
1987

1988
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1989
	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1990
		return BLK_QC_T_NONE;
1991

1992
	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1993 1994
		return BLK_QC_T_NONE;

1995
	rq_qos_throttle(q, bio);
J
Jens Axboe 已提交
1996

1997
	data.cmd_flags = bio->bi_opf;
1998
	rq = blk_mq_get_request(q, bio, &data);
J
Jens Axboe 已提交
1999
	if (unlikely(!rq)) {
2000
		rq_qos_cleanup(q, bio);
J
Jens Axboe 已提交
2001
		if (bio->bi_opf & REQ_NOWAIT)
2002
			bio_wouldblock_error(bio);
J
Jens Axboe 已提交
2003
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
2004 2005
	}

2006 2007
	trace_block_getrq(q, bio, bio->bi_opf);

2008
	rq_qos_track(q, rq, bio);
2009

2010
	cookie = request_to_qc_t(data.hctx, rq);
2011

2012 2013
	blk_mq_bio_to_request(rq, bio, nr_segs);

2014
	plug = blk_mq_plug(q, bio);
2015
	if (unlikely(is_flush_fua)) {
2016
		/* Bypass scheduler for flush requests */
2017 2018
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
M
Ming Lei 已提交
2019 2020
	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
				!blk_queue_nonrot(q))) {
2021 2022 2023
		/*
		 * Use plugging if we have a ->commit_rqs() hook as well, as
		 * we know the driver uses bd->last in a smart fashion.
M
Ming Lei 已提交
2024 2025 2026
		 *
		 * Use normal plugging if this disk is slow HDD, as sequential
		 * IO may benefit a lot from plug merging.
2027
		 */
2028
		unsigned int request_count = plug->rq_count;
2029 2030
		struct request *last = NULL;

M
Ming Lei 已提交
2031
		if (!request_count)
2032
			trace_block_plug(q);
2033 2034
		else
			last = list_entry_rq(plug->mq_list.prev);
2035

2036 2037
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2038 2039
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
2040
		}
2041

2042
		blk_add_rq_to_plug(plug, rq);
2043
	} else if (q->elevator) {
2044
		/* Insert the request at the IO scheduler queue */
2045
		blk_mq_sched_insert_request(rq, false, true, true);
2046
	} else if (plug && !blk_queue_nomerges(q)) {
2047
		/*
2048
		 * We do limited plugging. If the bio can be merged, do that.
2049 2050
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
2051 2052
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
2053
		 */
2054 2055
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
2056
		if (same_queue_rq) {
2057
			list_del_init(&same_queue_rq->queuelist);
2058 2059
			plug->rq_count--;
		}
2060
		blk_add_rq_to_plug(plug, rq);
2061
		trace_block_plug(q);
2062

2063
		if (same_queue_rq) {
2064
			data.hctx = same_queue_rq->mq_hctx;
2065
			trace_block_unplug(q, 1, true);
2066
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2067
					&cookie);
2068
		}
2069 2070
	} else if ((q->nr_hw_queues > 1 && is_sync) ||
			!data.hctx->dispatch_busy) {
2071 2072 2073 2074
		/*
		 * There is no scheduler and we can try to send directly
		 * to the hardware.
		 */
2075
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2076
	} else {
2077
		/* Default case. */
2078
		blk_mq_sched_insert_request(rq, false, true, true);
2079
	}
2080

2081
	return cookie;
2082 2083
}

2084 2085
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
2086
{
2087
	struct page *page;
2088

2089
	if (tags->rqs && set->ops->exit_request) {
2090
		int i;
2091

2092
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
2093 2094 2095
			struct request *rq = tags->static_rqs[i];

			if (!rq)
2096
				continue;
2097
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
2098
			tags->static_rqs[i] = NULL;
2099
		}
2100 2101
	}

2102 2103
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2104
		list_del_init(&page->lru);
2105 2106
		/*
		 * Remove kmemleak object previously allocated in
2107
		 * blk_mq_alloc_rqs().
2108 2109
		 */
		kmemleak_free(page_address(page));
2110 2111
		__free_pages(page, page->private);
	}
2112
}
2113

2114 2115
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2116
	kfree(tags->rqs);
2117
	tags->rqs = NULL;
J
Jens Axboe 已提交
2118 2119
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2120

2121
	blk_mq_free_tags(tags);
2122 2123
}

2124 2125 2126 2127
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2128
{
2129
	struct blk_mq_tags *tags;
2130
	int node;
2131

2132
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2133 2134 2135 2136
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2137
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2138 2139
	if (!tags)
		return NULL;
2140

2141
	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2142
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2143
				 node);
2144 2145 2146 2147
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2148

2149 2150 2151
	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
					node);
J
Jens Axboe 已提交
2152 2153 2154 2155 2156 2157
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2158 2159 2160 2161 2162 2163 2164 2165
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

K
Keith Busch 已提交
2177
	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2178 2179 2180
	return 0;
}

2181 2182 2183 2184 2185
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2186 2187
	int node;

2188
	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2189 2190
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2191 2192 2193

	INIT_LIST_HEAD(&tags->page_list);

2194 2195 2196 2197
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2198
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2199
				cache_line_size());
2200
	left = rq_size * depth;
2201

2202
	for (i = 0; i < depth; ) {
2203 2204 2205 2206 2207
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2208
		while (this_order && left < order_to_size(this_order - 1))
2209 2210 2211
			this_order--;

		do {
2212
			page = alloc_pages_node(node,
2213
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2214
				this_order);
2215 2216 2217 2218 2219 2220 2221 2222 2223
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2224
			goto fail;
2225 2226

		page->private = this_order;
2227
		list_add_tail(&page->lru, &tags->page_list);
2228 2229

		p = page_address(page);
2230 2231 2232 2233
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2234
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2235
		entries_per_page = order_to_size(this_order) / rq_size;
2236
		to_do = min(entries_per_page, depth - i);
2237 2238
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2239 2240 2241
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2242 2243 2244
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2245 2246
			}

2247 2248 2249 2250
			p += rq_size;
			i++;
		}
	}
2251
	return 0;
2252

2253
fail:
2254 2255
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2256 2257
}

J
Jens Axboe 已提交
2258 2259 2260 2261 2262
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2263
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2264
{
2265
	struct blk_mq_hw_ctx *hctx;
2266 2267
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);
M
Ming Lei 已提交
2268
	enum hctx_type type;
2269

2270
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2271
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
M
Ming Lei 已提交
2272
	type = hctx->type;
2273 2274

	spin_lock(&ctx->lock);
M
Ming Lei 已提交
2275 2276
	if (!list_empty(&ctx->rq_lists[type])) {
		list_splice_init(&ctx->rq_lists[type], &tmp);
2277 2278 2279 2280 2281
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2282
		return 0;
2283

J
Jens Axboe 已提交
2284 2285 2286
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2287 2288

	blk_mq_run_hw_queue(hctx, true);
2289
	return 0;
2290 2291
}

2292
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2293
{
2294 2295
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2296 2297
}

2298
/* hctx->ctxs will be freed in queue's release handler */
2299 2300 2301 2302
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2303 2304
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2305

2306
	if (set->ops->exit_request)
2307
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2308

2309 2310 2311
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2312
	blk_mq_remove_cpuhp(hctx);
2313 2314 2315 2316

	spin_lock(&q->unused_hctx_lock);
	list_add(&hctx->hctx_list, &q->unused_hctx_list);
	spin_unlock(&q->unused_hctx_lock);
2317 2318
}

M
Ming Lei 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2328
		blk_mq_debugfs_unregister_hctx(hctx);
2329
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2330 2331 2332
	}
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

2347 2348 2349
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2350
{
2351 2352 2353 2354 2355 2356 2357 2358 2359
	hctx->queue_num = hctx_idx;

	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto unregister_cpu_notifier;
2360

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
				hctx->numa_node))
		goto exit_hctx;
	return 0;

 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
		int node)
{
	struct blk_mq_hw_ctx *hctx;
	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;

	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
	if (!hctx)
		goto fail_alloc_hctx;

	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
		goto free_hctx;

	atomic_set(&hctx->nr_active, 0);
2389
	if (node == NUMA_NO_NODE)
2390 2391
		node = set->numa_node;
	hctx->numa_node = node;
2392

2393
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2394 2395 2396
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2397
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2398

2399 2400
	INIT_LIST_HEAD(&hctx->hctx_list);

2401
	/*
2402 2403
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2404
	 */
2405
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2406
			gfp, node);
2407
	if (!hctx->ctxs)
2408
		goto free_cpumask;
2409

2410
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2411
				gfp, node))
2412 2413
		goto free_ctxs;
	hctx->nr_ctx = 0;
2414

2415
	spin_lock_init(&hctx->dispatch_wait_lock);
2416 2417 2418
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2419
	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2420
	if (!hctx->fq)
2421
		goto free_bitmap;
2422

2423
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2424
		init_srcu_struct(hctx->srcu);
2425
	blk_mq_hctx_kobj_init(hctx);
2426

2427
	return hctx;
2428

2429
 free_bitmap:
2430
	sbitmap_free(&hctx->ctx_map);
2431 2432
 free_ctxs:
	kfree(hctx->ctxs);
2433 2434 2435 2436 2437 2438
 free_cpumask:
	free_cpumask_var(hctx->cpumask);
 free_hctx:
	kfree(hctx);
 fail_alloc_hctx:
	return NULL;
2439
}
2440 2441 2442 2443

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
J
Jens Axboe 已提交
2444 2445
	struct blk_mq_tag_set *set = q->tag_set;
	unsigned int i, j;
2446 2447 2448 2449

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
2450
		int k;
2451 2452 2453

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
M
Ming Lei 已提交
2454 2455 2456
		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
			INIT_LIST_HEAD(&__ctx->rq_lists[k]);

2457 2458 2459 2460 2461 2462
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
J
Jens Axboe 已提交
2463 2464 2465 2466 2467
		for (j = 0; j < set->nr_maps; j++) {
			hctx = blk_mq_map_queue_type(q, j, i);
			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
				hctx->numa_node = local_memory_node(cpu_to_node(i));
		}
2468 2469 2470
	}
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2493
	if (set->tags && set->tags[hctx_idx]) {
2494 2495 2496 2497
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2498 2499
}

2500
static void blk_mq_map_swqueue(struct request_queue *q)
2501
{
J
Jens Axboe 已提交
2502
	unsigned int i, j, hctx_idx;
2503 2504
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2505
	struct blk_mq_tag_set *set = q->tag_set;
2506 2507

	queue_for_each_hw_ctx(q, hctx, i) {
2508
		cpumask_clear(hctx->cpumask);
2509
		hctx->nr_ctx = 0;
2510
		hctx->dispatch_from = NULL;
2511 2512 2513
	}

	/*
2514
	 * Map software to hardware queues.
2515 2516
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2517
	 */
2518
	for_each_possible_cpu(i) {
2519
		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2520 2521 2522 2523 2524 2525 2526 2527 2528
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2529
			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2530 2531
		}

2532
		ctx = per_cpu_ptr(q->queue_ctx, i);
J
Jens Axboe 已提交
2533
		for (j = 0; j < set->nr_maps; j++) {
2534 2535 2536
			if (!set->map[j].nr_queues) {
				ctx->hctxs[j] = blk_mq_map_queue_type(q,
						HCTX_TYPE_DEFAULT, i);
2537
				continue;
2538
			}
2539

J
Jens Axboe 已提交
2540
			hctx = blk_mq_map_queue_type(q, j, i);
2541
			ctx->hctxs[j] = hctx;
J
Jens Axboe 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
			/*
			 * If the CPU is already set in the mask, then we've
			 * mapped this one already. This can happen if
			 * devices share queues across queue maps.
			 */
			if (cpumask_test_cpu(i, hctx->cpumask))
				continue;

			cpumask_set_cpu(i, hctx->cpumask);
			hctx->type = j;
			ctx->index_hw[hctx->type] = hctx->nr_ctx;
			hctx->ctxs[hctx->nr_ctx++] = ctx;

			/*
			 * If the nr_ctx type overflows, we have exceeded the
			 * amount of sw queues we can support.
			 */
			BUG_ON(!hctx->nr_ctx);
		}
2561 2562 2563 2564

		for (; j < HCTX_MAX_TYPES; j++)
			ctx->hctxs[j] = blk_mq_map_queue_type(q,
					HCTX_TYPE_DEFAULT, i);
2565
	}
2566 2567

	queue_for_each_hw_ctx(q, hctx, i) {
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}
2583

M
Ming Lei 已提交
2584 2585 2586
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2587 2588 2589 2590 2591
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2592
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2593

2594 2595 2596
		/*
		 * Initialize batch roundrobin counts
		 */
2597
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2598 2599
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2600 2601
}

2602 2603 2604 2605
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2606
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2607 2608 2609 2610
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2611
	queue_for_each_hw_ctx(q, hctx, i) {
2612
		if (shared)
2613
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2614
		else
2615 2616 2617 2618
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

2619 2620
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2621 2622
{
	struct request_queue *q;
2623

2624 2625
	lockdep_assert_held(&set->tag_list_lock);

2626 2627
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2628
		queue_set_hctx_shared(q, shared);
2629 2630 2631 2632 2633 2634 2635 2636 2637
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2638
	list_del_rcu(&q->tag_set_list);
2639 2640 2641 2642 2643 2644
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2645
	mutex_unlock(&set->tag_list_lock);
2646
	INIT_LIST_HEAD(&q->tag_set_list);
2647 2648 2649 2650 2651 2652
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	mutex_lock(&set->tag_list_lock);
2653

2654 2655 2656 2657 2658
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2659 2660 2661 2662 2663 2664
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2665
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2666

2667 2668 2669
	mutex_unlock(&set->tag_list_lock);
}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
	struct blk_mq_ctxs *ctxs;
	int cpu;

	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
	if (!ctxs)
		return -ENOMEM;

	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctxs->queue_ctx)
		goto fail;

	for_each_possible_cpu(cpu) {
		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
		ctx->ctxs = ctxs;
	}

	q->mq_kobj = &ctxs->kobj;
	q->queue_ctx = ctxs->queue_ctx;

	return 0;
 fail:
	kfree(ctxs);
	return -ENOMEM;
}

2698 2699 2700 2701 2702 2703 2704 2705
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
2706 2707
	struct blk_mq_hw_ctx *hctx, *next;
	int i;
2708

2709 2710 2711 2712 2713 2714
	queue_for_each_hw_ctx(q, hctx, i)
		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));

	/* all hctx are in .unused_hctx_list now */
	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
		list_del_init(&hctx->hctx_list);
2715
		kobject_put(&hctx->kobj);
2716
	}
2717 2718 2719

	kfree(q->queue_hw_ctx);

2720 2721 2722 2723 2724
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);
2725 2726
}

2727 2728
struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
		void *queuedata)
2729 2730 2731
{
	struct request_queue *uninit_q, *q;

2732
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2733 2734
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);
2735
	uninit_q->queuedata = queuedata;
2736

2737 2738 2739 2740 2741
	/*
	 * Initialize the queue without an elevator. device_add_disk() will do
	 * the initialization.
	 */
	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2742 2743 2744 2745 2746
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
2747 2748 2749 2750 2751 2752
EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	return blk_mq_init_queue_data(set, NULL);
}
2753 2754
EXPORT_SYMBOL(blk_mq_init_queue);

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
/*
 * Helper for setting up a queue with mq ops, given queue depth, and
 * the passed in mq ops flags.
 */
struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
					   const struct blk_mq_ops *ops,
					   unsigned int queue_depth,
					   unsigned int set_flags)
{
	struct request_queue *q;
	int ret;

	memset(set, 0, sizeof(*set));
	set->ops = ops;
	set->nr_hw_queues = 1;
J
Jens Axboe 已提交
2770
	set->nr_maps = 1;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	set->queue_depth = queue_depth;
	set->numa_node = NUMA_NO_NODE;
	set->flags = set_flags;

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		return ERR_PTR(ret);

	q = blk_mq_init_queue(set);
	if (IS_ERR(q)) {
		blk_mq_free_tag_set(set);
		return q;
	}

	return q;
}
EXPORT_SYMBOL(blk_mq_init_sq_queue);

2789 2790 2791 2792
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
		struct blk_mq_tag_set *set, struct request_queue *q,
		int hctx_idx, int node)
{
2793
	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	/* reuse dead hctx first */
	spin_lock(&q->unused_hctx_lock);
	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
		if (tmp->numa_node == node) {
			hctx = tmp;
			break;
		}
	}
	if (hctx)
		list_del_init(&hctx->hctx_list);
	spin_unlock(&q->unused_hctx_lock);

	if (!hctx)
		hctx = blk_mq_alloc_hctx(q, set, node);
2809
	if (!hctx)
2810
		goto fail;
2811

2812 2813
	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
		goto free_hctx;
2814 2815

	return hctx;
2816 2817 2818 2819 2820

 free_hctx:
	kobject_put(&hctx->kobj);
 fail:
	return NULL;
2821 2822
}

K
Keith Busch 已提交
2823 2824
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2825
{
2826
	int i, j, end;
K
Keith Busch 已提交
2827
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	if (q->nr_hw_queues < set->nr_hw_queues) {
		struct blk_mq_hw_ctx **new_hctxs;

		new_hctxs = kcalloc_node(set->nr_hw_queues,
				       sizeof(*new_hctxs), GFP_KERNEL,
				       set->numa_node);
		if (!new_hctxs)
			return;
		if (hctxs)
			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
			       sizeof(*hctxs));
		q->queue_hw_ctx = new_hctxs;
		kfree(hctxs);
		hctxs = new_hctxs;
	}

2845 2846
	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2847
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2848
		int node;
2849
		struct blk_mq_hw_ctx *hctx;
K
Keith Busch 已提交
2850

2851
		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2852 2853 2854 2855 2856 2857 2858
		/*
		 * If the hw queue has been mapped to another numa node,
		 * we need to realloc the hctx. If allocation fails, fallback
		 * to use the previous one.
		 */
		if (hctxs[i] && (hctxs[i]->numa_node == node))
			continue;
K
Keith Busch 已提交
2859

2860 2861
		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
		if (hctx) {
2862
			if (hctxs[i])
2863 2864 2865 2866 2867 2868 2869 2870 2871
				blk_mq_exit_hctx(q, set, hctxs[i], i);
			hctxs[i] = hctx;
		} else {
			if (hctxs[i])
				pr_warn("Allocate new hctx on node %d fails,\
						fallback to previous one on node %d\n",
						node, hctxs[i]->numa_node);
			else
				break;
K
Keith Busch 已提交
2872
		}
2873
	}
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * Increasing nr_hw_queues fails. Free the newly allocated
	 * hctxs and keep the previous q->nr_hw_queues.
	 */
	if (i != set->nr_hw_queues) {
		j = q->nr_hw_queues;
		end = i;
	} else {
		j = i;
		end = q->nr_hw_queues;
		q->nr_hw_queues = set->nr_hw_queues;
	}
2886

2887
	for (; j < end; j++) {
K
Keith Busch 已提交
2888 2889 2890
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2891 2892
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2893 2894 2895 2896
			blk_mq_exit_hctx(q, set, hctx, j);
			hctxs[j] = NULL;
		}
	}
2897
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2898 2899 2900
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2901 2902
						  struct request_queue *q,
						  bool elevator_init)
K
Keith Busch 已提交
2903
{
M
Ming Lei 已提交
2904 2905 2906
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2907
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2908 2909
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2910 2911 2912
	if (!q->poll_cb)
		goto err_exit;

2913
	if (blk_mq_alloc_ctxs(q))
2914
		goto err_poll;
K
Keith Busch 已提交
2915

2916 2917 2918
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

2919 2920 2921
	INIT_LIST_HEAD(&q->unused_hctx_list);
	spin_lock_init(&q->unused_hctx_lock);

K
Keith Busch 已提交
2922 2923 2924
	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2925

2926
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2927
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2928

J
Jens Axboe 已提交
2929
	q->tag_set = set;
2930

2931
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2932 2933
	if (set->nr_maps > HCTX_TYPE_POLL &&
	    set->map[HCTX_TYPE_POLL].nr_queues)
2934
		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2935

2936 2937
	q->sg_reserved_size = INT_MAX;

2938
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2939 2940 2941
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2942
	blk_queue_make_request(q, blk_mq_make_request);
2943

2944 2945 2946 2947 2948
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2949 2950 2951
	/*
	 * Default to classic polling
	 */
2952
	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2953

2954
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2955
	blk_mq_add_queue_tag_set(set, q);
2956
	blk_mq_map_swqueue(q);
2957

2958 2959
	if (elevator_init)
		elevator_init_mq(q);
2960

2961
	return q;
2962

2963
err_hctxs:
K
Keith Busch 已提交
2964
	kfree(q->queue_hw_ctx);
2965
	q->nr_hw_queues = 0;
2966
	blk_mq_sysfs_deinit(q);
2967 2968 2969
err_poll:
	blk_stat_free_callback(q->poll_cb);
	q->poll_cb = NULL;
M
Ming Lin 已提交
2970 2971
err_exit:
	q->mq_ops = NULL;
2972 2973
	return ERR_PTR(-ENOMEM);
}
2974
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2975

2976 2977
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
2978
{
M
Ming Lei 已提交
2979
	struct blk_mq_tag_set	*set = q->tag_set;
2980

2981
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2982
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2983 2984
}

2985 2986 2987 2988
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2989 2990
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2991 2992 2993 2994 2995 2996
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2997
		blk_mq_free_rq_map(set->tags[i]);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

3037 3038
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
3039 3040 3041 3042 3043 3044 3045 3046
	/*
	 * blk_mq_map_queues() and multiple .map_queues() implementations
	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
	 * number of hardware queues.
	 */
	if (set->nr_maps == 1)
		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;

3047
	if (set->ops->map_queues && !is_kdump_kernel()) {
J
Jens Axboe 已提交
3048 3049
		int i;

3050 3051 3052 3053 3054 3055 3056
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
J
Jens Axboe 已提交
3057
		 * 		set->map[x].mq_map[cpu] = queue;
3058 3059 3060 3061 3062 3063
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
J
Jens Axboe 已提交
3064 3065
		for (i = 0; i < set->nr_maps; i++)
			blk_mq_clear_mq_map(&set->map[i]);
3066

3067
		return set->ops->map_queues(set);
J
Jens Axboe 已提交
3068 3069
	} else {
		BUG_ON(set->nr_maps > 1);
3070
		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
J
Jens Axboe 已提交
3071
	}
3072 3073
}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
				  int cur_nr_hw_queues, int new_nr_hw_queues)
{
	struct blk_mq_tags **new_tags;

	if (cur_nr_hw_queues >= new_nr_hw_queues)
		return 0;

	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
				GFP_KERNEL, set->numa_node);
	if (!new_tags)
		return -ENOMEM;

	if (set->tags)
		memcpy(new_tags, set->tags, cur_nr_hw_queues *
		       sizeof(*set->tags));
	kfree(set->tags);
	set->tags = new_tags;
	set->nr_hw_queues = new_nr_hw_queues;

	return 0;
}

3097 3098 3099
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
3100
 * requested depth down, if it's too large. In that case, the set
3101 3102
 * value will be stored in set->queue_depth.
 */
3103 3104
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3105
	int i, ret;
3106

B
Bart Van Assche 已提交
3107 3108
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

3109 3110
	if (!set->nr_hw_queues)
		return -EINVAL;
3111
	if (!set->queue_depth)
3112 3113 3114 3115
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
3116
	if (!set->ops->queue_rq)
3117 3118
		return -EINVAL;

3119 3120 3121
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

3122 3123 3124 3125 3126
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
3127

J
Jens Axboe 已提交
3128 3129 3130 3131 3132
	if (!set->nr_maps)
		set->nr_maps = 1;
	else if (set->nr_maps > HCTX_MAX_TYPES)
		return -EINVAL;

3133 3134 3135 3136 3137 3138 3139
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
3140
		set->nr_maps = 1;
3141 3142
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
3143
	/*
3144 3145
	 * There is no use for more h/w queues than cpus if we just have
	 * a single map
K
Keith Busch 已提交
3146
	 */
3147
	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3148
		set->nr_hw_queues = nr_cpu_ids;
3149

3150
	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3151
		return -ENOMEM;
3152

3153
	ret = -ENOMEM;
J
Jens Axboe 已提交
3154 3155
	for (i = 0; i < set->nr_maps; i++) {
		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3156
						  sizeof(set->map[i].mq_map[0]),
J
Jens Axboe 已提交
3157 3158 3159
						  GFP_KERNEL, set->numa_node);
		if (!set->map[i].mq_map)
			goto out_free_mq_map;
3160
		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
J
Jens Axboe 已提交
3161
	}
3162

3163
	ret = blk_mq_update_queue_map(set);
3164 3165 3166 3167 3168
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
3169
		goto out_free_mq_map;
3170

3171 3172 3173
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

3174
	return 0;
3175 3176

out_free_mq_map:
J
Jens Axboe 已提交
3177 3178 3179 3180
	for (i = 0; i < set->nr_maps; i++) {
		kfree(set->map[i].mq_map);
		set->map[i].mq_map = NULL;
	}
3181 3182
	kfree(set->tags);
	set->tags = NULL;
3183
	return ret;
3184 3185 3186 3187 3188
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
J
Jens Axboe 已提交
3189
	int i, j;
3190

3191
	for (i = 0; i < set->nr_hw_queues; i++)
3192
		blk_mq_free_map_and_requests(set, i);
3193

J
Jens Axboe 已提交
3194 3195 3196 3197
	for (j = 0; j < set->nr_maps; j++) {
		kfree(set->map[j].mq_map);
		set->map[j].mq_map = NULL;
	}
3198

M
Ming Lei 已提交
3199
	kfree(set->tags);
3200
	set->tags = NULL;
3201 3202 3203
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

3204 3205 3206 3207 3208 3209
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

3210
	if (!set)
3211 3212
		return -EINVAL;

3213 3214 3215
	if (q->nr_requests == nr)
		return 0;

3216
	blk_mq_freeze_queue(q);
3217
	blk_mq_quiesce_queue(q);
3218

3219 3220
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
3221 3222
		if (!hctx->tags)
			continue;
3223 3224 3225 3226
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
3227
		if (!hctx->sched_tags) {
3228
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3229 3230 3231 3232 3233
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
3234 3235
		if (ret)
			break;
3236 3237
		if (q->elevator && q->elevator->type->ops.depth_updated)
			q->elevator->type->ops.depth_updated(hctx);
3238 3239 3240 3241 3242
	}

	if (!ret)
		q->nr_requests = nr;

3243
	blk_mq_unquiesce_queue(q);
3244 3245
	blk_mq_unfreeze_queue(q);

3246 3247 3248
	return ret;
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/*
 * request_queue and elevator_type pair.
 * It is just used by __blk_mq_update_nr_hw_queues to cache
 * the elevator_type associated with a request_queue.
 */
struct blk_mq_qe_pair {
	struct list_head node;
	struct request_queue *q;
	struct elevator_type *type;
};

/*
 * Cache the elevator_type in qe pair list and switch the
 * io scheduler to 'none'
 */
static bool blk_mq_elv_switch_none(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;

	if (!q->elevator)
		return true;

	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
	if (!qe)
		return false;

	INIT_LIST_HEAD(&qe->node);
	qe->q = q;
	qe->type = q->elevator->type;
	list_add(&qe->node, head);

	mutex_lock(&q->sysfs_lock);
	/*
	 * After elevator_switch_mq, the previous elevator_queue will be
	 * released by elevator_release. The reference of the io scheduler
	 * module get by elevator_get will also be put. So we need to get
	 * a reference of the io scheduler module here to prevent it to be
	 * removed.
	 */
	__module_get(qe->type->elevator_owner);
	elevator_switch_mq(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return true;
}

static void blk_mq_elv_switch_back(struct list_head *head,
		struct request_queue *q)
{
	struct blk_mq_qe_pair *qe;
	struct elevator_type *t = NULL;

	list_for_each_entry(qe, head, node)
		if (qe->q == q) {
			t = qe->type;
			break;
		}

	if (!t)
		return;

	list_del(&qe->node);
	kfree(qe);

	mutex_lock(&q->sysfs_lock);
	elevator_switch_mq(q, t);
	mutex_unlock(&q->sysfs_lock);
}

3319 3320
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
3321 3322
{
	struct request_queue *q;
3323
	LIST_HEAD(head);
3324
	int prev_nr_hw_queues;
K
Keith Busch 已提交
3325

3326 3327
	lockdep_assert_held(&set->tag_list_lock);

3328
	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
K
Keith Busch 已提交
3329 3330 3331 3332 3333 3334
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);
3335 3336 3337 3338 3339 3340 3341 3342
	/*
	 * Switch IO scheduler to 'none', cleaning up the data associated
	 * with the previous scheduler. We will switch back once we are done
	 * updating the new sw to hw queue mappings.
	 */
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		if (!blk_mq_elv_switch_none(&head, q))
			goto switch_back;
K
Keith Busch 已提交
3343

3344 3345 3346 3347 3348
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_debugfs_unregister_hctxs(q);
		blk_mq_sysfs_unregister(q);
	}

3349 3350 3351 3352
	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
	    0)
		goto reregister;

3353
	prev_nr_hw_queues = set->nr_hw_queues;
K
Keith Busch 已提交
3354
	set->nr_hw_queues = nr_hw_queues;
3355
	blk_mq_update_queue_map(set);
3356
fallback:
K
Keith Busch 已提交
3357 3358
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
3359 3360 3361 3362
		if (q->nr_hw_queues != set->nr_hw_queues) {
			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
					nr_hw_queues, prev_nr_hw_queues);
			set->nr_hw_queues = prev_nr_hw_queues;
3363
			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3364 3365
			goto fallback;
		}
3366 3367 3368
		blk_mq_map_swqueue(q);
	}

3369
reregister:
3370 3371 3372
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_sysfs_register(q);
		blk_mq_debugfs_register_hctxs(q);
K
Keith Busch 已提交
3373 3374
	}

3375 3376 3377 3378
switch_back:
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_elv_switch_back(&head, q);

K
Keith Busch 已提交
3379 3380 3381
	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
3382 3383 3384 3385 3386 3387 3388

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3389 3390
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3391 3392 3393 3394
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3395
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3417
	int bucket;
3418

3419 3420 3421 3422
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3423 3424
}

3425 3426 3427 3428
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct request *rq)
{
	unsigned long ret = 0;
3429
	int bucket;
3430 3431 3432 3433 3434

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3435
	if (!blk_poll_stats_enable(q))
3436 3437 3438 3439 3440 3441 3442 3443
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3444 3445
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3446
	 */
3447 3448 3449 3450 3451 3452
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3453 3454 3455 3456

	return ret;
}

3457 3458 3459 3460 3461
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3462
	unsigned int nsecs;
3463 3464
	ktime_t kt;

J
Jens Axboe 已提交
3465
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3466 3467 3468
		return false;

	/*
3469
	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3470 3471 3472 3473
	 *
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
3474
	if (q->poll_nsec > 0)
3475 3476
		nsecs = q->poll_nsec;
	else
3477
		nsecs = blk_mq_poll_nsecs(q, rq);
3478 3479

	if (!nsecs)
3480 3481
		return false;

J
Jens Axboe 已提交
3482
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3483 3484 3485 3486 3487

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3488
	kt = nsecs;
3489 3490

	mode = HRTIMER_MODE_REL;
3491
	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3492 3493 3494
	hrtimer_set_expires(&hs.timer, kt);

	do {
T
Tejun Heo 已提交
3495
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3496 3497
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
3498
		hrtimer_sleeper_start_expires(&hs, mode);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

3510 3511
static bool blk_mq_poll_hybrid(struct request_queue *q,
			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
J
Jens Axboe 已提交
3512
{
3513 3514
	struct request *rq;

3515
	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		return false;

	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else {
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}

3532
	return blk_mq_poll_hybrid_sleep(q, rq);
3533 3534
}

C
Christoph Hellwig 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
/**
 * blk_poll - poll for IO completions
 * @q:  the queue
 * @cookie: cookie passed back at IO submission time
 * @spin: whether to spin for completions
 *
 * Description:
 *    Poll for completions on the passed in queue. Returns number of
 *    completed entries found. If @spin is true, then blk_poll will continue
 *    looping until at least one completion is found, unless the task is
 *    otherwise marked running (or we need to reschedule).
 */
int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3548 3549
{
	struct blk_mq_hw_ctx *hctx;
J
Jens Axboe 已提交
3550 3551
	long state;

C
Christoph Hellwig 已提交
3552 3553
	if (!blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3554 3555
		return 0;

C
Christoph Hellwig 已提交
3556 3557 3558
	if (current->plug)
		blk_flush_plug_list(current->plug, false);

3559 3560
	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];

3561 3562 3563 3564 3565 3566 3567
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3568
	if (blk_mq_poll_hybrid(q, hctx, cookie))
3569
		return 1;
3570

J
Jens Axboe 已提交
3571 3572 3573
	hctx->poll_considered++;

	state = current->state;
3574
	do {
J
Jens Axboe 已提交
3575 3576 3577 3578
		int ret;

		hctx->poll_invoked++;

3579
		ret = q->mq_ops->poll(hctx);
J
Jens Axboe 已提交
3580 3581
		if (ret > 0) {
			hctx->poll_success++;
3582
			__set_current_state(TASK_RUNNING);
3583
			return ret;
J
Jens Axboe 已提交
3584 3585 3586
		}

		if (signal_pending_state(state, current))
3587
			__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3588 3589

		if (current->state == TASK_RUNNING)
3590
			return 1;
3591
		if (ret < 0 || !spin)
J
Jens Axboe 已提交
3592 3593
			break;
		cpu_relax();
3594
	} while (!need_resched());
J
Jens Axboe 已提交
3595

3596
	__set_current_state(TASK_RUNNING);
3597
	return 0;
J
Jens Axboe 已提交
3598
}
C
Christoph Hellwig 已提交
3599
EXPORT_SYMBOL_GPL(blk_poll);
J
Jens Axboe 已提交
3600

J
Jens Axboe 已提交
3601 3602 3603 3604 3605 3606
unsigned int blk_mq_rq_cpu(struct request *rq)
{
	return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);

3607 3608
static int __init blk_mq_init(void)
{
3609 3610
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3611 3612 3613
	return 0;
}
subsys_initcall(blk_mq_init);