cpufeature.h 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H

12
#include <asm/cpucaps.h>
13
#include <asm/cputype.h>
14
#include <asm/hwcap.h>
15
#include <asm/sysreg.h>
16 17 18 19 20 21 22 23 24 25 26

/*
 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
 * in the kernel and for user space to keep track of which optional features
 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
 * Note that HWCAP_x constants are bit fields so we need to take the log.
 */

#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
#define cpu_feature(x)		ilog2(HWCAP_ ## x)

27
#ifndef __ASSEMBLY__
28

29 30
#include <linux/bug.h>
#include <linux/jump_label.h>
31 32
#include <linux/kernel.h>

33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * CPU feature register tracking
 *
 * The safe value of a CPUID feature field is dependent on the implications
 * of the values assigned to it by the architecture. Based on the relationship
 * between the values, the features are classified into 3 types - LOWER_SAFE,
 * HIGHER_SAFE and EXACT.
 *
 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
 * a field when EXACT is specified, failing which, the safe value specified
 * in the table is chosen.
 */

47 48 49 50 51 52 53 54 55
enum ftr_type {
	FTR_EXACT,	/* Use a predefined safe value */
	FTR_LOWER_SAFE,	/* Smaller value is safe */
	FTR_HIGHER_SAFE,/* Bigger value is safe */
};

#define FTR_STRICT	true	/* SANITY check strict matching required */
#define FTR_NONSTRICT	false	/* SANITY check ignored */

56 57 58
#define FTR_SIGNED	true	/* Value should be treated as signed */
#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */

59 60 61
#define FTR_VISIBLE	true	/* Feature visible to the user space */
#define FTR_HIDDEN	false	/* Feature is hidden from the user */

62 63 64
#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)

65
struct arm64_ftr_bits {
66
	bool		sign;	/* Value is signed ? */
67
	bool		visible;
68
	bool		strict;	/* CPU Sanity check: strict matching required ? */
69 70 71
	enum ftr_type	type;
	u8		shift;
	u8		width;
72
	s64		safe_val; /* safe value for FTR_EXACT features */
73 74 75 76 77 78 79 80
};

/*
 * @arm64_ftr_reg - Feature register
 * @strict_mask		Bits which should match across all CPUs for sanity.
 * @sys_val		Safe value across the CPUs (system view)
 */
struct arm64_ftr_reg {
81 82
	const char			*name;
	u64				strict_mask;
83
	u64				user_mask;
84
	u64				sys_val;
85
	u64				user_val;
86
	const struct arm64_ftr_bits	*ftr_bits;
87 88
};

89 90
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/*
 * CPU capabilities:
 *
 * We use arm64_cpu_capabilities to represent system features, errata work
 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
 * ELF HWCAPs (which are exposed to user).
 *
 * To support systems with heterogeneous CPUs, we need to make sure that we
 * detect the capabilities correctly on the system and take appropriate
 * measures to ensure there are no incompatibilities.
 *
 * This comment tries to explain how we treat the capabilities.
 * Each capability has the following list of attributes :
 *
 * 1) Scope of Detection : The system detects a given capability by
 *    performing some checks at runtime. This could be, e.g, checking the
 *    value of a field in CPU ID feature register or checking the cpu
 *    model. The capability provides a call back ( @matches() ) to
 *    perform the check. Scope defines how the checks should be performed.
110
 *    There are three cases:
111 112 113 114 115 116 117 118 119 120 121 122
 *
 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
 *        matches. This implies, we have to run the check on all the
 *        booting CPUs, until the system decides that state of the
 *        capability is finalised. (See section 2 below)
 *		Or
 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
 *        matches. This implies, we run the check only once, when the
 *        system decides to finalise the state of the capability. If the
 *        capability relies on a field in one of the CPU ID feature
 *        registers, we use the sanitised value of the register from the
 *        CPU feature infrastructure to make the decision.
123 124 125 126 127
 *		Or
 *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
 *        feature. This category is for features that are "finalised"
 *        (or used) by the kernel very early even before the SMP cpus
 *        are brought up.
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
 *
 *    The process of detection is usually denoted by "update" capability
 *    state in the code.
 *
 * 2) Finalise the state : The kernel should finalise the state of a
 *    capability at some point during its execution and take necessary
 *    actions if any. Usually, this is done, after all the boot-time
 *    enabled CPUs are brought up by the kernel, so that it can make
 *    better decision based on the available set of CPUs. However, there
 *    are some special cases, where the action is taken during the early
 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
 *    Virtualisation Host Extensions). The kernel usually disallows any
 *    changes to the state of a capability once it finalises the capability
 *    and takes any action, as it may be impossible to execute the actions
 *    safely. A CPU brought up after a capability is "finalised" is
 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
 *    CPUs are treated "late CPUs" for capabilities determined by the boot
 *    CPU.
 *
147 148 149 150 151
 *    At the moment there are two passes of finalising the capabilities.
 *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
 *         setup_boot_cpu_capabilities().
 *      b) Everything except (a) - Run via setup_system_capabilities().
 *
152 153 154 155 156 157 158 159
 * 3) Verification: When a CPU is brought online (e.g, by user or by the
 *    kernel), the kernel should make sure that it is safe to use the CPU,
 *    by verifying that the CPU is compliant with the state of the
 *    capabilities finalised already. This happens via :
 *
 *	secondary_start_kernel()-> check_local_cpu_capabilities()
 *
 *    As explained in (2) above, capabilities could be finalised at
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
 *    different points in the execution. Each newly booted CPU is verified
 *    against the capabilities that have been finalised by the time it
 *    boots.
 *
 *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
 *	except for the primary boot CPU.
 *
 *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
 *	user after the kernel boot are verified against the capability.
 *
 *    If there is a conflict, the kernel takes an action, based on the
 *    severity (e.g, a CPU could be prevented from booting or cause a
 *    kernel panic). The CPU is allowed to "affect" the state of the
 *    capability, if it has not been finalised already. See section 5
 *    for more details on conflicts.
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
 *
 * 4) Action: As mentioned in (2), the kernel can take an action for each
 *    detected capability, on all CPUs on the system. Appropriate actions
 *    include, turning on an architectural feature, modifying the control
 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
 *    alternatives. The kernel patching is batched and performed at later
 *    point. The actions are always initiated only after the capability
 *    is finalised. This is usally denoted by "enabling" the capability.
 *    The actions are initiated as follows :
 *	a) Action is triggered on all online CPUs, after the capability is
 *	finalised, invoked within the stop_machine() context from
 *	enable_cpu_capabilitie().
 *
 *	b) Any late CPU, brought up after (1), the action is triggered via:
 *
 *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
 *
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
 *    the system state, we could have the following combinations :
 *
 *		x-----------------------------x
 *		| Type  | System   | Late CPU |
 *		|-----------------------------|
 *		|  a    |   y      |    n     |
 *		|-----------------------------|
 *		|  b    |   n      |    y     |
 *		x-----------------------------x
 *
 *     Two separate flag bits are defined to indicate whether each kind of
 *     conflict can be allowed:
 *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
 *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
 *
 *     Case (a) is not permitted for a capability that the system requires
 *     all CPUs to have in order for the capability to be enabled. This is
 *     typical for capabilities that represent enhanced functionality.
 *
 *     Case (b) is not permitted for a capability that must be enabled
 *     during boot if any CPU in the system requires it in order to run
 *     safely. This is typical for erratum work arounds that cannot be
 *     enabled after the corresponding capability is finalised.
 *
 *     In some non-typical cases either both (a) and (b), or neither,
 *     should be permitted. This can be described by including neither
 *     or both flags in the capability's type field.
220 221 222
 */


223 224 225 226
/*
 * Decide how the capability is detected.
 * On any local CPU vs System wide vs the primary boot CPU
 */
227 228
#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
229 230 231 232 233 234
/*
 * The capabilitiy is detected on the Boot CPU and is used by kernel
 * during early boot. i.e, the capability should be "detected" and
 * "enabled" as early as possibly on all booting CPUs.
 */
#define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
235 236
#define ARM64_CPUCAP_SCOPE_MASK			\
	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
237 238
	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
239 240 241

#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
242
#define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
243
#define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * Is it permitted for a late CPU to have this capability when system
 * hasn't already enabled it ?
 */
#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
/* Is it safe for a late CPU to miss this capability when system has it */
#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))

/*
 * CPU errata workarounds that need to be enabled at boot time if one or
 * more CPUs in the system requires it. When one of these capabilities
 * has been enabled, it is safe to allow any CPU to boot that doesn't
 * require the workaround. However, it is not safe if a "late" CPU
 * requires a workaround and the system hasn't enabled it already.
 */
#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
/*
 * CPU feature detected at boot time based on system-wide value of a
 * feature. It is safe for a late CPU to have this feature even though
W
Will Deacon 已提交
265
 * the system hasn't enabled it, although the feature will not be used
266 267 268 269 270
 * by Linux in this case. If the system has enabled this feature already,
 * then every late CPU must have it.
 */
#define ARM64_CPUCAP_SYSTEM_FEATURE	\
	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
271 272 273 274 275 276 277 278
/*
 * CPU feature detected at boot time based on feature of one or more CPUs.
 * All possible conflicts for a late CPU are ignored.
 */
#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
279

280 281 282 283 284 285 286 287 288
/*
 * CPU feature detected at boot time, on one or more CPUs. A late CPU
 * is not allowed to have the capability when the system doesn't have it.
 * It is Ok for a late CPU to miss the feature.
 */
#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)

289 290 291 292 293 294
/*
 * CPU feature used early in the boot based on the boot CPU. All secondary
 * CPUs must match the state of the capability as detected by the boot CPU.
 */
#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU

295 296 297
struct arm64_cpu_capabilities {
	const char *desc;
	u16 capability;
298
	u16 type;
299
	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
300 301 302 303 304 305
	/*
	 * Take the appropriate actions to enable this capability for this CPU.
	 * For each successfully booted CPU, this method is called for each
	 * globally detected capability.
	 */
	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
306 307
	union {
		struct {	/* To be used for erratum handling only */
308
			struct midr_range midr_range;
309 310 311 312
			const struct arm64_midr_revidr {
				u32 midr_rv;		/* revision/variant */
				u32 revidr_mask;
			} * const fixed_revs;
313
		};
314

315
		const struct midr_range *midr_range_list;
316
		struct {	/* Feature register checking */
317
			u32 sys_reg;
318 319 320 321
			u8 field_pos;
			u8 min_field_value;
			u8 hwcap_type;
			bool sign;
322
			unsigned long hwcap;
323
		};
324
	};
325 326 327 328 329 330 331 332 333 334 335 336 337

	/*
	 * An optional list of "matches/cpu_enable" pair for the same
	 * "capability" of the same "type" as described by the parent.
	 * Only matches(), cpu_enable() and fields relevant to these
	 * methods are significant in the list. The cpu_enable is
	 * invoked only if the corresponding entry "matches()".
	 * However, if a cpu_enable() method is associated
	 * with multiple matches(), care should be taken that either
	 * the match criteria are mutually exclusive, or that the
	 * method is robust against being called multiple times.
	 */
	const struct arm64_cpu_capabilities *match_list;
338 339
};

340 341 342 343 344
static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
{
	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}

345 346 347 348 349 350 351 352 353 354 355 356
static inline bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
}

static inline bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/*
 * Generic helper for handling capabilties with multiple (match,enable) pairs
 * of call backs, sharing the same capability bit.
 * Iterate over each entry to see if at least one matches.
 */
static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
			       int scope)
{
	const struct arm64_cpu_capabilities *caps;

	for (caps = entry->match_list; caps->matches; caps++)
		if (caps->matches(caps, scope))
			return true;

	return false;
}

/*
 * Take appropriate action for all matching entries in the shared capability
 * entry.
 */
static inline void
cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
{
	const struct arm64_cpu_capabilities *caps;

	for (caps = entry->match_list; caps->matches; caps++)
		if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
		    caps->cpu_enable)
			caps->cpu_enable(caps);
}

390
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
391
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
392
extern struct static_key_false arm64_const_caps_ready;
393

394 395 396
#define for_each_available_cap(cap)		\
	for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)

397 398
bool this_cpu_has_cap(unsigned int cap);

399 400 401 402 403
static inline bool cpu_have_feature(unsigned int num)
{
	return elf_hwcap & (1UL << num);
}

404
/* System capability check for constant caps */
405
static inline bool __cpus_have_const_cap(int num)
406 407 408 409 410 411
{
	if (num >= ARM64_NCAPS)
		return false;
	return static_branch_unlikely(&cpu_hwcap_keys[num]);
}

412 413
static inline bool cpus_have_cap(unsigned int num)
{
414
	if (num >= ARM64_NCAPS)
415
		return false;
416
	return test_bit(num, cpu_hwcaps);
417 418
}

419 420 421 422 423 424 425 426
static inline bool cpus_have_const_cap(int num)
{
	if (static_branch_likely(&arm64_const_caps_ready))
		return __cpus_have_const_cap(num);
	else
		return cpus_have_cap(num);
}

427 428
static inline void cpus_set_cap(unsigned int num)
{
429
	if (num >= ARM64_NCAPS) {
430
		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
431
			num, ARM64_NCAPS);
432
	} else {
433
		__set_bit(num, cpu_hwcaps);
434
	}
435 436
}

437
static inline int __attribute_const__
438
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
439
{
440 441 442 443
	return (s64)(features << (64 - width - field)) >> (64 - width);
}

static inline int __attribute_const__
444
cpuid_feature_extract_signed_field(u64 features, int field)
445
{
446
	return cpuid_feature_extract_signed_field_width(features, field, 4);
447 448
}

449 450 451 452 453 454 455 456 457 458 459 460
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
	return (u64)(features << (64 - width - field)) >> (64 - width);
}

static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}

461
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
462 463 464 465
{
	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}

466 467 468 469 470
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
	return (reg->user_val | (reg->sys_val & reg->user_mask));
}

471
static inline int __attribute_const__
472
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
473 474
{
	return (sign) ?
475 476 477 478 479 480 481 482
		cpuid_feature_extract_signed_field_width(features, field, width) :
		cpuid_feature_extract_unsigned_field_width(features, field, width);
}

static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
	return cpuid_feature_extract_field_width(features, field, 4, sign);
483 484
}

485
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
486
{
487
	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
488 489
}

490
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
491
{
492 493
	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
494 495
}

496 497 498 499 500 501 502
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);

	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}

503 504 505 506 507 508 509
static inline bool id_aa64pfr0_sve(u64 pfr0)
{
	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);

	return val > 0;
}

510
void __init setup_cpu_features(void);
511 512
void check_local_cpu_capabilities(void);

513
u64 read_sanitised_ftr_reg(u32 id);
514

515 516 517 518 519
static inline bool cpu_supports_mixed_endian_el0(void)
{
	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}

520 521
static inline bool system_supports_32bit_el0(void)
{
522
	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
523 524
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static inline bool system_supports_4kb_granule(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_TGRAN4_SHIFT);

	return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
}

static inline bool system_supports_64kb_granule(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_TGRAN64_SHIFT);

	return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
}

static inline bool system_supports_16kb_granule(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_TGRAN16_SHIFT);

	return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
}

561 562
static inline bool system_supports_mixed_endian_el0(void)
{
563
	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
564
}
565

566 567 568 569 570 571 572 573 574 575 576 577
static inline bool system_supports_mixed_endian(void)
{
	u64 mmfr0;
	u32 val;

	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
	val = cpuid_feature_extract_unsigned_field(mmfr0,
						ID_AA64MMFR0_BIGENDEL_SHIFT);

	return val == 0x1;
}

578 579 580 581 582
static inline bool system_supports_fpsimd(void)
{
	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}

583 584 585
static inline bool system_uses_ttbr0_pan(void)
{
	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
586
		!cpus_have_const_cap(ARM64_HAS_PAN);
587 588
}

589 590
static inline bool system_supports_sve(void)
{
591 592
	return IS_ENABLED(CONFIG_ARM64_SVE) &&
		cpus_have_const_cap(ARM64_SVE);
593 594
}

595 596 597 598 599 600
static inline bool system_supports_cnp(void)
{
	return IS_ENABLED(CONFIG_ARM64_CNP) &&
		cpus_have_const_cap(ARM64_HAS_CNP);
}

601 602 603
static inline bool system_supports_address_auth(void)
{
	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
604 605
		(cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
		 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
606 607 608 609 610
}

static inline bool system_supports_generic_auth(void)
{
	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
611 612
		(cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
		 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
613 614
}

615 616 617 618 619 620
#define ARM64_SSBD_UNKNOWN		-1
#define ARM64_SSBD_FORCE_DISABLE	0
#define ARM64_SSBD_KERNEL		1
#define ARM64_SSBD_FORCE_ENABLE		2
#define ARM64_SSBD_MITIGATED		3

621 622 623 624 625 626 627 628 629 630
static inline int arm64_get_ssbd_state(void)
{
#ifdef CONFIG_ARM64_SSBD
	extern int ssbd_state;
	return ssbd_state;
#else
	return ARM64_SSBD_UNKNOWN;
#endif
}

631 632 633 634 635 636
#ifdef CONFIG_ARM64_SSBD
void arm64_set_ssbd_mitigation(bool state);
#else
static inline void arm64_set_ssbd_mitigation(bool state) {}
#endif

637
extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
638

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
{
	switch (parange) {
	case 0: return 32;
	case 1: return 36;
	case 2: return 40;
	case 3: return 42;
	case 4: return 44;
	case 5: return 48;
	case 6: return 52;
	/*
	 * A future PE could use a value unknown to the kernel.
	 * However, by the "D10.1.4 Principles of the ID scheme
	 * for fields in ID registers", ARM DDI 0487C.a, any new
	 * value is guaranteed to be higher than what we know already.
	 * As a safe limit, we return the limit supported by the kernel.
	 */
	default: return CONFIG_ARM64_PA_BITS;
	}
}
659 660
#endif /* __ASSEMBLY__ */

661
#endif