memory.c 16.1 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20 21
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
22
#include <linux/mutex.h>
23
#include <linux/stat.h>
24
#include <linux/slab.h>
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
27 28
#include <asm/uaccess.h>

29 30
static DEFINE_MUTEX(mem_sysfs_mutex);

31
#define MEMORY_CLASS_NAME	"memory"
32 33 34 35 36 37 38

static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
39

40
static struct bus_type memory_subsys = {
41
	.name = MEMORY_CLASS_NAME,
42
	.dev_name = MEMORY_CLASS_NAME,
43 44
};

45
static BLOCKING_NOTIFIER_HEAD(memory_chain);
46

47
int register_memory_notifier(struct notifier_block *nb)
48
{
49
        return blocking_notifier_chain_register(&memory_chain, nb);
50
}
51
EXPORT_SYMBOL(register_memory_notifier);
52

53
void unregister_memory_notifier(struct notifier_block *nb)
54
{
55
        blocking_notifier_chain_unregister(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(unregister_memory_notifier);
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

73 74 75
/*
 * register_memory - Setup a sysfs device for a memory block
 */
76
static
77
int register_memory(struct memory_block *memory)
78 79 80
{
	int error;

81 82
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
83

84
	error = device_register(&memory->dev);
85 86 87 88
	return error;
}

static void
89
unregister_memory(struct memory_block *memory)
90
{
91
	BUG_ON(memory->dev.bus != &memory_subsys);
92

93
	/* drop the ref. we got in remove_memory_block() */
94 95
	kobject_put(&memory->dev.kobj);
	device_unregister(&memory->dev);
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

118 119 120 121 122
/*
 * use this as the physical section index that this memsection
 * uses.
 */

123 124
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
125 126
{
	struct memory_block *mem =
127
		container_of(dev, struct memory_block, dev);
128 129 130 131 132 133
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

134 135
static ssize_t show_mem_end_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
136 137
{
	struct memory_block *mem =
138
		container_of(dev, struct memory_block, dev);
139 140 141 142
	unsigned long phys_index;

	phys_index = mem->end_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
143 144
}

145 146 147
/*
 * Show whether the section of memory is likely to be hot-removable
 */
148 149
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
150
{
151 152
	unsigned long i, pfn;
	int ret = 1;
153
	struct memory_block *mem =
154
		container_of(dev, struct memory_block, dev);
155

156
	for (i = 0; i < sections_per_block; i++) {
157
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158 159 160
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

161 162 163
	return sprintf(buf, "%d\n", ret);
}

164 165 166
/*
 * online, offline, going offline, etc.
 */
167 168
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
169 170
{
	struct memory_block *mem =
171
		container_of(dev, struct memory_block, dev);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

198
int memory_notify(unsigned long val, void *v)
199
{
200
	return blocking_notifier_call_chain(&memory_chain, val, v);
201 202
}

203 204 205 206 207
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
static bool pages_correctly_reserved(unsigned long start_pfn,
					unsigned long nr_pages)
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

244 245 246 247 248
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
249
memory_block_action(unsigned long phys_index, unsigned long action)
250 251
{
	unsigned long start_pfn, start_paddr;
252
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253
	struct page *first_page;
254 255
	int ret;

256 257
	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);

258 259
	switch (action) {
		case MEM_ONLINE:
260
			start_pfn = page_to_pfn(first_page);
261 262 263 264

			if (!pages_correctly_reserved(start_pfn, nr_pages))
				return -EBUSY;

265
			ret = online_pages(start_pfn, nr_pages);
266 267
			break;
		case MEM_OFFLINE:
268
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269
			ret = remove_memory(start_paddr,
270
					    nr_pages << PAGE_SHIFT);
271 272
			break;
		default:
273 274
			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
			     "%ld\n", __func__, phys_index, action, action);
275 276 277 278 279 280 281 282 283
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
284
	int ret = 0;
285

286
	mutex_lock(&mem->state_mutex);
287 288 289 290 291 292

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

293 294 295
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

296
	ret = memory_block_action(mem->start_section_nr, to_state);
297

298
	if (ret)
299
		mem->state = from_state_req;
300
	else
301 302 303
		mem->state = to_state;

out:
304
	mutex_unlock(&mem->state_mutex);
305 306 307 308
	return ret;
}

static ssize_t
309 310
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
311 312 313 314
{
	struct memory_block *mem;
	int ret = -EINVAL;

315
	mem = container_of(dev, struct memory_block, dev);
316 317 318 319 320

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
336 337
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
338 339
{
	struct memory_block *mem =
340
		container_of(dev, struct memory_block, dev);
341 342 343
	return sprintf(buf, "%d\n", mem->phys_device);
}

344 345 346 347 348
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
349 350

#define mem_create_simple_file(mem, attr_name)	\
351
	device_create_file(&mem->dev, &dev_attr_##attr_name)
352
#define mem_remove_simple_file(mem, attr_name)	\
353
	device_remove_file(&mem->dev, &dev_attr_##attr_name)
354 355 356 357 358

/*
 * Block size attribute stuff
 */
static ssize_t
359
print_block_size(struct device *dev, struct device_attribute *attr,
360
		 char *buf)
361
{
362
	return sprintf(buf, "%lx\n", get_memory_block_size());
363 364
}

365
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
366 367 368

static int block_size_init(void)
{
369 370
	return device_create_file(memory_subsys.dev_root,
				  &dev_attr_block_size_bytes);
371 372 373 374 375 376 377 378 379 380
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
381
memory_probe_store(struct device *dev, struct device_attribute *attr,
382
		   const char *buf, size_t count)
383 384
{
	u64 phys_addr;
385
	int nid;
386
	int i, ret;
387
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
388 389 390

	phys_addr = simple_strtoull(buf, NULL, 0);

391 392 393
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

394 395 396 397 398
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
399
			goto out;
400 401 402

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
403

404 405 406
	ret = count;
out:
	return ret;
407
}
408
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
409 410 411

static int memory_probe_init(void)
{
412
	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
413 414
}
#else
415 416 417 418
static inline int memory_probe_init(void)
{
	return 0;
}
419 420
#endif

421 422 423 424 425 426 427
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
428 429
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
430
			const char *buf, size_t count)
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
447 448
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
449
			const char *buf, size_t count)
450 451 452 453 454 455 456 457 458 459 460 461
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	ret = __memory_failure(pfn, 0, 0);
	return ret ? ret : count;
}

462 463
static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
464 465 466 467 468

static __init int memory_fail_init(void)
{
	int err;

469 470
	err = device_create_file(memory_subsys.dev_root,
				&dev_attr_soft_offline_page);
471
	if (!err)
472 473
		err = device_create_file(memory_subsys.dev_root,
				&dev_attr_hard_offline_page);
474 475 476 477 478 479 480 481 482
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

483 484 485 486 487
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
488 489 490 491
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
492

493 494 495 496
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
497 498
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
499
{
500
	int block_id = base_memory_block_id(__section_nr(section));
501 502
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
503

504 505 506 507
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
508
		return NULL;
509
	return container_of(dev, struct memory_block, dev);
510 511
}

512 513 514 515 516 517
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
518
 * This could be made generic for all device subsystems.
519 520 521 522 523 524
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

525 526
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
527
{
528
	struct memory_block *mem;
529
	unsigned long start_pfn;
530
	int scn_nr;
531 532
	int ret = 0;

533
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
534 535 536
	if (!mem)
		return -ENOMEM;

537
	scn_nr = __section_nr(section);
538 539 540
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
541
	mem->state = state;
542
	mem->section_count++;
543
	mutex_init(&mem->state_mutex);
544
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
545 546
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

547
	ret = register_memory(mem);
548 549
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
550 551
	if (!ret)
		ret = mem_create_simple_file(mem, end_phys_index);
552 553 554 555 556 557
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	*memory = mem;
	return ret;
}

static int add_memory_section(int nid, struct mem_section *section,
			unsigned long state, enum mem_add_context context)
{
	struct memory_block *mem;
	int ret = 0;

	mutex_lock(&mem_sysfs_mutex);

	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
574
		kobject_put(&mem->dev.kobj);
575 576 577
	} else
		ret = init_memory_block(&mem, section, state);

578
	if (!ret) {
579 580
		if (context == HOTPLUG &&
		    mem->section_count == sections_per_block)
581 582 583
			ret = register_mem_sect_under_node(mem, nid);
	}

584
	mutex_unlock(&mem_sysfs_mutex);
585 586 587
	return ret;
}

588 589 590 591 592
int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

593
	mutex_lock(&mem_sysfs_mutex);
594
	mem = find_memory_block(section);
595
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
596 597 598 599

	mem->section_count--;
	if (mem->section_count == 0) {
		mem_remove_simple_file(mem, phys_index);
600
		mem_remove_simple_file(mem, end_phys_index);
601 602 603
		mem_remove_simple_file(mem, state);
		mem_remove_simple_file(mem, phys_device);
		mem_remove_simple_file(mem, removable);
604 605 606
		unregister_memory(mem);
		kfree(mem);
	} else
607
		kobject_put(&mem->dev.kobj);
608

609
	mutex_unlock(&mem_sysfs_mutex);
610 611 612 613 614 615 616
	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
617
int register_new_memory(int nid, struct mem_section *section)
618
{
619
	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
620 621 622 623
}

int unregister_memory_section(struct mem_section *section)
{
624
	if (!present_section(section))
625 626 627 628 629 630 631 632 633 634 635 636
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
637
	int err;
638
	unsigned long block_sz;
639

640
	ret = subsys_system_register(&memory_subsys, NULL);
641 642
	if (ret)
		goto out;
643

644 645 646
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

647 648 649 650 651
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
652
		if (!present_section_nr(i))
653
			continue;
654 655
		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
					 BOOT);
656 657
		if (!ret)
			ret = err;
658 659
	}

660
	err = memory_probe_init();
661 662 663
	if (!ret)
		ret = err;
	err = memory_fail_init();
664 665 666 667 668 669 670
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
671
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
672 673
	return ret;
}