rawnand.h 42.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
D
David Woodhouse 已提交
2 3 4
 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
 *                        Steven J. Hill <sjhill@realitydiluted.com>
 *		          Thomas Gleixner <tglx@linutronix.de>
L
Linus Torvalds 已提交
5 6 7 8 9
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
10 11
 * Info:
 *	Contains standard defines and IDs for NAND flash devices
L
Linus Torvalds 已提交
12
 *
13 14
 * Changelog:
 *	See git changelog.
L
Linus Torvalds 已提交
15
 */
16 17
#ifndef __LINUX_MTD_RAWNAND_H
#define __LINUX_MTD_RAWNAND_H
L
Linus Torvalds 已提交
18 19 20 21

#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/mtd/mtd.h>
22
#include <linux/mtd/flashchip.h>
A
Alessandro Rubini 已提交
23
#include <linux/mtd/bbm.h>
24
#include <linux/mtd/jedec.h>
25
#include <linux/mtd/onfi.h>
26
#include <linux/of.h>
27
#include <linux/types.h>
L
Linus Torvalds 已提交
28

29
struct nand_chip;
30

L
Linus Torvalds 已提交
31 32 33 34 35
/* The maximum number of NAND chips in an array */
#define NAND_MAX_CHIPS		8

/*
 * Constants for hardware specific CLE/ALE/NCE function
36 37 38 39
 *
 * These are bits which can be or'ed to set/clear multiple
 * bits in one go.
 */
L
Linus Torvalds 已提交
40
/* Select the chip by setting nCE to low */
41
#define NAND_NCE		0x01
L
Linus Torvalds 已提交
42
/* Select the command latch by setting CLE to high */
43
#define NAND_CLE		0x02
L
Linus Torvalds 已提交
44
/* Select the address latch by setting ALE to high */
45 46 47 48 49
#define NAND_ALE		0x04

#define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
#define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
#define NAND_CTRL_CHANGE	0x80
L
Linus Torvalds 已提交
50 51 52 53 54 55

/*
 * Standard NAND flash commands
 */
#define NAND_CMD_READ0		0
#define NAND_CMD_READ1		1
56
#define NAND_CMD_RNDOUT		5
L
Linus Torvalds 已提交
57 58 59 60 61
#define NAND_CMD_PAGEPROG	0x10
#define NAND_CMD_READOOB	0x50
#define NAND_CMD_ERASE1		0x60
#define NAND_CMD_STATUS		0x70
#define NAND_CMD_SEQIN		0x80
62
#define NAND_CMD_RNDIN		0x85
L
Linus Torvalds 已提交
63 64
#define NAND_CMD_READID		0x90
#define NAND_CMD_ERASE2		0xd0
65
#define NAND_CMD_PARAM		0xec
66 67
#define NAND_CMD_GET_FEATURES	0xee
#define NAND_CMD_SET_FEATURES	0xef
L
Linus Torvalds 已提交
68 69 70 71
#define NAND_CMD_RESET		0xff

/* Extended commands for large page devices */
#define NAND_CMD_READSTART	0x30
72
#define NAND_CMD_RNDOUTSTART	0xE0
L
Linus Torvalds 已提交
73 74
#define NAND_CMD_CACHEDPROG	0x15

75 76
#define NAND_CMD_NONE		-1

L
Linus Torvalds 已提交
77 78 79 80 81 82 83
/* Status bits */
#define NAND_STATUS_FAIL	0x01
#define NAND_STATUS_FAIL_N1	0x02
#define NAND_STATUS_TRUE_READY	0x20
#define NAND_STATUS_READY	0x40
#define NAND_STATUS_WP		0x80

84 85
#define NAND_DATA_IFACE_CHECK_ONLY	-1

86
/*
L
Linus Torvalds 已提交
87 88
 * Constants for ECC_MODES
 */
T
Thomas Gleixner 已提交
89 90 91 92 93
typedef enum {
	NAND_ECC_NONE,
	NAND_ECC_SOFT,
	NAND_ECC_HW,
	NAND_ECC_HW_SYNDROME,
94
	NAND_ECC_HW_OOB_FIRST,
95
	NAND_ECC_ON_DIE,
T
Thomas Gleixner 已提交
96
} nand_ecc_modes_t;
L
Linus Torvalds 已提交
97

98 99 100 101
enum nand_ecc_algo {
	NAND_ECC_UNKNOWN,
	NAND_ECC_HAMMING,
	NAND_ECC_BCH,
102
	NAND_ECC_RS,
103 104
};

L
Linus Torvalds 已提交
105 106
/*
 * Constants for Hardware ECC
107
 */
L
Linus Torvalds 已提交
108 109 110 111
/* Reset Hardware ECC for read */
#define NAND_ECC_READ		0
/* Reset Hardware ECC for write */
#define NAND_ECC_WRITE		1
112
/* Enable Hardware ECC before syndrome is read back from flash */
L
Linus Torvalds 已提交
113 114
#define NAND_ECC_READSYN	2

115 116 117 118 119 120 121
/*
 * Enable generic NAND 'page erased' check. This check is only done when
 * ecc.correct() returns -EBADMSG.
 * Set this flag if your implementation does not fix bitflips in erased
 * pages and you want to rely on the default implementation.
 */
#define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
122
#define NAND_ECC_MAXIMIZE		BIT(1)
123

124 125 126 127 128 129
/*
 * When using software implementation of Hamming, we can specify which byte
 * ordering should be used.
 */
#define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)

S
Sebastian Andrzej Siewior 已提交
130 131 132 133
/*
 * Option constants for bizarre disfunctionality and real
 * features.
 */
134
/* Buswidth is 16 bit */
L
Linus Torvalds 已提交
135 136 137
#define NAND_BUSWIDTH_16	0x00000002
/* Chip has cache program function */
#define NAND_CACHEPRG		0x00000008
138 139 140 141 142 143 144
/*
 * Chip requires ready check on read (for auto-incremented sequential read).
 * True only for small page devices; large page devices do not support
 * autoincrement.
 */
#define NAND_NEED_READRDY	0x00000100

145 146 147
/* Chip does not allow subpage writes */
#define NAND_NO_SUBPAGE_WRITE	0x00000200

148 149 150 151 152 153
/* Device is one of 'new' xD cards that expose fake nand command set */
#define NAND_BROKEN_XD		0x00000400

/* Device behaves just like nand, but is readonly */
#define NAND_ROM		0x00000800

154 155 156
/* Device supports subpage reads */
#define NAND_SUBPAGE_READ	0x00001000

157 158 159 160 161 162
/*
 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 * patterns.
 */
#define NAND_NEED_SCRAMBLING	0x00002000

163 164 165
/* Device needs 3rd row address cycle */
#define NAND_ROW_ADDR_3		0x00004000

L
Linus Torvalds 已提交
166
/* Options valid for Samsung large page devices */
167
#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
L
Linus Torvalds 已提交
168 169

/* Macros to identify the above */
170
#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
L
Linus Torvalds 已提交
171 172

/* Non chip related options */
173
/* This option skips the bbt scan during initialization. */
174
#define NAND_SKIP_BBTSCAN	0x00010000
175
/* Chip may not exist, so silence any errors in scan */
176
#define NAND_SCAN_SILENT_NODEV	0x00040000
177 178 179 180 181 182 183
/*
 * Autodetect nand buswidth with readid/onfi.
 * This suppose the driver will configure the hardware in 8 bits mode
 * when calling nand_scan_ident, and update its configuration
 * before calling nand_scan_tail.
 */
#define NAND_BUSWIDTH_AUTO      0x00080000
184 185 186 187 188
/*
 * This option could be defined by controller drivers to protect against
 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 */
#define NAND_USE_BOUNCE_BUFFER	0x00100000
189

190
/*
191 192 193 194
 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
 * on the default ->cmdfunc() implementation, you may want to let the core
 * handle the tCCS delay which is required when a column change (RNDIN or
 * RNDOUT) is requested.
195 196 197 198 199
 * If your controller already takes care of this delay, you don't need to set
 * this flag.
 */
#define NAND_WAIT_TCCS		0x00200000

200 201 202 203 204 205
/*
 * Whether the NAND chip is a boot medium. Drivers might use this information
 * to select ECC algorithms supported by the boot ROM or similar restrictions.
 */
#define NAND_IS_BOOT_MEDIUM	0x00400000

206 207 208
/* Cell info constants */
#define NAND_CI_CHIPNR_MSK	0x03
#define NAND_CI_CELLTYPE_MSK	0x0C
209
#define NAND_CI_CELLTYPE_SHIFT	2
L
Linus Torvalds 已提交
210

211 212 213 214
/**
 * struct nand_parameters - NAND generic parameters from the parameter page
 * @model: Model name
 * @supports_set_get_features: The NAND chip supports setting/getting features
215 216
 * @set_feature_list: Bitmap of features that can be set
 * @get_feature_list: Bitmap of features that can be get
217
 * @onfi: ONFI specific parameters
218 219
 */
struct nand_parameters {
220
	/* Generic parameters */
221
	const char *model;
222
	bool supports_set_get_features;
223 224
	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
225 226

	/* ONFI parameters */
227
	struct onfi_params *onfi;
228 229
};

230 231 232
/* The maximum expected count of bytes in the NAND ID sequence */
#define NAND_MAX_ID_LEN 8

233 234
/**
 * struct nand_id - NAND id structure
235
 * @data: buffer containing the id bytes.
236 237 238
 * @len: ID length.
 */
struct nand_id {
239
	u8 data[NAND_MAX_ID_LEN];
240 241 242
	int len;
};

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/**
 * struct nand_controller_ops - Controller operations
 *
 * @attach_chip: this method is called after the NAND detection phase after
 *		 flash ID and MTD fields such as erase size, page size and OOB
 *		 size have been set up. ECC requirements are available if
 *		 provided by the NAND chip or device tree. Typically used to
 *		 choose the appropriate ECC configuration and allocate
 *		 associated resources.
 *		 This hook is optional.
 * @detach_chip: free all resources allocated/claimed in
 *		 nand_controller_ops->attach_chip().
 *		 This hook is optional.
 */
struct nand_controller_ops {
	int (*attach_chip)(struct nand_chip *chip);
	void (*detach_chip)(struct nand_chip *chip);
};

L
Linus Torvalds 已提交
262
/**
263 264
 * struct nand_controller - Structure used to describe a NAND controller
 *
265
 * @lock:               protection lock
L
Linus Torvalds 已提交
266
 * @active:		the mtd device which holds the controller currently
S
Sebastian Andrzej Siewior 已提交
267 268 269
 * @wq:			wait queue to sleep on if a NAND operation is in
 *			progress used instead of the per chip wait queue
 *			when a hw controller is available.
270
 * @ops:		NAND controller operations.
L
Linus Torvalds 已提交
271
 */
272
struct nand_controller {
273
	spinlock_t lock;
L
Linus Torvalds 已提交
274
	struct nand_chip *active;
275
	wait_queue_head_t wq;
276
	const struct nand_controller_ops *ops;
L
Linus Torvalds 已提交
277 278
};

279
static inline void nand_controller_init(struct nand_controller *nfc)
280 281 282 283 284 285
{
	nfc->active = NULL;
	spin_lock_init(&nfc->lock);
	init_waitqueue_head(&nfc->wq);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/**
 * struct nand_ecc_step_info - ECC step information of ECC engine
 * @stepsize: data bytes per ECC step
 * @strengths: array of supported strengths
 * @nstrengths: number of supported strengths
 */
struct nand_ecc_step_info {
	int stepsize;
	const int *strengths;
	int nstrengths;
};

/**
 * struct nand_ecc_caps - capability of ECC engine
 * @stepinfos: array of ECC step information
 * @nstepinfos: number of ECC step information
 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
 */
struct nand_ecc_caps {
	const struct nand_ecc_step_info *stepinfos;
	int nstepinfos;
	int (*calc_ecc_bytes)(int step_size, int strength);
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323
/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
static const int __name##_strengths[] = { __VA_ARGS__ };	\
static const struct nand_ecc_step_info __name##_stepinfo = {	\
	.stepsize = __step,					\
	.strengths = __name##_strengths,			\
	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
};								\
static const struct nand_ecc_caps __name = {			\
	.stepinfos = &__name##_stepinfo,			\
	.nstepinfos = 1,					\
	.calc_ecc_bytes = __calc,				\
}

T
Thomas Gleixner 已提交
324
/**
325 326
 * struct nand_ecc_ctrl - Control structure for ECC
 * @mode:	ECC mode
327
 * @algo:	ECC algorithm
328 329 330
 * @steps:	number of ECC steps per page
 * @size:	data bytes per ECC step
 * @bytes:	ECC bytes per step
331
 * @strength:	max number of correctible bits per ECC step
332 333 334
 * @total:	total number of ECC bytes per page
 * @prepad:	padding information for syndrome based ECC generators
 * @postpad:	padding information for syndrome based ECC generators
335
 * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
336
 * @priv:	pointer to private ECC control data
337 338
 * @calc_buf:	buffer for calculated ECC, size is oobsize.
 * @code_buf:	buffer for ECC read from flash, size is oobsize.
339
 * @hwctl:	function to control hardware ECC generator. Must only
T
Thomas Gleixner 已提交
340
 *		be provided if an hardware ECC is available
341
 * @calculate:	function for ECC calculation or readback from ECC hardware
342 343 344 345 346 347 348
 * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
 *		Should return a positive number representing the number of
 *		corrected bitflips, -EBADMSG if the number of bitflips exceed
 *		ECC strength, or any other error code if the error is not
 *		directly related to correction.
 *		If -EBADMSG is returned the input buffers should be left
 *		untouched.
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
 * @read_page_raw:	function to read a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and always return contiguous in-band and
 *			out-of-band data even if they're not stored
 *			contiguously on the NAND chip (e.g.
 *			NAND_ECC_HW_SYNDROME interleaves in-band and
 *			out-of-band data).
 * @write_page_raw:	function to write a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and consider the passed data as contiguous
 *			in-band and out-of-band data. ECC controller is
 *			responsible for doing the appropriate transformations
 *			to adapt to its specific layout (e.g.
 *			NAND_ECC_HW_SYNDROME interleaves in-band and
 *			out-of-band data).
364
 * @read_page:	function to read a page according to the ECC generator
365
 *		requirements; returns maximum number of bitflips corrected in
366
 *		any single ECC step, -EIO hw error
367 368
 * @read_subpage:	function to read parts of the page covered by ECC;
 *			returns same as read_page()
369
 * @write_subpage:	function to write parts of the page covered by ECC.
370
 * @write_page:	function to write a page according to the ECC generator
S
Sebastian Andrzej Siewior 已提交
371
 *		requirements.
372
 * @write_oob_raw:	function to write chip OOB data without ECC
373
 * @read_oob_raw:	function to read chip OOB data without ECC
R
Randy Dunlap 已提交
374 375
 * @read_oob:	function to read chip OOB data
 * @write_oob:	function to write chip OOB data
T
Thomas Gleixner 已提交
376 377
 */
struct nand_ecc_ctrl {
378
	nand_ecc_modes_t mode;
379
	enum nand_ecc_algo algo;
380 381 382 383
	int steps;
	int size;
	int bytes;
	int total;
384
	int strength;
385 386
	int prepad;
	int postpad;
387
	unsigned int options;
388
	void *priv;
389 390
	u8 *calc_buf;
	u8 *code_buf;
391
	void (*hwctl)(struct nand_chip *chip, int mode);
392 393
	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
			 uint8_t *ecc_code);
394 395
	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
		       uint8_t *calc_ecc);
396 397
	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
			     int oob_required, int page);
398 399
	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
			      int oob_required, int page);
400 401 402 403
	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
			 int oob_required, int page);
	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
			    uint32_t len, uint8_t *buf, int page);
404 405 406 407 408 409
	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
			     uint32_t data_len, const uint8_t *data_buf,
			     int oob_required, int page);
	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
			  int oob_required, int page);
	int (*write_oob_raw)(struct nand_chip *chip, int page);
410 411
	int (*read_oob_raw)(struct nand_chip *chip, int page);
	int (*read_oob)(struct nand_chip *chip, int page);
412
	int (*write_oob)(struct nand_chip *chip, int page);
413 414
};

415 416 417 418 419 420 421 422 423 424 425
/**
 * struct nand_sdr_timings - SDR NAND chip timings
 *
 * This struct defines the timing requirements of a SDR NAND chip.
 * These information can be found in every NAND datasheets and the timings
 * meaning are described in the ONFI specifications:
 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
 * Parameters)
 *
 * All these timings are expressed in picoseconds.
 *
426 427 428 429
 * @tBERS_max: Block erase time
 * @tCCS_min: Change column setup time
 * @tPROG_max: Page program time
 * @tR_max: Page read time
430 431 432 433 434
 * @tALH_min: ALE hold time
 * @tADL_min: ALE to data loading time
 * @tALS_min: ALE setup time
 * @tAR_min: ALE to RE# delay
 * @tCEA_max: CE# access time
435
 * @tCEH_min: CE# high hold time
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
 * @tCH_min:  CE# hold time
 * @tCHZ_max: CE# high to output hi-Z
 * @tCLH_min: CLE hold time
 * @tCLR_min: CLE to RE# delay
 * @tCLS_min: CLE setup time
 * @tCOH_min: CE# high to output hold
 * @tCS_min: CE# setup time
 * @tDH_min: Data hold time
 * @tDS_min: Data setup time
 * @tFEAT_max: Busy time for Set Features and Get Features
 * @tIR_min: Output hi-Z to RE# low
 * @tITC_max: Interface and Timing Mode Change time
 * @tRC_min: RE# cycle time
 * @tREA_max: RE# access time
 * @tREH_min: RE# high hold time
 * @tRHOH_min: RE# high to output hold
 * @tRHW_min: RE# high to WE# low
 * @tRHZ_max: RE# high to output hi-Z
 * @tRLOH_min: RE# low to output hold
 * @tRP_min: RE# pulse width
 * @tRR_min: Ready to RE# low (data only)
 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 *	      rising edge of R/B#.
 * @tWB_max: WE# high to SR[6] low
 * @tWC_min: WE# cycle time
 * @tWH_min: WE# high hold time
 * @tWHR_min: WE# high to RE# low
 * @tWP_min: WE# pulse width
 * @tWW_min: WP# transition to WE# low
 */
struct nand_sdr_timings {
467
	u64 tBERS_max;
468
	u32 tCCS_min;
469 470
	u64 tPROG_max;
	u64 tR_max;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	u32 tALH_min;
	u32 tADL_min;
	u32 tALS_min;
	u32 tAR_min;
	u32 tCEA_max;
	u32 tCEH_min;
	u32 tCH_min;
	u32 tCHZ_max;
	u32 tCLH_min;
	u32 tCLR_min;
	u32 tCLS_min;
	u32 tCOH_min;
	u32 tCS_min;
	u32 tDH_min;
	u32 tDS_min;
	u32 tFEAT_max;
	u32 tIR_min;
	u32 tITC_max;
	u32 tRC_min;
	u32 tREA_max;
	u32 tREH_min;
	u32 tRHOH_min;
	u32 tRHW_min;
	u32 tRHZ_max;
	u32 tRLOH_min;
	u32 tRP_min;
	u32 tRR_min;
	u64 tRST_max;
	u32 tWB_max;
	u32 tWC_min;
	u32 tWH_min;
	u32 tWHR_min;
	u32 tWP_min;
	u32 tWW_min;
};

/**
 * enum nand_data_interface_type - NAND interface timing type
 * @NAND_SDR_IFACE:	Single Data Rate interface
 */
enum nand_data_interface_type {
	NAND_SDR_IFACE,
};

/**
 * struct nand_data_interface - NAND interface timing
517 518 519
 * @type:	 type of the timing
 * @timings:	 The timing, type according to @type
 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
 */
struct nand_data_interface {
	enum nand_data_interface_type type;
	union {
		struct nand_sdr_timings sdr;
	} timings;
};

/**
 * nand_get_sdr_timings - get SDR timing from data interface
 * @conf:	The data interface
 */
static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_data_interface *conf)
{
	if (conf->type != NAND_SDR_IFACE)
		return ERR_PTR(-EINVAL);

	return &conf->timings.sdr;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/**
 * struct nand_op_cmd_instr - Definition of a command instruction
 * @opcode: the command to issue in one cycle
 */
struct nand_op_cmd_instr {
	u8 opcode;
};

/**
 * struct nand_op_addr_instr - Definition of an address instruction
 * @naddrs: length of the @addrs array
 * @addrs: array containing the address cycles to issue
 */
struct nand_op_addr_instr {
	unsigned int naddrs;
	const u8 *addrs;
};

/**
 * struct nand_op_data_instr - Definition of a data instruction
 * @len: number of data bytes to move
562 563 564
 * @buf: buffer to fill
 * @buf.in: buffer to fill when reading from the NAND chip
 * @buf.out: buffer to read from when writing to the NAND chip
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
 * @force_8bit: force 8-bit access
 *
 * Please note that "in" and "out" are inverted from the ONFI specification
 * and are from the controller perspective, so a "in" is a read from the NAND
 * chip while a "out" is a write to the NAND chip.
 */
struct nand_op_data_instr {
	unsigned int len;
	union {
		void *in;
		const void *out;
	} buf;
	bool force_8bit;
};

/**
 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
 */
struct nand_op_waitrdy_instr {
	unsigned int timeout_ms;
};

/**
 * enum nand_op_instr_type - Definition of all instruction types
 * @NAND_OP_CMD_INSTR: command instruction
 * @NAND_OP_ADDR_INSTR: address instruction
 * @NAND_OP_DATA_IN_INSTR: data in instruction
 * @NAND_OP_DATA_OUT_INSTR: data out instruction
 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
 */
enum nand_op_instr_type {
	NAND_OP_CMD_INSTR,
	NAND_OP_ADDR_INSTR,
	NAND_OP_DATA_IN_INSTR,
	NAND_OP_DATA_OUT_INSTR,
	NAND_OP_WAITRDY_INSTR,
};

/**
 * struct nand_op_instr - Instruction object
 * @type: the instruction type
607 608 609 610 611 612 613
 * @ctx:  extra data associated to the instruction. You'll have to use the
 *        appropriate element depending on @type
 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
 *	      or %NAND_OP_DATA_OUT_INSTR
 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
 * @delay_ns: delay the controller should apply after the instruction has been
 *	      issued on the bus. Most modern controllers have internal timings
 *	      control logic, and in this case, the controller driver can ignore
 *	      this field.
 */
struct nand_op_instr {
	enum nand_op_instr_type type;
	union {
		struct nand_op_cmd_instr cmd;
		struct nand_op_addr_instr addr;
		struct nand_op_data_instr data;
		struct nand_op_waitrdy_instr waitrdy;
	} ctx;
	unsigned int delay_ns;
};

/*
 * Special handling must be done for the WAITRDY timeout parameter as it usually
 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
 * tBERS (during an erase) which all of them are u64 values that cannot be
 * divided by usual kernel macros and must be handled with the special
 * DIV_ROUND_UP_ULL() macro.
636 637 638 639 640 641 642 643 644 645 646 647
 *
 * Cast to type of dividend is needed here to guarantee that the result won't
 * be an unsigned long long when the dividend is an unsigned long (or smaller),
 * which is what the compiler does when it sees ternary operator with 2
 * different return types (picks the largest type to make sure there's no
 * loss).
 */
#define __DIVIDE(dividend, divisor) ({						\
	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
			       DIV_ROUND_UP(dividend, divisor) :		\
			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
	})
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)

#define NAND_OP_CMD(id, ns)						\
	{								\
		.type = NAND_OP_CMD_INSTR,				\
		.ctx.cmd.opcode = id,					\
		.delay_ns = ns,						\
	}

#define NAND_OP_ADDR(ncycles, cycles, ns)				\
	{								\
		.type = NAND_OP_ADDR_INSTR,				\
		.ctx.addr = {						\
			.naddrs = ncycles,				\
			.addrs = cycles,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_DATA_IN(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_IN_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.in = b,					\
			.force_8bit = false,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_DATA_OUT(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_OUT_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.out = b,					\
			.force_8bit = false,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_IN_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.in = b,					\
			.force_8bit = true,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_OUT_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.out = b,					\
			.force_8bit = true,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_WAIT_RDY(tout_ms, ns)					\
	{								\
		.type = NAND_OP_WAITRDY_INSTR,				\
		.ctx.waitrdy.timeout_ms = tout_ms,			\
		.delay_ns = ns,						\
	}

/**
 * struct nand_subop - a sub operation
 * @instrs: array of instructions
 * @ninstrs: length of the @instrs array
 * @first_instr_start_off: offset to start from for the first instruction
 *			   of the sub-operation
 * @last_instr_end_off: offset to end at (excluded) for the last instruction
 *			of the sub-operation
 *
 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
 * address instructions.
 *
 * When an operation cannot be handled as is by the NAND controller, it will
 * be split by the parser into sub-operations which will be passed to the
 * controller driver.
 */
struct nand_subop {
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
	unsigned int first_instr_start_off;
	unsigned int last_instr_end_off;
};

742 743 744 745 746 747 748 749
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
					 unsigned int op_id);
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
				     unsigned int op_id);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

/**
 * struct nand_op_parser_addr_constraints - Constraints for address instructions
 * @maxcycles: maximum number of address cycles the controller can issue in a
 *	       single step
 */
struct nand_op_parser_addr_constraints {
	unsigned int maxcycles;
};

/**
 * struct nand_op_parser_data_constraints - Constraints for data instructions
 * @maxlen: maximum data length that the controller can handle in a single step
 */
struct nand_op_parser_data_constraints {
	unsigned int maxlen;
};

/**
 * struct nand_op_parser_pattern_elem - One element of a pattern
 * @type: the instructuction type
 * @optional: whether this element of the pattern is optional or mandatory
772 773 774
 * @ctx: address or data constraint
 * @ctx.addr: address constraint (number of cycles)
 * @ctx.data: data constraint (data length)
775 776 777 778 779 780 781
 */
struct nand_op_parser_pattern_elem {
	enum nand_op_instr_type type;
	bool optional;
	union {
		struct nand_op_parser_addr_constraints addr;
		struct nand_op_parser_data_constraints data;
782
	} ctx;
783 784 785 786 787 788 789 790 791 792 793 794
};

#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
	{							\
		.type = NAND_OP_CMD_INSTR,			\
		.optional = _opt,				\
	}

#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
	{							\
		.type = NAND_OP_ADDR_INSTR,			\
		.optional = _opt,				\
795
		.ctx.addr.maxcycles = _maxcycles,		\
796 797 798 799 800 801
	}

#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
	{							\
		.type = NAND_OP_DATA_IN_INSTR,			\
		.optional = _opt,				\
802
		.ctx.data.maxlen = _maxlen,			\
803 804 805 806 807 808
	}

#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
	{							\
		.type = NAND_OP_DATA_OUT_INSTR,			\
		.optional = _opt,				\
809
		.ctx.data.maxlen = _maxlen,			\
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	}

#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
	{							\
		.type = NAND_OP_WAITRDY_INSTR,			\
		.optional = _opt,				\
	}

/**
 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
 * @elems: array of pattern elements
 * @nelems: number of pattern elements in @elems array
 * @exec: the function that will issue a sub-operation
 *
 * A pattern is a list of elements, each element reprensenting one instruction
 * with its constraints. The pattern itself is used by the core to match NAND
 * chip operation with NAND controller operations.
 * Once a match between a NAND controller operation pattern and a NAND chip
 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
 * hook is called so that the controller driver can issue the operation on the
 * bus.
 *
 * Controller drivers should declare as many patterns as they support and pass
 * this list of patterns (created with the help of the following macro) to
 * the nand_op_parser_exec_op() helper.
 */
struct nand_op_parser_pattern {
	const struct nand_op_parser_pattern_elem *elems;
	unsigned int nelems;
	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
};

#define NAND_OP_PARSER_PATTERN(_exec, ...)							\
	{											\
		.exec = _exec,									\
		.elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
			  sizeof(struct nand_op_parser_pattern_elem),				\
	}

/**
 * struct nand_op_parser - NAND controller operation parser descriptor
 * @patterns: array of supported patterns
 * @npatterns: length of the @patterns array
 *
 * The parser descriptor is just an array of supported patterns which will be
 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
 * NAND operation (or tries to determine if a specific operation is supported).
 *
 * It is worth mentioning that patterns will be tested in their declaration
 * order, and the first match will be taken, so it's important to order patterns
 * appropriately so that simple/inefficient patterns are placed at the end of
 * the list. Usually, this is where you put single instruction patterns.
 */
struct nand_op_parser {
	const struct nand_op_parser_pattern *patterns;
	unsigned int npatterns;
};

#define NAND_OP_PARSER(...)									\
	{											\
		.patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ },			\
		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
			     sizeof(struct nand_op_parser_pattern),				\
	}

/**
 * struct nand_operation - NAND operation descriptor
 * @instrs: array of instructions to execute
 * @ninstrs: length of the @instrs array
 *
 * The actual operation structure that will be passed to chip->exec_op().
 */
struct nand_operation {
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
};

#define NAND_OPERATION(_instrs)					\
	{							\
		.instrs = _instrs,				\
		.ninstrs = ARRAY_SIZE(_instrs),			\
	}

int nand_op_parser_exec_op(struct nand_chip *chip,
			   const struct nand_op_parser *parser,
			   const struct nand_operation *op, bool check_only);

898 899 900 901
/**
 * struct nand_legacy - NAND chip legacy fields/hooks
 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
902 903 904 905
 * @read_byte: read one byte from the chip
 * @write_byte: write a single byte to the chip on the low 8 I/O lines
 * @write_buf: write data from the buffer to the chip
 * @read_buf: read data from the chip into the buffer
906 907 908
 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
 *	      to write command and address
 * @cmdfunc: hardware specific function for writing commands to the chip.
909 910 911 912
 * @dev_ready: hardware specific function for accessing device ready/busy line.
 *	       If set to NULL no access to ready/busy is available and the
 *	       ready/busy information is read from the chip status register.
 * @waitfunc: hardware specific function for wait on ready.
913 914
 * @block_bad: check if a block is bad, using OOB markers
 * @block_markbad: mark a block bad
915
 * @erase: erase function
916 917
 * @set_features: set the NAND chip features
 * @get_features: get the NAND chip features
918 919
 * @chip_delay: chip dependent delay for transferring data from array to read
 *		regs (tR).
920 921 922 923 924 925 926
 *
 * If you look at this structure you're already wrong. These fields/hooks are
 * all deprecated.
 */
struct nand_legacy {
	void __iomem *IO_ADDR_R;
	void __iomem *IO_ADDR_W;
927 928 929 930
	u8 (*read_byte)(struct nand_chip *chip);
	void (*write_byte)(struct nand_chip *chip, u8 byte);
	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
931 932 933
	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
			int page_addr);
934 935
	int (*dev_ready)(struct nand_chip *chip);
	int (*waitfunc)(struct nand_chip *chip);
936 937
	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
938
	int (*erase)(struct nand_chip *chip, int page);
939 940 941 942
	int (*set_features)(struct nand_chip *chip, int feature_addr,
			    u8 *subfeature_para);
	int (*get_features)(struct nand_chip *chip, int feature_addr,
			    u8 *subfeature_para);
943
	int chip_delay;
944 945
};

L
Linus Torvalds 已提交
946 947
/**
 * struct nand_chip - NAND Private Flash Chip Data
948
 * @mtd:		MTD device registered to the MTD framework
949 950 951 952 953
 * @legacy:		All legacy fields/hooks. If you develop a new driver,
 *			don't even try to use any of these fields/hooks, and if
 *			you're modifying an existing driver that is using those
 *			fields/hooks, you should consider reworking the driver
 *			avoid using them.
L
Linus Torvalds 已提交
954
 * @select_chip:	[REPLACEABLE] select chip nr
955 956
 * @exec_op:		controller specific method to execute NAND operations.
 *			This method replaces ->cmdfunc(),
957 958
 *			->legacy.{read,write}_{buf,byte,word}(),
 *			->legacy.dev_ready() and ->waifunc().
959 960
 * @setup_read_retry:	[FLASHSPECIFIC] flash (vendor) specific function for
 *			setting the read-retry mode. Mostly needed for MLC NAND.
961
 * @ecc:		[BOARDSPECIFIC] ECC control structure
962
 * @buf_align:		minimum buffer alignment required by a platform
963 964
 * @dummy_controller:	dummy controller implementation for drivers that can
 *			only control a single chip
965
 * @state:		[INTERN] the current state of the NAND device
966 967
 * @oob_poi:		"poison value buffer," used for laying out OOB data
 *			before writing
S
Sebastian Andrzej Siewior 已提交
968 969
 * @page_shift:		[INTERN] number of address bits in a page (column
 *			address bits).
L
Linus Torvalds 已提交
970 971 972
 * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
 * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
 * @chip_shift:		[INTERN] number of address bits in one chip
S
Sebastian Andrzej Siewior 已提交
973 974 975
 * @options:		[BOARDSPECIFIC] various chip options. They can partly
 *			be set to inform nand_scan about special functionality.
 *			See the defines for further explanation.
976 977 978
 * @bbt_options:	[INTERN] bad block specific options. All options used
 *			here must come from bbm.h. By default, these options
 *			will be copied to the appropriate nand_bbt_descr's.
S
Sebastian Andrzej Siewior 已提交
979 980
 * @badblockpos:	[INTERN] position of the bad block marker in the oob
 *			area.
981 982 983
 * @badblockbits:	[INTERN] minimum number of set bits in a good block's
 *			bad block marker position; i.e., BBM == 11110111b is
 *			not bad when badblockbits == 7
984
 * @bits_per_cell:	[INTERN] number of bits per cell. i.e., 1 means SLC.
985 986 987 988
 * @ecc_strength_ds:	[INTERN] ECC correctability from the datasheet.
 *			Minimum amount of bit errors per @ecc_step_ds guaranteed
 *			to be correctable. If unknown, set to zero.
 * @ecc_step_ds:	[INTERN] ECC step required by the @ecc_strength_ds,
989
 *			also from the datasheet. It is the recommended ECC step
990
 *			size, if known; if unknown, set to zero.
991
 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
992 993 994
 *			      set to the actually used ONFI mode if the chip is
 *			      ONFI compliant or deduced from the datasheet if
 *			      the NAND chip is not ONFI compliant.
L
Linus Torvalds 已提交
995 996 997
 * @numchips:		[INTERN] number of physical chips
 * @chipsize:		[INTERN] the size of one chip for multichip arrays
 * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
998
 * @data_buf:		[INTERN] buffer for data, size is (page size + oobsize).
S
Sebastian Andrzej Siewior 已提交
999 1000
 * @pagebuf:		[INTERN] holds the pagenumber which is currently in
 *			data_buf.
1001 1002
 * @pagebuf_bitflips:	[INTERN] holds the bitflip count for the page which is
 *			currently in data_buf.
1003
 * @subpagesize:	[INTERN] holds the subpagesize
1004
 * @id:			[INTERN] holds NAND ID
1005 1006
 * @parameters:		[INTERN] holds generic parameters under an easily
 *			readable form.
1007 1008 1009
 * @max_bb_per_die:	[INTERN] the max number of bad blocks each die of a
 *			this nand device will encounter their life times.
 * @blocks_per_die:	[INTERN] The number of PEBs in a die
1010
 * @data_interface:	[INTERN] NAND interface timing information
1011
 * @read_retries:	[INTERN] the number of read retry modes supported
1012 1013 1014 1015
 * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
 *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
 *			  means the configuration should not be applied but
 *			  only checked.
L
Linus Torvalds 已提交
1016
 * @bbt:		[INTERN] bad block table pointer
S
Sebastian Andrzej Siewior 已提交
1017 1018
 * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
 *			lookup.
L
Linus Torvalds 已提交
1019
 * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
S
Sebastian Andrzej Siewior 已提交
1020 1021 1022
 * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial
 *			bad block scan.
 * @controller:		[REPLACEABLE] a pointer to a hardware controller
1023
 *			structure which is shared among multiple independent
S
Sebastian Andrzej Siewior 已提交
1024
 *			devices.
1025
 * @priv:		[OPTIONAL] pointer to private chip data
1026
 * @manufacturer:	[INTERN] Contains manufacturer information
1027 1028
 * @manufacturer.desc:	[INTERN] Contains manufacturer's description
 * @manufacturer.priv:	[INTERN] Contains manufacturer private information
L
Linus Torvalds 已提交
1029
 */
1030

L
Linus Torvalds 已提交
1031
struct nand_chip {
1032
	struct mtd_info mtd;
1033 1034

	struct nand_legacy legacy;
1035

1036
	void (*select_chip)(struct nand_chip *chip, int cs);
1037 1038 1039
	int (*exec_op)(struct nand_chip *chip,
		       const struct nand_operation *op,
		       bool check_only);
1040
	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1041
	int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
1042
				    const struct nand_data_interface *conf);
1043

1044
	unsigned int options;
1045
	unsigned int bbt_options;
1046 1047 1048 1049 1050 1051 1052 1053

	int page_shift;
	int phys_erase_shift;
	int bbt_erase_shift;
	int chip_shift;
	int numchips;
	uint64_t chipsize;
	int pagemask;
1054
	u8 *data_buf;
1055
	int pagebuf;
1056
	unsigned int pagebuf_bitflips;
1057
	int subpagesize;
1058
	uint8_t bits_per_cell;
1059 1060
	uint16_t ecc_strength_ds;
	uint16_t ecc_step_ds;
1061
	int onfi_timing_mode_default;
1062 1063 1064
	int badblockpos;
	int badblockbits;

1065
	struct nand_id id;
1066
	struct nand_parameters parameters;
1067 1068
	u16 max_bb_per_die;
	u32 blocks_per_die;
1069

1070
	struct nand_data_interface data_interface;
1071

1072 1073
	int read_retries;

1074
	flstate_t state;
1075

1076
	uint8_t *oob_poi;
1077
	struct nand_controller *controller;
1078 1079

	struct nand_ecc_ctrl ecc;
1080
	unsigned long buf_align;
1081
	struct nand_controller dummy_controller;
1082

1083 1084 1085
	uint8_t *bbt;
	struct nand_bbt_descr *bbt_td;
	struct nand_bbt_descr *bbt_md;
1086

1087
	struct nand_bbt_descr *badblock_pattern;
1088

1089
	void *priv;
1090 1091 1092 1093 1094

	struct {
		const struct nand_manufacturer *desc;
		void *priv;
	} manufacturer;
L
Linus Torvalds 已提交
1095 1096
};

1097 1098 1099
extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;

1100 1101 1102
static inline void nand_set_flash_node(struct nand_chip *chip,
				       struct device_node *np)
{
1103
	mtd_set_of_node(&chip->mtd, np);
1104 1105 1106 1107
}

static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
{
1108
	return mtd_get_of_node(&chip->mtd);
1109 1110
}

1111 1112
static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
{
B
Boris BREZILLON 已提交
1113
	return container_of(mtd, struct nand_chip, mtd);
1114 1115
}

1116 1117 1118 1119 1120
static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
{
	return &chip->mtd;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static inline void *nand_get_controller_data(struct nand_chip *chip)
{
	return chip->priv;
}

static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
{
	chip->priv = priv;
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
static inline void nand_set_manufacturer_data(struct nand_chip *chip,
					      void *priv)
{
	chip->manufacturer.priv = priv;
}

static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
{
	return chip->manufacturer.priv;
}

1142 1143 1144
/*
 * A helper for defining older NAND chips where the second ID byte fully
 * defined the chip, including the geometry (chip size, eraseblock size, page
1145
 * size). All these chips have 512 bytes NAND page size.
1146
 */
1147 1148 1149
#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

/*
 * A helper for defining newer chips which report their page size and
 * eraseblock size via the extended ID bytes.
 *
 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
 * device ID now only represented a particular total chip size (and voltage,
 * buswidth), and the page size, eraseblock size, and OOB size could vary while
 * using the same device ID.
 */
1161 1162
#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1163 1164
	  .options = (opts) }

1165 1166 1167 1168 1169
#define NAND_ECC_INFO(_strength, _step)	\
			{ .strength_ds = (_strength), .step_ds = (_step) }
#define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
#define NAND_ECC_STEP(type)		((type)->ecc.step_ds)

L
Linus Torvalds 已提交
1170 1171
/**
 * struct nand_flash_dev - NAND Flash Device ID Structure
1172 1173
 * @name: a human-readable name of the NAND chip
 * @dev_id: the device ID (the second byte of the full chip ID array)
1174 1175 1176 1177 1178
 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
 *          memory address as @id[0])
 * @dev_id: device ID part of the full chip ID array (refers the same memory
 *          address as @id[1])
 * @id: full device ID array
1179 1180 1181 1182
 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
 *            well as the eraseblock size) is determined from the extended NAND
 *            chip ID array)
 * @chipsize: total chip size in MiB
1183
 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1184
 * @options: stores various chip bit options
1185 1186
 * @id_len: The valid length of the @id.
 * @oobsize: OOB size
1187
 * @ecc: ECC correctability and step information from the datasheet.
1188 1189 1190 1191 1192 1193
 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
 *                   @ecc_strength_ds in nand_chip{}.
 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
 *               For example, the "4bit ECC for each 512Byte" can be set with
 *               NAND_ECC_INFO(4, 512).
1194 1195 1196 1197
 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
 *			      reset. Should be deduced from timings described
 *			      in the datasheet.
 *
L
Linus Torvalds 已提交
1198 1199 1200
 */
struct nand_flash_dev {
	char *name;
1201 1202 1203 1204 1205
	union {
		struct {
			uint8_t mfr_id;
			uint8_t dev_id;
		};
1206
		uint8_t id[NAND_MAX_ID_LEN];
1207
	};
1208 1209 1210 1211
	unsigned int pagesize;
	unsigned int chipsize;
	unsigned int erasesize;
	unsigned int options;
1212 1213
	uint16_t id_len;
	uint16_t oobsize;
1214 1215 1216 1217
	struct {
		uint16_t strength_ds;
		uint16_t step_ds;
	} ecc;
1218
	int onfi_timing_mode_default;
L
Linus Torvalds 已提交
1219 1220
};

1221
int nand_create_bbt(struct nand_chip *chip);
1222

1223 1224 1225 1226 1227 1228 1229
/*
 * Check if it is a SLC nand.
 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
 * We do not distinguish the MLC and TLC now.
 */
static inline bool nand_is_slc(struct nand_chip *chip)
{
1230 1231
	WARN(chip->bits_per_cell == 0,
	     "chip->bits_per_cell is used uninitialized\n");
1232
	return chip->bits_per_cell == 1;
1233
}
1234 1235 1236 1237 1238 1239 1240

/**
 * Check if the opcode's address should be sent only on the lower 8 bits
 * @command: opcode to check
 */
static inline int nand_opcode_8bits(unsigned int command)
{
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	switch (command) {
	case NAND_CMD_READID:
	case NAND_CMD_PARAM:
	case NAND_CMD_GET_FEATURES:
	case NAND_CMD_SET_FEATURES:
		return 1;
	default:
		break;
	}
	return 0;
1251 1252
}

1253 1254 1255 1256
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int threshold);
1257

1258 1259 1260
int nand_ecc_choose_conf(struct nand_chip *chip,
			 const struct nand_ecc_caps *caps, int oobavail);

1261
/* Default write_oob implementation */
1262
int nand_write_oob_std(struct nand_chip *chip, int page);
1263 1264

/* Default read_oob implementation */
1265
int nand_read_oob_std(struct nand_chip *chip, int page);
1266

1267
/* Stub used by drivers that do not support GET/SET FEATURES operations */
1268 1269
int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
				  u8 *subfeature_param);
1270

1271
/* Default read_page_raw implementation */
1272 1273
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
		       int page);
1274 1275

/* Default write_page_raw implementation */
1276 1277
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
			int oob_required, int page);
1278

1279
/* Reset and initialize a NAND device */
1280
int nand_reset(struct nand_chip *chip, int chipnr);
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/* NAND operation helpers */
int nand_reset_op(struct nand_chip *chip);
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
		   unsigned int len);
int nand_status_op(struct nand_chip *chip, u8 *status);
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, void *buf, unsigned int len);
int nand_change_read_column_op(struct nand_chip *chip,
			       unsigned int offset_in_page, void *buf,
			       unsigned int len, bool force_8bit);
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
		     unsigned int offset_in_page, void *buf, unsigned int len);
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
			    unsigned int offset_in_page, const void *buf,
			    unsigned int len);
int nand_prog_page_end_op(struct nand_chip *chip);
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, const void *buf,
		      unsigned int len);
int nand_change_write_column_op(struct nand_chip *chip,
				unsigned int offset_in_page, const void *buf,
				unsigned int len, bool force_8bit);
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
		      bool force_8bit);
int nand_write_data_op(struct nand_chip *chip, const void *buf,
		       unsigned int len, bool force_8bit);

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/* Scan and identify a NAND device */
int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
		       struct nand_flash_dev *ids);

static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
{
	return nand_scan_with_ids(chip, max_chips, NULL);
}

/* Internal helper for board drivers which need to override command function */
void nand_wait_ready(struct nand_chip *chip);

1322 1323 1324 1325
/*
 * Free resources held by the NAND device, must be called on error after a
 * sucessful nand_scan().
 */
1326
void nand_cleanup(struct nand_chip *chip);
1327
/* Unregister the MTD device and calls nand_cleanup() */
1328
void nand_release(struct nand_chip *chip);
1329

1330 1331 1332 1333 1334
/*
 * External helper for controller drivers that have to implement the WAITRDY
 * instruction and have no physical pin to check it.
 */
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1335 1336 1337 1338
struct gpio_desc;
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
		      unsigned long timeout_ms);

1339 1340 1341 1342
/* Select/deselect a NAND target. */
void nand_select_target(struct nand_chip *chip, unsigned int cs);
void nand_deselect_target(struct nand_chip *chip);

1343
#endif /* __LINUX_MTD_RAWNAND_H */