// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "debugfs_gt.h" #include "i915_drv.h" #include "intel_context.h" #include "intel_gt.h" #include "intel_gt_clock_utils.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" #include "intel_mocs.h" #include "intel_rc6.h" #include "intel_renderstate.h" #include "intel_rps.h" #include "intel_uncore.h" #include "intel_pm.h" #include "shmem_utils.h" void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) { gt->i915 = i915; gt->uncore = &i915->uncore; spin_lock_init(>->irq_lock); INIT_LIST_HEAD(>->closed_vma); spin_lock_init(>->closed_lock); intel_gt_init_reset(gt); intel_gt_init_requests(gt); intel_gt_init_timelines(gt); intel_gt_pm_init_early(gt); intel_rps_init_early(>->rps); intel_uc_init_early(>->uc); } void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) { gt->ggtt = ggtt; } static void init_unused_ring(struct intel_gt *gt, u32 base) { struct intel_uncore *uncore = gt->uncore; intel_uncore_write(uncore, RING_CTL(base), 0); intel_uncore_write(uncore, RING_HEAD(base), 0); intel_uncore_write(uncore, RING_TAIL(base), 0); intel_uncore_write(uncore, RING_START(base), 0); } static void init_unused_rings(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (IS_I830(i915)) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); init_unused_ring(gt, SRB2_BASE); init_unused_ring(gt, SRB3_BASE); } else if (IS_GEN(i915, 2)) { init_unused_ring(gt, SRB0_BASE); init_unused_ring(gt, SRB1_BASE); } else if (IS_GEN(i915, 3)) { init_unused_ring(gt, PRB1_BASE); init_unused_ring(gt, PRB2_BASE); } } int intel_gt_init_hw(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; int ret; gt->last_init_time = ktime_get(); /* Double layer security blanket, see i915_gem_init() */ intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9) intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); if (IS_HASWELL(i915)) intel_uncore_write(uncore, MI_PREDICATE_RESULT_2, IS_HSW_GT3(i915) ? LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); /* Apply the GT workarounds... */ intel_gt_apply_workarounds(gt); /* ...and determine whether they are sticking. */ intel_gt_verify_workarounds(gt, "init"); intel_gt_init_swizzling(gt); /* * At least 830 can leave some of the unused rings * "active" (ie. head != tail) after resume which * will prevent c3 entry. Makes sure all unused rings * are totally idle. */ init_unused_rings(gt); ret = i915_ppgtt_init_hw(gt); if (ret) { DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); goto out; } /* We can't enable contexts until all firmware is loaded */ ret = intel_uc_init_hw(>->uc); if (ret) { i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); goto out; } intel_mocs_init(gt); out: intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); return ret; } static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) { intel_uncore_rmw(uncore, reg, 0, set); } static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) { intel_uncore_rmw(uncore, reg, clr, 0); } static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) { intel_uncore_rmw(uncore, reg, 0, 0); } static void gen8_clear_engine_error_register(struct intel_engine_cs *engine) { GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); GEN6_RING_FAULT_REG_POSTING_READ(engine); } void intel_gt_clear_error_registers(struct intel_gt *gt, intel_engine_mask_t engine_mask) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; u32 eir; if (!IS_GEN(i915, 2)) clear_register(uncore, PGTBL_ER); if (INTEL_GEN(i915) < 4) clear_register(uncore, IPEIR(RENDER_RING_BASE)); else clear_register(uncore, IPEIR_I965); clear_register(uncore, EIR); eir = intel_uncore_read(uncore, EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); rmw_set(uncore, EMR, eir); intel_uncore_write(uncore, GEN2_IIR, I915_MASTER_ERROR_INTERRUPT); } if (INTEL_GEN(i915) >= 12) { rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); } else if (INTEL_GEN(i915) >= 8) { rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); } else if (INTEL_GEN(i915) >= 6) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine_masked(engine, gt, engine_mask, id) gen8_clear_engine_error_register(engine); } } static void gen6_check_faults(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 fault; for_each_engine(engine, gt, id) { fault = GEN6_RING_FAULT_REG_READ(engine); if (fault & RING_FAULT_VALID) { drm_dbg(&engine->i915->drm, "Unexpected fault\n" "\tAddr: 0x%08lx\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault & PAGE_MASK, fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } } static void gen8_check_faults(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; u32 fault; if (INTEL_GEN(gt->i915) >= 12) { fault_reg = GEN12_RING_FAULT_REG; fault_data0_reg = GEN12_FAULT_TLB_DATA0; fault_data1_reg = GEN12_FAULT_TLB_DATA1; } else { fault_reg = GEN8_RING_FAULT_REG; fault_data0_reg = GEN8_FAULT_TLB_DATA0; fault_data1_reg = GEN8_FAULT_TLB_DATA1; } fault = intel_uncore_read(uncore, fault_reg); if (fault & RING_FAULT_VALID) { u32 fault_data0, fault_data1; u64 fault_addr; fault_data0 = intel_uncore_read(uncore, fault_data0_reg); fault_data1 = intel_uncore_read(uncore, fault_data1_reg); fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | ((u64)fault_data0 << 12); drm_dbg(&uncore->i915->drm, "Unexpected fault\n" "\tAddr: 0x%08x_%08x\n" "\tAddress space: %s\n" "\tEngine ID: %d\n" "\tSource ID: %d\n" "\tType: %d\n", upper_32_bits(fault_addr), lower_32_bits(fault_addr), fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", GEN8_RING_FAULT_ENGINE_ID(fault), RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); } } void intel_gt_check_and_clear_faults(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; /* From GEN8 onwards we only have one 'All Engine Fault Register' */ if (INTEL_GEN(i915) >= 8) gen8_check_faults(gt); else if (INTEL_GEN(i915) >= 6) gen6_check_faults(gt); else return; intel_gt_clear_error_registers(gt, ALL_ENGINES); } void intel_gt_flush_ggtt_writes(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; /* * No actual flushing is required for the GTT write domain for reads * from the GTT domain. Writes to it "immediately" go to main memory * as far as we know, so there's no chipset flush. It also doesn't * land in the GPU render cache. * * However, we do have to enforce the order so that all writes through * the GTT land before any writes to the device, such as updates to * the GATT itself. * * We also have to wait a bit for the writes to land from the GTT. * An uncached read (i.e. mmio) seems to be ideal for the round-trip * timing. This issue has only been observed when switching quickly * between GTT writes and CPU reads from inside the kernel on recent hw, * and it appears to only affect discrete GTT blocks (i.e. on LLC * system agents we cannot reproduce this behaviour, until Cannonlake * that was!). */ wmb(); if (INTEL_INFO(gt->i915)->has_coherent_ggtt) return; intel_gt_chipset_flush(gt); with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { unsigned long flags; spin_lock_irqsave(&uncore->lock, flags); intel_uncore_posting_read_fw(uncore, RING_HEAD(RENDER_RING_BASE)); spin_unlock_irqrestore(&uncore->lock, flags); } } void intel_gt_chipset_flush(struct intel_gt *gt) { wmb(); if (INTEL_GEN(gt->i915) < 6) intel_gtt_chipset_flush(); } void intel_gt_driver_register(struct intel_gt *gt) { intel_rps_driver_register(>->rps); debugfs_gt_register(gt); } static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) { struct drm_i915_private *i915 = gt->i915; struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; obj = i915_gem_object_create_stolen(i915, size); if (IS_ERR(obj)) obj = i915_gem_object_create_internal(i915, size); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate scratch page\n"); return PTR_ERR(obj); } vma = i915_vma_instance(obj, >->ggtt->vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_unref; } ret = i915_ggtt_pin(vma, 0, PIN_HIGH); if (ret) goto err_unref; gt->scratch = i915_vma_make_unshrinkable(vma); return 0; err_unref: i915_gem_object_put(obj); return ret; } static void intel_gt_fini_scratch(struct intel_gt *gt) { i915_vma_unpin_and_release(>->scratch, 0); } static struct i915_address_space *kernel_vm(struct intel_gt *gt) { if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) return &i915_ppgtt_create(gt)->vm; else return i915_vm_get(>->ggtt->vm); } static int __engines_record_defaults(struct intel_gt *gt) { struct i915_request *requests[I915_NUM_ENGINES] = {}; struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; /* * As we reset the gpu during very early sanitisation, the current * register state on the GPU should reflect its defaults values. * We load a context onto the hw (with restore-inhibit), then switch * over to a second context to save that default register state. We * can then prime every new context with that state so they all start * from the same default HW values. */ for_each_engine(engine, gt, id) { struct intel_renderstate so; struct intel_context *ce; struct i915_request *rq; /* We must be able to switch to something! */ GEM_BUG_ON(!engine->kernel_context); err = intel_renderstate_init(&so, engine); if (err) goto out; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); goto out; } rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); intel_context_put(ce); goto out; } err = intel_engine_emit_ctx_wa(rq); if (err) goto err_rq; err = intel_renderstate_emit(&so, rq); if (err) goto err_rq; err_rq: requests[id] = i915_request_get(rq); i915_request_add(rq); intel_renderstate_fini(&so); if (err) goto out; } /* Flush the default context image to memory, and enable powersaving. */ if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { err = -EIO; goto out; } for (id = 0; id < ARRAY_SIZE(requests); id++) { struct i915_request *rq; struct file *state; rq = requests[id]; if (!rq) continue; if (rq->fence.error) { err = -EIO; goto out; } GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); if (!rq->context->state) continue; /* Keep a copy of the state's backing pages; free the obj */ state = shmem_create_from_object(rq->context->state->obj); if (IS_ERR(state)) { err = PTR_ERR(state); goto out; } rq->engine->default_state = state; } out: /* * If we have to abandon now, we expect the engines to be idle * and ready to be torn-down. The quickest way we can accomplish * this is by declaring ourselves wedged. */ if (err) intel_gt_set_wedged(gt); for (id = 0; id < ARRAY_SIZE(requests); id++) { struct intel_context *ce; struct i915_request *rq; rq = requests[id]; if (!rq) continue; ce = rq->context; i915_request_put(rq); intel_context_put(ce); } return err; } static int __engines_verify_workarounds(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; int err = 0; if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return 0; for_each_engine(engine, gt, id) { if (intel_engine_verify_workarounds(engine, "load")) err = -EIO; } /* Flush and restore the kernel context for safety */ if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) err = -EIO; return err; } static void __intel_gt_disable(struct intel_gt *gt) { intel_gt_set_wedged_on_init(gt); intel_gt_suspend_prepare(gt); intel_gt_suspend_late(gt); GEM_BUG_ON(intel_gt_pm_is_awake(gt)); } int intel_gt_init(struct intel_gt *gt) { int err; err = i915_inject_probe_error(gt->i915, -ENODEV); if (err) return err; /* * This is just a security blanket to placate dragons. * On some systems, we very sporadically observe that the first TLBs * used by the CS may be stale, despite us poking the TLB reset. If * we hold the forcewake during initialisation these problems * just magically go away. */ intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); intel_gt_init_clock_frequency(gt); err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K); if (err) goto out_fw; intel_gt_pm_init(gt); gt->vm = kernel_vm(gt); if (!gt->vm) { err = -ENOMEM; goto err_pm; } err = intel_engines_init(gt); if (err) goto err_engines; err = intel_uc_init(>->uc); if (err) goto err_engines; err = intel_gt_resume(gt); if (err) goto err_uc_init; err = __engines_record_defaults(gt); if (err) goto err_gt; err = __engines_verify_workarounds(gt); if (err) goto err_gt; err = i915_inject_probe_error(gt->i915, -EIO); if (err) goto err_gt; goto out_fw; err_gt: __intel_gt_disable(gt); intel_uc_fini_hw(>->uc); err_uc_init: intel_uc_fini(>->uc); err_engines: intel_engines_release(gt); i915_vm_put(fetch_and_zero(>->vm)); err_pm: intel_gt_pm_fini(gt); intel_gt_fini_scratch(gt); out_fw: if (err) intel_gt_set_wedged_on_init(gt); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); return err; } void intel_gt_driver_remove(struct intel_gt *gt) { __intel_gt_disable(gt); intel_uc_driver_remove(>->uc); intel_engines_release(gt); } void intel_gt_driver_unregister(struct intel_gt *gt) { intel_rps_driver_unregister(>->rps); /* * Upon unregistering the device to prevent any new users, cancel * all in-flight requests so that we can quickly unbind the active * resources. */ intel_gt_set_wedged(gt); } void intel_gt_driver_release(struct intel_gt *gt) { struct i915_address_space *vm; vm = fetch_and_zero(>->vm); if (vm) /* FIXME being called twice on error paths :( */ i915_vm_put(vm); intel_gt_pm_fini(gt); intel_gt_fini_scratch(gt); } void intel_gt_driver_late_release(struct intel_gt *gt) { /* We need to wait for inflight RCU frees to release their grip */ rcu_barrier(); intel_uc_driver_late_release(>->uc); intel_gt_fini_requests(gt); intel_gt_fini_reset(gt); intel_gt_fini_timelines(gt); intel_engines_free(gt); }