cpsw.c 76.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121 122 123 124 125 126
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
#define CPSW_MIN_PACKET_SIZE	60
#define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148

149 150 151 152 153 154 155 156 157 158 159 160
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

161
struct cpsw_wr_regs {
162 163 164 165 166 167 168 169
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
170 171 172 173 174 175 176 177 178
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

179 180
};

181
struct cpsw_ss_regs {
182 183 184 185 186
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
187 188 189 190 191 192 193 194
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
242 243
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
244 245 246 247 248 249
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

250 251 252
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
267 268 269 270 271 272 273 274 275

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
276

277 278 279 280 281 282 283 284
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

285 286 287
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
288
	u32	tx_in_ctl;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

346
struct cpsw_slave {
347
	void __iomem			*regs;
348 349 350 351 352
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
353 354 355
	struct net_device		*ndev;
	u32				port_vlan;
	u32				open_stat;
356 357
};

358 359 360 361 362 363 364 365 366 367
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
	return __raw_readl(slave->regs + offset);
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
	__raw_writel(val, slave->regs + offset);
}

368
struct cpsw_common {
369
	struct device			*dev;
370
	struct cpsw_platform_data	data;
371 372
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
373 374 375 376
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
377 378 379 380
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
381
	struct cpsw_slave		*slaves;
382
	struct cpdma_ctlr		*dma;
383 384
	struct cpdma_chan		*txch[CPSW_MAX_QUEUES];
	struct cpdma_chan		*rxch[CPSW_MAX_QUEUES];
385
	struct cpsw_ale			*ale;
386 387 388 389
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
390
	struct cpts			*cpts;
391
	int				rx_ch_num, tx_ch_num;
392 393 394
};

struct cpsw_priv {
395 396 397 398
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
399 400
	bool				rx_pause;
	bool				tx_pause;
401
	u32 emac_port;
402
	struct cpsw_common *cpsw;
403 404
};

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
483

484
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
485
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
486 487
#define for_each_slave(priv, func, arg...)				\
	do {								\
488
		struct cpsw_slave *slave;				\
489
		struct cpsw_common *cpsw = (priv)->cpsw;		\
490
		int n;							\
491 492
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
493
		else							\
494 495
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
496 497
					n; n--)				\
				(func)(slave++, ##arg);			\
498 499
	} while (0)

500
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
501
	do {								\
502
		if (!cpsw->data.dual_emac)				\
503 504
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
505
			ndev = cpsw->slaves[0].ndev;			\
506 507
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
508
			ndev = cpsw->slaves[1].ndev;			\
509 510
			skb->dev = ndev;				\
		}							\
511
	} while (0)
512
#define cpsw_add_mcast(cpsw, priv, addr)				\
513
	do {								\
514 515
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
516
						priv->emac_port;	\
517
			int slave_port = cpsw_get_slave_port(		\
518
						slave->slave_num);	\
519
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
520
				1 << slave_port | ALE_PORT_HOST,	\
521 522
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
523
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
524
				ALE_ALL_PORTS,				\
525 526 527 528
				0, 0, 0);				\
		}							\
	} while (0)

529
static inline int cpsw_get_slave_port(u32 slave_num)
530
{
531
	return slave_num + 1;
532
}
533

534 535
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
536 537
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
538 539
	int i;

540
	if (cpsw->data.dual_emac) {
541 542 543 544 545 546
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
547 548
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

570
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
571
			for (i = 0; i <= cpsw->data.slaves; i++) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
588
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
589 590 591 592 593

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
594
			/* Don't Flood All Unicast Packets to Host port */
595 596
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

597
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
598
			for (i = 0; i <= cpsw->data.slaves; i++) {
599 600 601 602 603 604 605 606 607 608
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

609 610 611
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
612
	struct cpsw_common *cpsw = priv->cpsw;
613 614
	int vid;

615 616
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
617
	else
618
		vid = cpsw->data.default_vlan;
619 620 621

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
622
		cpsw_set_promiscious(ndev, true);
623
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
624
		return;
625 626 627
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
628 629
	}

630
	/* Restore allmulti on vlans if necessary */
631
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
632

633
	/* Clear all mcast from ALE */
634
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
635 636 637 638 639 640

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
641
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
642 643 644 645
		}
	}
}

646
static void cpsw_intr_enable(struct cpsw_common *cpsw)
647
{
648 649
	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
650

651
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
652 653 654
	return;
}

655
static void cpsw_intr_disable(struct cpsw_common *cpsw)
656
{
657 658
	__raw_writel(0, &cpsw->wr_regs->tx_en);
	__raw_writel(0, &cpsw->wr_regs->rx_en);
659

660
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
661 662 663
	return;
}

664
static void cpsw_tx_handler(void *token, int len, int status)
665
{
666
	struct netdev_queue	*txq;
667 668
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
669
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
670

671 672 673
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
674 675 676 677
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

678
	cpts_tx_timestamp(cpsw->cpts, skb);
679 680
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
681 682 683
	dev_kfree_skb_any(skb);
}

684
static void cpsw_rx_handler(void *token, int len, int status)
685
{
686
	struct cpdma_chan	*ch;
687
	struct sk_buff		*skb = token;
688
	struct sk_buff		*new_skb;
689 690
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
691
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
692

693
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
694

695
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
696
		bool ndev_status = false;
697
		struct cpsw_slave *slave = cpsw->slaves;
698 699
		int n;

700
		if (cpsw->data.dual_emac) {
701
			/* In dual emac mode check for all interfaces */
702
			for (n = cpsw->data.slaves; n; n--, slave++)
703 704 705 706 707 708 709
				if (netif_running(slave->ndev))
					ndev_status = true;
		}

		if (ndev_status && (status >= 0)) {
			/* The packet received is for the interface which
			 * is already down and the other interface is up
710
			 * and running, instead of freeing which results
711 712 713 714 715 716 717
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

718
		/* the interface is going down, skbs are purged */
719 720 721
		dev_kfree_skb_any(skb);
		return;
	}
722

723
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
724
	if (new_skb) {
725
		skb_copy_queue_mapping(new_skb, skb);
726
		skb_put(skb, len);
727
		cpts_rx_timestamp(cpsw->cpts, skb);
728 729
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
730 731
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
732
		kmemleak_not_leak(new_skb);
733
	} else {
734
		ndev->stats.rx_dropped++;
735
		new_skb = skb;
736 737
	}

738
requeue:
739 740 741 742 743
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

744 745
	ch = cpsw->rxch[skb_get_queue_mapping(new_skb)];
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
746
				skb_tailroom(new_skb), 0);
747 748
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
749 750
}

751
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
752
{
753
	struct cpsw_common *cpsw = dev_id;
754

755
	writel(0, &cpsw->wr_regs->tx_en);
756
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
757

758 759 760
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
761 762
	}

763
	napi_schedule(&cpsw->napi_tx);
764 765 766 767 768
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
769
	struct cpsw_common *cpsw = dev_id;
770

771
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
772
	writel(0, &cpsw->wr_regs->rx_en);
773

774 775 776
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
777 778
	}

779
	napi_schedule(&cpsw->napi_rx);
780
	return IRQ_HANDLED;
781 782
}

783 784
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
785 786
	u32			ch_map;
	int			num_tx, ch;
787
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
	for (ch = 0, num_tx = 0; num_tx < budget; ch_map >>= 1, ch++) {
		if (!ch_map) {
			ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
			if (!ch_map)
				break;

			ch = 0;
		}

		if (!(ch_map & 0x01))
			continue;

		num_tx += cpdma_chan_process(cpsw->txch[ch], budget - num_tx);
	}

806 807
	if (num_tx < budget) {
		napi_complete(napi_tx);
808
		writel(0xff, &cpsw->wr_regs->tx_en);
809 810 811
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
812
		}
813 814 815 816 817 818
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
819
{
820 821
	u32			ch_map;
	int			num_rx, ch;
822
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
	for (ch = 0, num_rx = 0; num_rx < budget; ch_map >>= 1, ch++) {
		if (!ch_map) {
			ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
			if (!ch_map)
				break;

			ch = 0;
		}

		if (!(ch_map & 0x01))
			continue;

		num_rx += cpdma_chan_process(cpsw->rxch[ch], budget - num_rx);
	}

841
	if (num_rx < budget) {
842
		napi_complete(napi_rx);
843
		writel(0xff, &cpsw->wr_regs->rx_en);
844 845 846
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
847
		}
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	__raw_writel(1, reg);
	do {
		cpu_relax();
	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));

	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
872 873
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
874 875 876 877 878 879 880 881
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
882
	struct cpsw_common *cpsw = priv->cpsw;
883 884 885 886

	if (!phy)
		return;

887
	slave_port = cpsw_get_slave_port(slave->slave_num);
888 889

	if (phy->link) {
890
		mac_control = cpsw->data.mac_control;
891 892

		/* enable forwarding */
893
		cpsw_ale_control_set(cpsw->ale, slave_port,
894 895 896 897 898 899
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
900 901 902 903

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
904 905
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
906

907 908 909 910 911 912
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

913 914 915 916
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
917
		cpsw_ale_control_set(cpsw->ale, slave_port,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
		__raw_writel(mac_control, &slave->sliver->mac_control);
	}

	slave->mac_control = mac_control;
}

static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
		netif_carrier_on(ndev);
		if (netif_running(ndev))
939
			netif_tx_wake_all_queues(ndev);
940 941
	} else {
		netif_carrier_off(ndev);
942
		netif_tx_stop_all_queues(ndev);
943 944 945
	}
}

946 947 948
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
949
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
950

951
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
952 953 954 955 956 957 958 959 960 961 962 963
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
964
	struct cpsw_common *cpsw = priv->cpsw;
965 966 967

	coal_intvl = coal->rx_coalesce_usecs;

968
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
969
	prescale = cpsw->bus_freq_mhz * 4;
970

971 972 973 974 975
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
997 998
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
999 1000 1001 1002

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1003 1004

update_return:
1005
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1006 1007

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1008
	cpsw->coal_intvl = coal_intvl;
1009 1010 1011 1012

	return 0;
}

1013 1014
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1015 1016
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1017 1018
	switch (sset) {
	case ETH_SS_STATS:
1019 1020 1021
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1022 1023 1024 1025 1026
	default:
		return -EOPNOTSUPP;
	}
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1044 1045
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1046
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1047 1048 1049 1050 1051
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1052
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1053 1054 1055 1056
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1057 1058 1059

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1060 1061 1062 1063 1064 1065 1066 1067
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1068
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1069 1070
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1071 1072

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		cpdma_chan_get_stats(cpsw->rxch[ch], &ch_stats);
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1085

1086 1087 1088 1089 1090 1091
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_get_stats(cpsw->txch[ch], &ch_stats);
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1092 1093 1094 1095
		}
	}
}

1096
static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1097 1098 1099 1100
{
	u32 i;
	u32 usage_count = 0;

1101
	if (!cpsw->data.dual_emac)
1102 1103
		return 0;

1104 1105
	for (i = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].open_stat)
1106 1107 1108 1109 1110
			usage_count++;

	return usage_count;
}

1111
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1112 1113
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1114
{
1115 1116
	struct cpsw_common *cpsw = priv->cpsw;

1117
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1118
				 priv->emac_port + cpsw->data.dual_emac);
1119 1120 1121 1122 1123 1124
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1125
	struct cpsw_common *cpsw = priv->cpsw;
1126
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1127

1128
	if (cpsw->version == CPSW_VERSION_1)
1129 1130 1131
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1132
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1133
			  port_mask, port_mask, 0);
1134
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1135
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1136 1137 1138
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1139 1140
}

1141
static void soft_reset_slave(struct cpsw_slave *slave)
1142 1143 1144
{
	char name[32];

1145
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1146
	soft_reset(name, &slave->sliver->soft_reset);
1147 1148 1149 1150 1151
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1152
	struct cpsw_common *cpsw = priv->cpsw;
1153 1154

	soft_reset_slave(slave);
1155 1156 1157

	/* setup priority mapping */
	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1158

1159
	switch (cpsw->version) {
1160 1161 1162 1163
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
		break;
	case CPSW_VERSION_2:
1164
	case CPSW_VERSION_3:
1165
	case CPSW_VERSION_4:
1166 1167 1168
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
		break;
	}
1169 1170

	/* setup max packet size, and mac address */
1171
	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1172 1173 1174 1175
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1176
	slave_port = cpsw_get_slave_port(slave->slave_num);
1177

1178
	if (cpsw->data.dual_emac)
1179 1180
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1181
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1182
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1183

1184
	if (slave->data->phy_node) {
1185
		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1186
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1187 1188 1189 1190 1191 1192 1193
		if (!slave->phy) {
			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
				slave->data->phy_node->full_name,
				slave->slave_num);
			return;
		}
	} else {
1194
		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1195
				 &cpsw_adjust_link, slave->data->phy_if);
1196 1197 1198 1199 1200 1201 1202 1203 1204
		if (IS_ERR(slave->phy)) {
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
				PTR_ERR(slave->phy));
			slave->phy = NULL;
			return;
		}
	}
1205

1206
	phy_attached_info(slave->phy);
1207

1208 1209 1210
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1211
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1212 1213
}

1214 1215
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1216 1217
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1218 1219
	u32 reg;
	int i;
1220
	int unreg_mcast_mask;
1221

1222
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1223 1224
	       CPSW2_PORT_VLAN;

1225
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1226

1227 1228
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1229

1230 1231 1232 1233 1234
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1235
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1236 1237
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1238 1239
}

1240 1241
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1242
	u32 fifo_mode;
1243 1244
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1245

1246
	/* soft reset the controller and initialize ale */
1247
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1248
	cpsw_ale_start(cpsw->ale);
1249 1250

	/* switch to vlan unaware mode */
1251
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1252
			     CPSW_ALE_VLAN_AWARE);
1253
	control_reg = readl(&cpsw->regs->control);
1254
	control_reg |= CPSW_VLAN_AWARE;
1255
	writel(control_reg, &cpsw->regs->control);
1256
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1257
		     CPSW_FIFO_NORMAL_MODE;
1258
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1259 1260 1261

	/* setup host port priority mapping */
	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1262 1263
		     &cpsw->host_port_regs->cpdma_tx_pri_map);
	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1264

1265
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1266 1267
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1268
	if (!cpsw->data.dual_emac) {
1269
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1270
				   0, 0);
1271
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1272
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1273
	}
1274 1275
}

1276 1277 1278 1279 1280
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxch[ch]);
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
			skb_set_queue_mapping(skb, ch);
			ret = cpdma_chan_submit(cpsw->rxch[ch], skb, skb->data,
						skb_tailroom(skb), 0);
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1305 1306
		}

1307 1308 1309
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1310

1311
	return 0;
1312 1313
}

1314
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1315
{
1316 1317
	u32 slave_port;

1318
	slave_port = cpsw_get_slave_port(slave->slave_num);
1319

1320 1321 1322 1323 1324
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1325
	cpsw_ale_control_set(cpsw->ale, slave_port,
1326
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1327
	soft_reset_slave(slave);
1328 1329
}

1330 1331 1332
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1333
	struct cpsw_common *cpsw = priv->cpsw;
1334
	int ret;
1335 1336
	u32 reg;

1337
	ret = pm_runtime_get_sync(cpsw->dev);
1338
	if (ret < 0) {
1339
		pm_runtime_put_noidle(cpsw->dev);
1340 1341
		return ret;
	}
1342

1343
	if (!cpsw_common_res_usage_state(cpsw))
1344
		cpsw_intr_disable(cpsw);
1345 1346
	netif_carrier_off(ndev);

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1360
	reg = cpsw->version;
1361 1362 1363 1364 1365 1366

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

	/* initialize host and slave ports */
1367
	if (!cpsw_common_res_usage_state(cpsw))
1368
		cpsw_init_host_port(priv);
1369 1370
	for_each_slave(priv, cpsw_slave_open, priv);

1371
	/* Add default VLAN */
1372
	if (!cpsw->data.dual_emac)
1373 1374
		cpsw_add_default_vlan(priv);
	else
1375
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1376
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1377

1378
	if (!cpsw_common_res_usage_state(cpsw)) {
1379
		/* setup tx dma to fixed prio and zero offset */
1380 1381
		cpdma_control_set(cpsw->dma, CPDMA_TX_PRIO_FIXED, 1);
		cpdma_control_set(cpsw->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1382

1383
		/* disable priority elevation */
1384
		__raw_writel(0, &cpsw->regs->ptype);
1385

1386
		/* enable statistics collection only on all ports */
1387
		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1388

1389
		/* Enable internal fifo flow control */
1390
		writel(0x7, &cpsw->regs->flow_control);
1391

1392 1393
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1394

1395 1396 1397
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1398 1399
		}

1400 1401 1402
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1403 1404
		}

1405 1406 1407
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1408

1409
		if (cpts_register(cpsw->dev, cpsw->cpts,
1410 1411
				  cpsw->data.cpts_clock_mult,
				  cpsw->data.cpts_clock_shift))
1412 1413
			dev_err(priv->dev, "error registering cpts device\n");

1414 1415
	}

1416
	/* Enable Interrupt pacing if configured */
1417
	if (cpsw->coal_intvl != 0) {
1418 1419
		struct ethtool_coalesce coal;

1420
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1421 1422 1423
		cpsw_set_coalesce(ndev, &coal);
	}

1424 1425
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1426

1427 1428
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = true;
1429 1430 1431

	netif_tx_start_all_queues(ndev);

1432 1433
	return 0;

1434
err_cleanup:
1435
	cpdma_ctlr_stop(cpsw->dma);
1436
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1437
	pm_runtime_put_sync(cpsw->dev);
1438 1439
	netif_carrier_off(priv->ndev);
	return ret;
1440 1441 1442 1443 1444
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1445
	struct cpsw_common *cpsw = priv->cpsw;
1446 1447

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1448
	netif_tx_stop_all_queues(priv->ndev);
1449
	netif_carrier_off(priv->ndev);
1450

1451
	if (cpsw_common_res_usage_state(cpsw) <= 1) {
1452 1453
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1454
		cpts_unregister(cpsw->cpts);
1455 1456
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1457
		cpsw_ale_stop(cpsw->ale);
1458
	}
1459
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1460
	pm_runtime_put_sync(cpsw->dev);
1461 1462
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = false;
1463 1464 1465 1466 1467 1468 1469
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1470
	struct cpsw_common *cpsw = priv->cpsw;
1471 1472 1473
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1474

1475
	netif_trans_update(ndev);
1476 1477 1478

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1479
		ndev->stats.tx_dropped++;
1480 1481 1482
		return NETDEV_TX_OK;
	}

1483
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1484
				cpsw->cpts->tx_enable)
1485 1486 1487 1488
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

	skb_tx_timestamp(skb);

1489 1490 1491 1492 1493 1494
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

	txch = cpsw->txch[q_idx];
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1495 1496 1497 1498 1499
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1500 1501 1502
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1503 1504 1505 1506
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1507

1508 1509
	return NETDEV_TX_OK;
fail:
1510
	ndev->stats.tx_dropped++;
1511 1512
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1513 1514 1515
	return NETDEV_TX_BUSY;
}

1516 1517
#ifdef CONFIG_TI_CPTS

1518
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1519
{
1520
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1521 1522
	u32 ts_en, seq_id;

1523
	if (!cpsw->cpts->tx_enable && !cpsw->cpts->rx_enable) {
1524 1525 1526 1527 1528 1529 1530
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1531
	if (cpsw->cpts->tx_enable)
1532 1533
		ts_en |= CPSW_V1_TS_TX_EN;

1534
	if (cpsw->cpts->rx_enable)
1535 1536 1537 1538 1539 1540 1541 1542
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1543
	struct cpsw_slave *slave;
1544
	struct cpsw_common *cpsw = priv->cpsw;
1545 1546
	u32 ctrl, mtype;

1547 1548
	if (cpsw->data.dual_emac)
		slave = &cpsw->slaves[priv->emac_port];
1549
	else
1550
		slave = &cpsw->slaves[cpsw->data.active_slave];
1551

1552
	ctrl = slave_read(slave, CPSW2_CONTROL);
1553
	switch (cpsw->version) {
1554 1555
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1556

1557
		if (cpsw->cpts->tx_enable)
1558
			ctrl |= CTRL_V2_TX_TS_BITS;
1559

1560
		if (cpsw->cpts->rx_enable)
1561
			ctrl |= CTRL_V2_RX_TS_BITS;
1562
		break;
1563 1564 1565 1566
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1567
		if (cpsw->cpts->tx_enable)
1568 1569
			ctrl |= CTRL_V3_TX_TS_BITS;

1570
		if (cpsw->cpts->rx_enable)
1571
			ctrl |= CTRL_V3_RX_TS_BITS;
1572
		break;
1573
	}
1574 1575 1576 1577 1578

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1579
	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1580 1581
}

1582
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1583
{
1584
	struct cpsw_priv *priv = netdev_priv(dev);
1585
	struct hwtstamp_config cfg;
1586 1587
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1588

1589 1590 1591
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1592 1593
		return -EOPNOTSUPP;

1594 1595 1596 1597 1598 1599 1600
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1601
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		cpts->rx_enable = 0;
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		cpts->rx_enable = 1;
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1629 1630
	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;

1631
	switch (cpsw->version) {
1632
	case CPSW_VERSION_1:
1633
		cpsw_hwtstamp_v1(cpsw);
1634 1635
		break;
	case CPSW_VERSION_2:
1636
	case CPSW_VERSION_3:
1637 1638 1639
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1640
		WARN_ON(1);
1641 1642 1643 1644 1645
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1646 1647
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1648 1649
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1650 1651
	struct hwtstamp_config cfg;

1652 1653 1654
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		return -EOPNOTSUPP;

	cfg.flags = 0;
	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts->rx_enable ?
			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1665 1666 1667 1668
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1669
	struct cpsw_priv *priv = netdev_priv(dev);
1670 1671
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1672

1673 1674 1675
	if (!netif_running(dev))
		return -EINVAL;

1676
	switch (cmd) {
1677
#ifdef CONFIG_TI_CPTS
1678
	case SIOCSHWTSTAMP:
1679 1680 1681
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1682
#endif
1683 1684
	}

1685
	if (!cpsw->slaves[slave_no].phy)
1686
		return -EOPNOTSUPP;
1687
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1688 1689
}

1690 1691 1692
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1693
	struct cpsw_common *cpsw = priv->cpsw;
1694
	int ch;
1695 1696

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1697
	ndev->stats.tx_errors++;
1698
	cpsw_intr_disable(cpsw);
1699 1700 1701 1702 1703
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_stop(cpsw->txch[ch]);
		cpdma_chan_start(cpsw->txch[ch]);
	}

1704
	cpsw_intr_enable(cpsw);
1705 1706
}

1707 1708 1709 1710
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1711
	struct cpsw_common *cpsw = priv->cpsw;
1712 1713
	int flags = 0;
	u16 vid = 0;
1714
	int ret;
1715 1716 1717 1718

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1719
	ret = pm_runtime_get_sync(cpsw->dev);
1720
	if (ret < 0) {
1721
		pm_runtime_put_noidle(cpsw->dev);
1722 1723 1724
		return ret;
	}

1725 1726
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1727 1728 1729
		flags = ALE_VLAN;
	}

1730
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1731
			   flags, vid);
1732
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1733 1734 1735 1736 1737 1738
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1739
	pm_runtime_put(cpsw->dev);
1740

1741 1742 1743
	return 0;
}

1744 1745 1746
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1747
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1748

1749 1750 1751 1752
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1753 1754 1755
}
#endif

1756 1757 1758 1759
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1760 1761
	int unreg_mcast_mask = 0;
	u32 port_mask;
1762
	struct cpsw_common *cpsw = priv->cpsw;
1763

1764
	if (cpsw->data.dual_emac) {
1765
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1777

1778
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1779
				unreg_mcast_mask);
1780 1781 1782
	if (ret != 0)
		return ret;

1783
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1784
				 HOST_PORT_NUM, ALE_VLAN, vid);
1785 1786 1787
	if (ret != 0)
		goto clean_vid;

1788
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1789
				 port_mask, ALE_VLAN, vid, 0);
1790 1791 1792 1793 1794
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1795
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1796
			   HOST_PORT_NUM, ALE_VLAN, vid);
1797
clean_vid:
1798
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1799 1800 1801 1802
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1803
				    __be16 proto, u16 vid)
1804 1805
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1806
	struct cpsw_common *cpsw = priv->cpsw;
1807
	int ret;
1808

1809
	if (vid == cpsw->data.default_vlan)
1810 1811
		return 0;

1812
	ret = pm_runtime_get_sync(cpsw->dev);
1813
	if (ret < 0) {
1814
		pm_runtime_put_noidle(cpsw->dev);
1815 1816 1817
		return ret;
	}

1818
	if (cpsw->data.dual_emac) {
1819 1820 1821 1822 1823 1824
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1825 1826
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1827 1828 1829 1830
				return -EINVAL;
		}
	}

1831
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1832 1833
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1834
	pm_runtime_put(cpsw->dev);
1835
	return ret;
1836 1837 1838
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1839
				     __be16 proto, u16 vid)
1840 1841
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1842
	struct cpsw_common *cpsw = priv->cpsw;
1843 1844
	int ret;

1845
	if (vid == cpsw->data.default_vlan)
1846 1847
		return 0;

1848
	ret = pm_runtime_get_sync(cpsw->dev);
1849
	if (ret < 0) {
1850
		pm_runtime_put_noidle(cpsw->dev);
1851 1852 1853
		return ret;
	}

1854
	if (cpsw->data.dual_emac) {
1855 1856
		int i;

1857 1858
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1859 1860 1861 1862
				return -EINVAL;
		}
	}

1863
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1864
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1865 1866 1867
	if (ret != 0)
		return ret;

1868
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1869
				 HOST_PORT_NUM, ALE_VLAN, vid);
1870 1871 1872
	if (ret != 0)
		return ret;

1873
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1874
				 0, ALE_VLAN, vid);
1875
	pm_runtime_put(cpsw->dev);
1876
	return ret;
1877 1878
}

1879 1880 1881 1882
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1883
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1884
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1885
	.ndo_validate_addr	= eth_validate_addr,
1886
	.ndo_change_mtu		= eth_change_mtu,
1887
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1888
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1889 1890 1891
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
1892 1893
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1894 1895
};

1896 1897
static int cpsw_get_regs_len(struct net_device *ndev)
{
1898
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1899

1900
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1901 1902 1903 1904 1905 1906
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
1907
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1908 1909

	/* update CPSW IP version */
1910
	regs->version = cpsw->version;
1911

1912
	cpsw_ale_dump(cpsw->ale, reg);
1913 1914
}

1915 1916 1917
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
1918
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1919
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1920

1921
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1922
	strlcpy(info->version, "1.0", sizeof(info->version));
1923
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

1938 1939 1940 1941
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
#ifdef CONFIG_TI_CPTS
1942
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1943 1944 1945 1946 1947 1948 1949 1950

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
1951
	info->phc_index = cpsw->cpts->phc_index;
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
#else
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
#endif
	return 0;
}

1970 1971
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
1972 1973
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1974 1975
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1976

1977
	if (cpsw->slaves[slave_no].phy)
1978 1979
		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
						 ecmd);
1980 1981 1982 1983
	else
		return -EOPNOTSUPP;
}

1984 1985
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
1986 1987
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1988 1989
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1990

1991
	if (cpsw->slaves[slave_no].phy)
1992 1993
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
1994 1995 1996 1997
	else
		return -EOPNOTSUPP;
}

1998 1999 2000
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2001 2002
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2003 2004 2005 2006

	wol->supported = 0;
	wol->wolopts = 0;

2007 2008
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2009 2010 2011 2012 2013
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2014 2015
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2016

2017 2018
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2019 2020 2021 2022
	else
		return -EOPNOTSUPP;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2046 2047 2048
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2049
	struct cpsw_common *cpsw = priv->cpsw;
2050 2051
	int ret;

2052
	ret = pm_runtime_get_sync(cpsw->dev);
2053 2054
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2055
		pm_runtime_put_noidle(cpsw->dev);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2066
	ret = pm_runtime_put(priv->cpsw->dev);
2067 2068 2069 2070
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	int (*poll)(struct napi_struct *, int);
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
	struct cpdma_chan **chan;
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
		chan = cpsw->rxch;
		handler = cpsw_rx_handler;
		poll = cpsw_rx_poll;
	} else {
		ch = &cpsw->tx_ch_num;
		chan = cpsw->txch;
		handler = cpsw_tx_handler;
		poll = cpsw_tx_poll;
	}

	while (*ch < ch_num) {
		chan[*ch] = cpdma_chan_create(cpsw->dma, *ch, handler, rx);

		if (IS_ERR(chan[*ch]))
			return PTR_ERR(chan[*ch]);

		if (!chan[*ch])
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

		ret = cpdma_chan_destroy(chan[*ch]);
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}

		/* Enable rx packets handling */
		netif_dormant_off(slave->ndev);
	}

	if (cpsw_common_res_usage_state(cpsw)) {
2223 2224
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
			goto err;

		/* After this receive is started */
		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;
		netif_tx_start_all_queues(slave->ndev);
	}
	return 0;
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2245 2246 2247 2248 2249
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2250
	.get_ts_info	= cpsw_get_ts_info,
2251 2252
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2253 2254 2255
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2256 2257
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2258 2259
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2260 2261
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2262 2263
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2264 2265
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2266 2267
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2268 2269
};

2270
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2271
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2272
{
2273
	void __iomem		*regs = cpsw->regs;
2274
	int			slave_num = slave->slave_num;
2275
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2276 2277

	slave->data	= data;
2278 2279
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2280
	slave->port_vlan = data->dual_emac_res_vlan;
2281 2282
}

2283
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2295
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2296 2297 2298 2299
		return -EINVAL;
	}
	data->slaves = prop;

2300
	if (of_property_read_u32(node, "active_slave", &prop)) {
2301
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2302
		return -EINVAL;
2303
	}
2304
	data->active_slave = prop;
2305

2306
	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2307
		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2308
		return -EINVAL;
2309 2310 2311 2312
	}
	data->cpts_clock_mult = prop;

	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2313
		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2314
		return -EINVAL;
2315 2316 2317
	}
	data->cpts_clock_shift = prop;

2318 2319 2320
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2321
	if (!data->slave_data)
2322
		return -ENOMEM;
2323 2324

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2325
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2326
		return -EINVAL;
2327 2328 2329 2330
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2331
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2332
		return -EINVAL;
2333 2334 2335 2336
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2337
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2338
		return -EINVAL;
2339 2340 2341 2342
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2343
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2344
		return -EINVAL;
2345 2346 2347
	}
	data->mac_control = prop;

2348 2349
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2350

2351 2352 2353 2354 2355 2356
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2357
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2358

2359
	for_each_available_child_of_node(node, slave_node) {
2360 2361
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2362 2363 2364
		int lenp;
		const __be32 *parp;

2365 2366 2367 2368
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2369 2370
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2371
		parp = of_get_property(slave_node, "phy_id", &lenp);
2372 2373 2374 2375 2376
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
				"slave[%d] using phy-handle=\"%s\"\n",
				i, slave_data->phy_node->full_name);
		} else if (of_phy_is_fixed_link(slave_node)) {
2377 2378 2379
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2380 2381 2382
			ret = of_phy_register_fixed_link(slave_node);
			if (ret)
				return ret;
2383
			slave_data->phy_node = of_node_get(slave_node);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
		} else {
2404 2405 2406
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2407
			goto no_phy_slave;
2408
		}
2409 2410 2411 2412 2413 2414 2415 2416
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2417
		mac_addr = of_get_mac_address(slave_node);
2418
		if (mac_addr) {
2419
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2420
		} else {
2421 2422 2423 2424
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2425
		}
2426
		if (data->dual_emac) {
2427
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2428
						 &prop)) {
2429
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2430
				slave_data->dual_emac_res_vlan = i+1;
2431 2432
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2433 2434 2435 2436 2437
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2438
		i++;
2439 2440
		if (i == data->slaves)
			break;
2441 2442 2443 2444 2445
	}

	return 0;
}

2446
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2447
{
2448 2449
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2450 2451
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2452
	int ret = 0;
2453

2454
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2455
	if (!ndev) {
2456
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2457 2458 2459 2460
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2461
	priv_sl2->cpsw = cpsw;
2462 2463 2464 2465 2466 2467 2468
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2469 2470
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2471 2472
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2473 2474
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2475 2476 2477 2478
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2479
	cpsw->slaves[1].ndev = ndev;
2480
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2481 2482

	ndev->netdev_ops = &cpsw_netdev_ops;
2483
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2484 2485

	/* register the network device */
2486
	SET_NETDEV_DEV(ndev, cpsw->dev);
2487 2488
	ret = register_netdev(ndev);
	if (ret) {
2489
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2490 2491 2492 2493 2494 2495 2496
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
#define CPSW_QUIRK_IRQ		BIT(0)

static struct platform_device_id cpsw_devtype[] = {
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2535
static int cpsw_probe(struct platform_device *pdev)
2536
{
2537
	struct clk			*clk;
2538
	struct cpsw_platform_data	*data;
2539 2540 2541 2542
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2543 2544
	void __iomem			*ss_regs;
	struct resource			*res, *ss_res;
2545
	const struct of_device_id	*of_id;
2546
	struct gpio_descs		*mode;
2547
	u32 slave_offset, sliver_offset, slave_size;
2548
	struct cpsw_common		*cpsw;
2549 2550
	int ret = 0, i;
	int irq;
2551

2552
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2553
	cpsw->dev = &pdev->dev;
2554

2555
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2556
	if (!ndev) {
2557
		dev_err(&pdev->dev, "error allocating net_device\n");
2558 2559 2560 2561 2562
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2563
	priv->cpsw = cpsw;
2564 2565 2566
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2567 2568 2569
	cpsw->rx_packet_max = max(rx_packet_max, 128);
	cpsw->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
	if (!cpsw->cpts) {
2570
		dev_err(&pdev->dev, "error allocating cpts\n");
2571
		ret = -ENOMEM;
2572 2573
		goto clean_ndev_ret;
	}
2574

2575 2576 2577 2578 2579 2580 2581
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2582 2583 2584 2585 2586
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2587 2588 2589
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2590
	if (cpsw_probe_dt(&cpsw->data, pdev)) {
2591
		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2592
		ret = -ENODEV;
2593
		goto clean_runtime_disable_ret;
2594
	}
2595
	data = &cpsw->data;
2596 2597
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2598

2599 2600
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2601
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2602
	} else {
J
Joe Perches 已提交
2603
		eth_random_addr(priv->mac_addr);
2604
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2605 2606 2607 2608
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2609
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2610 2611
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2612
	if (!cpsw->slaves) {
2613 2614
		ret = -ENOMEM;
		goto clean_runtime_disable_ret;
2615 2616
	}
	for (i = 0; i < data->slaves; i++)
2617
		cpsw->slaves[i].slave_num = i;
2618

2619
	cpsw->slaves[0].ndev = ndev;
2620 2621
	priv->emac_port = 0;

2622 2623
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2624
		dev_err(priv->dev, "fck is not found\n");
2625
		ret = -ENODEV;
2626
		goto clean_runtime_disable_ret;
2627
	}
2628
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2629

2630 2631 2632 2633 2634
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
		goto clean_runtime_disable_ret;
2635
	}
2636
	cpsw->regs = ss_regs;
2637

2638 2639 2640
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
2641 2642 2643 2644 2645
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		goto clean_runtime_disable_ret;
	}
2646
	cpsw->version = readl(&cpsw->regs->id_ver);
2647 2648
	pm_runtime_put_sync(&pdev->dev);

2649
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2650 2651 2652
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2653
		goto clean_runtime_disable_ret;
2654 2655 2656
	}

	memset(&dma_params, 0, sizeof(dma_params));
2657 2658
	memset(&ale_params, 0, sizeof(ale_params));

2659
	switch (cpsw->version) {
2660
	case CPSW_VERSION_1:
2661
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2662
		cpsw->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2663
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2664 2665 2666 2667 2668 2669 2670 2671 2672
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
2673
	case CPSW_VERSION_3:
2674
	case CPSW_VERSION_4:
2675
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2676
		cpsw->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2677
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2678 2679 2680 2681 2682 2683 2684
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
2685
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2686 2687
		break;
	default:
2688
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2689
		ret = -ENODEV;
2690
		goto clean_runtime_disable_ret;
2691
	}
2692 2693 2694 2695
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2696 2697 2698 2699
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

2700
	dma_params.dev		= &pdev->dev;
2701 2702 2703 2704 2705
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2706 2707 2708 2709 2710 2711 2712

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
2713
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2714

2715 2716
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
2717 2718
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
2719
		goto clean_runtime_disable_ret;
2720 2721
	}

2722 2723
	cpsw->txch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxch[0] = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2724
	if (WARN_ON(!cpsw->rxch[0] || !cpsw->txch[0])) {
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

	ale_params.dev			= &ndev->dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

2735 2736
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
2737 2738 2739 2740 2741
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

2742
	ndev->irq = platform_get_irq(pdev, 1);
2743 2744
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
2745
		ret = ndev->irq;
2746 2747 2748
		goto clean_ale_ret;
	}

2749 2750 2751 2752
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
2753
			cpsw->quirk_irq = true;
2754 2755
	}

2756 2757 2758 2759 2760 2761 2762
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
2763

2764
	/* RX IRQ */
2765
	irq = platform_get_irq(pdev, 1);
2766 2767
	if (irq < 0) {
		ret = irq;
2768
		goto clean_ale_ret;
2769
	}
2770

2771
	cpsw->irqs_table[0] = irq;
2772
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2773
			       0, dev_name(&pdev->dev), cpsw);
2774 2775 2776 2777 2778
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

2779
	/* TX IRQ */
2780
	irq = platform_get_irq(pdev, 2);
2781 2782
	if (irq < 0) {
		ret = irq;
2783
		goto clean_ale_ret;
2784
	}
2785

2786
	cpsw->irqs_table[1] = irq;
2787
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2788
			       0, dev_name(&pdev->dev), cpsw);
2789 2790 2791
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
2792
	}
2793

2794
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2795 2796

	ndev->netdev_ops = &cpsw_netdev_ops;
2797
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2798 2799
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2800 2801 2802 2803 2804 2805 2806

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
2807
		goto clean_ale_ret;
2808 2809
	}

2810 2811
	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
		    &ss_res->start, ndev->irq);
2812

2813
	if (cpsw->data.dual_emac) {
2814
		ret = cpsw_probe_dual_emac(priv);
2815 2816
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2817
			goto clean_ale_ret;
2818 2819 2820
		}
	}

2821 2822 2823
	return 0;

clean_ale_ret:
2824
	cpsw_ale_destroy(cpsw->ale);
2825
clean_dma_ret:
2826
	cpdma_ctlr_destroy(cpsw->dma);
2827
clean_runtime_disable_ret:
2828
	pm_runtime_disable(&pdev->dev);
2829
clean_ndev_ret:
2830
	free_netdev(priv->ndev);
2831 2832 2833
	return ret;
}

B
Bill Pemberton 已提交
2834
static int cpsw_remove(struct platform_device *pdev)
2835 2836
{
	struct net_device *ndev = platform_get_drvdata(pdev);
2837
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2838 2839 2840 2841 2842 2843 2844
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
2845

2846 2847
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
2848
	unregister_netdev(ndev);
2849

2850
	cpsw_ale_destroy(cpsw->ale);
2851
	cpdma_ctlr_destroy(cpsw->dma);
2852
	of_platform_depopulate(&pdev->dev);
2853 2854
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2855 2856
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
2857 2858 2859 2860
	free_netdev(ndev);
	return 0;
}

2861
#ifdef CONFIG_PM_SLEEP
2862 2863 2864 2865
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
2866
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2867

2868
	if (cpsw->data.dual_emac) {
2869
		int i;
2870

2871 2872 2873
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2874 2875 2876 2877 2878
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
2879

2880
	/* Select sleep pin state */
2881
	pinctrl_pm_select_sleep_state(dev);
2882

2883 2884 2885 2886 2887 2888 2889
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
2890
	struct cpsw_common	*cpsw = netdev_priv(ndev);
2891

2892
	/* Select default pin state */
2893
	pinctrl_pm_select_default_state(dev);
2894

2895
	if (cpsw->data.dual_emac) {
2896 2897
		int i;

2898 2899 2900
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
2901 2902 2903 2904 2905
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
2906 2907
	return 0;
}
2908
#endif
2909

2910
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2911 2912 2913 2914 2915

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
2916
		.of_match_table = cpsw_of_mtable,
2917 2918
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
2919
	.remove = cpsw_remove,
2920 2921
};

2922
module_platform_driver(cpsw_driver);
2923 2924 2925 2926 2927

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");