memory.c 16.3 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20 21
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
22
#include <linux/mutex.h>
23
#include <linux/stat.h>
24
#include <linux/slab.h>
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
27 28
#include <asm/uaccess.h>

29 30
static DEFINE_MUTEX(mem_sysfs_mutex);

31
#define MEMORY_CLASS_NAME	"memory"
32 33 34 35 36 37 38

static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
39

40
static struct bus_type memory_subsys = {
41
	.name = MEMORY_CLASS_NAME,
42
	.dev_name = MEMORY_CLASS_NAME,
43 44
};

45
static BLOCKING_NOTIFIER_HEAD(memory_chain);
46

47
int register_memory_notifier(struct notifier_block *nb)
48
{
49
        return blocking_notifier_chain_register(&memory_chain, nb);
50
}
51
EXPORT_SYMBOL(register_memory_notifier);
52

53
void unregister_memory_notifier(struct notifier_block *nb)
54
{
55
        blocking_notifier_chain_unregister(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(unregister_memory_notifier);
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

73 74 75
/*
 * register_memory - Setup a sysfs device for a memory block
 */
76
static
77
int register_memory(struct memory_block *memory)
78 79 80
{
	int error;

81 82
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
83

84
	error = device_register(&memory->dev);
85 86 87 88
	return error;
}

static void
89
unregister_memory(struct memory_block *memory)
90
{
91
	BUG_ON(memory->dev.bus != &memory_subsys);
92

93
	/* drop the ref. we got in remove_memory_block() */
94 95
	kobject_put(&memory->dev.kobj);
	device_unregister(&memory->dev);
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

118 119 120 121 122
/*
 * use this as the physical section index that this memsection
 * uses.
 */

123 124
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
125 126
{
	struct memory_block *mem =
127
		container_of(dev, struct memory_block, dev);
128 129 130 131 132 133
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

134 135
static ssize_t show_mem_end_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
136 137
{
	struct memory_block *mem =
138
		container_of(dev, struct memory_block, dev);
139 140 141 142
	unsigned long phys_index;

	phys_index = mem->end_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
143 144
}

145 146 147
/*
 * Show whether the section of memory is likely to be hot-removable
 */
148 149
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
150
{
151 152
	unsigned long i, pfn;
	int ret = 1;
153
	struct memory_block *mem =
154
		container_of(dev, struct memory_block, dev);
155

156
	for (i = 0; i < sections_per_block; i++) {
157
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158 159 160
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

161 162 163
	return sprintf(buf, "%d\n", ret);
}

164 165 166
/*
 * online, offline, going offline, etc.
 */
167 168
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
169 170
{
	struct memory_block *mem =
171
		container_of(dev, struct memory_block, dev);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

198
int memory_notify(unsigned long val, void *v)
199
{
200
	return blocking_notifier_call_chain(&memory_chain, val, v);
201 202
}

203 204 205 206 207
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
static bool pages_correctly_reserved(unsigned long start_pfn,
					unsigned long nr_pages)
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

244 245 246 247 248
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
249
memory_block_action(unsigned long phys_index, unsigned long action)
250 251
{
	unsigned long start_pfn, start_paddr;
252
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253
	struct page *first_page;
254 255
	int ret;

256 257
	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);

258 259
	switch (action) {
		case MEM_ONLINE:
260
			start_pfn = page_to_pfn(first_page);
261 262 263 264

			if (!pages_correctly_reserved(start_pfn, nr_pages))
				return -EBUSY;

265
			ret = online_pages(start_pfn, nr_pages);
266 267
			break;
		case MEM_OFFLINE:
268
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269
			ret = remove_memory(start_paddr,
270
					    nr_pages << PAGE_SHIFT);
271 272
			break;
		default:
273 274
			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
			     "%ld\n", __func__, phys_index, action, action);
275 276 277 278 279 280 281 282 283
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
284
	int ret = 0;
285

286
	mutex_lock(&mem->state_mutex);
287 288 289 290 291 292

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

293 294 295
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

296
	ret = memory_block_action(mem->start_section_nr, to_state);
297

298
	if (ret) {
299
		mem->state = from_state_req;
300 301
		goto out;
	}
302

303 304 305 306 307 308 309 310 311 312 313
	mem->state = to_state;
	switch (mem->state) {
	case MEM_OFFLINE:
		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
		break;
	case MEM_ONLINE:
		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
		break;
	default:
		break;
	}
314
out:
315
	mutex_unlock(&mem->state_mutex);
316 317 318 319
	return ret;
}

static ssize_t
320 321
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
322 323 324 325
{
	struct memory_block *mem;
	int ret = -EINVAL;

326
	mem = container_of(dev, struct memory_block, dev);
327 328 329 330 331

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
347 348
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
349 350
{
	struct memory_block *mem =
351
		container_of(dev, struct memory_block, dev);
352 353 354
	return sprintf(buf, "%d\n", mem->phys_device);
}

355 356 357 358 359
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
360 361

#define mem_create_simple_file(mem, attr_name)	\
362
	device_create_file(&mem->dev, &dev_attr_##attr_name)
363
#define mem_remove_simple_file(mem, attr_name)	\
364
	device_remove_file(&mem->dev, &dev_attr_##attr_name)
365 366 367 368 369

/*
 * Block size attribute stuff
 */
static ssize_t
370
print_block_size(struct device *dev, struct device_attribute *attr,
371
		 char *buf)
372
{
373
	return sprintf(buf, "%lx\n", get_memory_block_size());
374 375
}

376
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
377 378 379

static int block_size_init(void)
{
380 381
	return device_create_file(memory_subsys.dev_root,
				  &dev_attr_block_size_bytes);
382 383 384 385 386 387 388 389 390 391
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
392
memory_probe_store(struct device *dev, struct device_attribute *attr,
393
		   const char *buf, size_t count)
394 395
{
	u64 phys_addr;
396
	int nid;
397
	int i, ret;
398
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
399 400 401

	phys_addr = simple_strtoull(buf, NULL, 0);

402 403 404
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

405 406 407 408 409
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
410
			goto out;
411 412 413

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
414

415 416 417
	ret = count;
out:
	return ret;
418
}
419
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
420 421 422

static int memory_probe_init(void)
{
423
	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
424 425
}
#else
426 427 428 429
static inline int memory_probe_init(void)
{
	return 0;
}
430 431
#endif

432 433 434 435 436 437 438
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
439 440
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
441
			const char *buf, size_t count)
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
458 459
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
460
			const char *buf, size_t count)
461 462 463 464 465 466 467 468 469 470 471 472
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	ret = __memory_failure(pfn, 0, 0);
	return ret ? ret : count;
}

473 474
static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
475 476 477 478 479

static __init int memory_fail_init(void)
{
	int err;

480 481
	err = device_create_file(memory_subsys.dev_root,
				&dev_attr_soft_offline_page);
482
	if (!err)
483 484
		err = device_create_file(memory_subsys.dev_root,
				&dev_attr_hard_offline_page);
485 486 487 488 489 490 491 492 493
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

494 495 496 497 498
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
499 500 501 502
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
503

504 505 506 507
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
508 509
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
510
{
511
	int block_id = base_memory_block_id(__section_nr(section));
512 513
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
514

515 516 517 518
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
519
		return NULL;
520
	return container_of(dev, struct memory_block, dev);
521 522
}

523 524 525 526 527 528
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
529
 * This could be made generic for all device subsystems.
530 531 532 533 534 535
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

536 537
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
538
{
539
	struct memory_block *mem;
540
	unsigned long start_pfn;
541
	int scn_nr;
542 543
	int ret = 0;

544
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
545 546 547
	if (!mem)
		return -ENOMEM;

548
	scn_nr = __section_nr(section);
549 550 551
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
552
	mem->state = state;
553
	mem->section_count++;
554
	mutex_init(&mem->state_mutex);
555
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
556 557
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

558
	ret = register_memory(mem);
559 560
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
561 562
	if (!ret)
		ret = mem_create_simple_file(mem, end_phys_index);
563 564 565 566 567 568
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	*memory = mem;
	return ret;
}

static int add_memory_section(int nid, struct mem_section *section,
			unsigned long state, enum mem_add_context context)
{
	struct memory_block *mem;
	int ret = 0;

	mutex_lock(&mem_sysfs_mutex);

	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
585
		kobject_put(&mem->dev.kobj);
586 587 588
	} else
		ret = init_memory_block(&mem, section, state);

589
	if (!ret) {
590 591
		if (context == HOTPLUG &&
		    mem->section_count == sections_per_block)
592 593 594
			ret = register_mem_sect_under_node(mem, nid);
	}

595
	mutex_unlock(&mem_sysfs_mutex);
596 597 598
	return ret;
}

599 600 601 602 603
int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

604
	mutex_lock(&mem_sysfs_mutex);
605
	mem = find_memory_block(section);
606
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
607 608 609 610

	mem->section_count--;
	if (mem->section_count == 0) {
		mem_remove_simple_file(mem, phys_index);
611
		mem_remove_simple_file(mem, end_phys_index);
612 613 614
		mem_remove_simple_file(mem, state);
		mem_remove_simple_file(mem, phys_device);
		mem_remove_simple_file(mem, removable);
615 616 617
		unregister_memory(mem);
		kfree(mem);
	} else
618
		kobject_put(&mem->dev.kobj);
619

620
	mutex_unlock(&mem_sysfs_mutex);
621 622 623 624 625 626 627
	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
628
int register_new_memory(int nid, struct mem_section *section)
629
{
630
	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
631 632 633 634
}

int unregister_memory_section(struct mem_section *section)
{
635
	if (!present_section(section))
636 637 638 639 640 641 642 643 644 645 646 647
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
648
	int err;
649
	unsigned long block_sz;
650

651
	ret = subsys_system_register(&memory_subsys, NULL);
652 653
	if (ret)
		goto out;
654

655 656 657
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

658 659 660 661 662
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
663
		if (!present_section_nr(i))
664
			continue;
665 666
		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
					 BOOT);
667 668
		if (!ret)
			ret = err;
669 670
	}

671
	err = memory_probe_init();
672 673 674
	if (!ret)
		ret = err;
	err = memory_fail_init();
675 676 677 678 679 680 681
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
682
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
683 684
	return ret;
}