phy.c 86.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/delay.h>

#include "e1000.h"

static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 38 39
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read);
40 41 42
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read);
43 44

/* Cable length tables */
45 46
static const u16 e1000_m88_cable_length_table[] = {
	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 48
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_m88_cable_length_table)
49

50 51 52 53 54 55 56 57 58
static const u16 e1000_igp_2_cable_length_table[] = {
	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
	124};
59
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60
		ARRAY_SIZE(e1000_igp_2_cable_length_table)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#define BM_PHY_REG_PAGE(offset) \
	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
#define BM_PHY_REG_NUM(offset) \
	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
		~MAX_PHY_REG_ADDRESS)))

#define HV_INTC_FC_PAGE_START             768
#define I82578_ADDR_REG                   29
#define I82577_ADDR_REG                   16
#define I82577_CFG_REG                    22
#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
#define I82577_CTRL_REG                   23

/* 82577 specific PHY registers */
#define I82577_PHY_CTRL_2            18
#define I82577_PHY_STATUS_2          26
#define I82577_PHY_DIAG_STATUS       31

/* I82577 PHY Status 2 */
#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
#define I82577_PHY_STATUS2_MDIX           0x0800
#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200

/* I82577 PHY Control 2 */
#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200

/* I82577 PHY Diagnostics Status */
#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2

/* BM PHY Copper Specific Control 1 */
#define BM_CS_CTRL1                       16

#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/**
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
	u32 manc;

	manc = er32(MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
	       E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
131
	s32 ret_val = 0;
132
	u16 phy_id;
133
	u16 retry_count = 0;
134

135
	if (!(phy->ops.read_reg))
136
		goto out;
137

138 139 140 141
	while (retry_count < 2) {
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			goto out;
142

143 144 145 146 147
		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			goto out;
148

149 150 151 152 153 154 155 156 157 158
		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
			goto out;

		retry_count++;
	}
out:
	return ret_val;
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
}

/**
 *  e1000e_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}

/**
179
 *  e1000e_read_phy_reg_mdic - Read MDI control register
180 181 182 183
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
184
 *  Reads the MDI control register in the PHY at offset and stores the
185 186
 *  information read to data.
 **/
187
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
188 189 190 191 192
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
193
		e_dbg("PHY Address %d is out of range\n", offset);
194 195 196
		return -E1000_ERR_PARAM;
	}

197 198
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
199 200 201 202 203 204 205 206 207
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	ew32(MDIC, mdic);

208 209 210 211 212
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
213
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 215 216 217 218 219
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
220
		e_dbg("MDI Read did not complete\n");
221 222 223
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
224
		e_dbg("MDI Error\n");
225 226 227 228
		return -E1000_ERR_PHY;
	}
	*data = (u16) mdic;

229 230 231 232 233 234 235
	/*
	 * Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

236 237 238 239
	return 0;
}

/**
240
 *  e1000e_write_phy_reg_mdic - Write MDI control register
241 242 243 244 245 246
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
247
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
248 249 250 251 252
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
253
		e_dbg("PHY Address %d is out of range\n", offset);
254 255 256
		return -E1000_ERR_PARAM;
	}

257 258
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
259 260 261 262 263 264 265 266 267 268
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	ew32(MDIC, mdic);

269 270 271 272 273 274 275
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
276 277 278 279 280
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
281
		e_dbg("MDI Write did not complete\n");
282 283
		return -E1000_ERR_PHY;
	}
284
	if (mdic & E1000_MDIC_ERROR) {
285
		e_dbg("MDI Error\n");
286 287
		return -E1000_ERR_PHY;
	}
288

289 290 291 292 293 294 295
	/*
	 * Allow some time after each MDIC transaction to avoid
	 * reading duplicate data in the next MDIC transaction.
	 */
	if (hw->mac.type == e1000_pch2lan)
		udelay(100);

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	return 0;
}

/**
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

313
	ret_val = hw->phy.ops.acquire(hw);
314 315 316
	if (ret_val)
		return ret_val;

317 318
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
319

320
	hw->phy.ops.release(hw);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

338
	ret_val = hw->phy.ops.acquire(hw);
339 340 341
	if (ret_val)
		return ret_val;

342 343
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
344

345
	hw->phy.ops.release(hw);
346 347 348 349 350

	return ret_val;
}

/**
351
 *  __e1000e_read_phy_reg_igp - Read igp PHY register
352 353 354
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
355
 *  @locked: semaphore has already been acquired or not
356 357
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
358
 *  and stores the retrieved information in data.  Release any acquired
359 360
 *  semaphores before exiting.
 **/
361 362
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
                                    bool locked)
363
{
364
	s32 ret_val = 0;
365

366
	if (!locked) {
367
		if (!(hw->phy.ops.acquire))
368 369
			goto out;

370
		ret_val = hw->phy.ops.acquire(hw);
371 372 373
		if (ret_val)
			goto out;
	}
374 375

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
376 377 378
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
379 380
		if (ret_val)
			goto release;
381 382
	}

383
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
384
	                                  data);
385

386 387
release:
	if (!locked)
388
		hw->phy.ops.release(hw);
389
out:
390 391 392
	return ret_val;
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 *  e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores the
 *  retrieved information in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}

422 423 424 425 426
/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
427
 *  @locked: semaphore has already been acquired or not
428 429 430 431
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
432 433
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
                                     bool locked)
434
{
435
	s32 ret_val = 0;
436

437
	if (!locked) {
438
		if (!(hw->phy.ops.acquire))
439 440
			goto out;

441
		ret_val = hw->phy.ops.acquire(hw);
442 443 444
		if (ret_val)
			goto out;
	}
445 446

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
447 448 449
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
450 451
		if (ret_val)
			goto release;
452 453
	}

454 455
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
456

457 458
release:
	if (!locked)
459
		hw->phy.ops.release(hw);
460

461
out:
462 463 464 465
	return ret_val;
}

/**
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}

/**
 *  __e1000_read_kmrn_reg - Read kumeran register
495 496 497
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
498
 *  @locked: semaphore has already been acquired or not
499 500 501 502 503
 *
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release any acquired semaphores before exiting.
 **/
504 505
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
                                 bool locked)
506 507
{
	u32 kmrnctrlsta;
508
	s32 ret_val = 0;
509

510
	if (!locked) {
511
		if (!(hw->phy.ops.acquire))
512 513
			goto out;

514
		ret_val = hw->phy.ops.acquire(hw);
515 516 517
		if (ret_val)
			goto out;
	}
518 519 520 521 522 523 524 525 526 527

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

528
	if (!locked)
529
		hw->phy.ops.release(hw);
530

531
out:
532 533 534 535
	return ret_val;
}

/**
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
 *  e1000e_read_kmrn_reg -  Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset using the
 *  kumeran interface.  The information retrieved is stored in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_kmrn_reg(hw, offset, data, false);
}

/**
551
 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
552 553 554 555 556 557 558 559
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the kumeran interface.  The
 *  information retrieved is stored in data.
 *  Assumes semaphore already acquired.
 **/
560
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
561 562 563 564 565 566
{
	return __e1000_read_kmrn_reg(hw, offset, data, true);
}

/**
 *  __e1000_write_kmrn_reg - Write kumeran register
567 568 569
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
570
 *  @locked: semaphore has already been acquired or not
571 572 573 574 575
 *
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 *  at the offset using the kumeran interface.  Release any acquired semaphores
 *  before exiting.
 **/
576 577
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
                                  bool locked)
578 579
{
	u32 kmrnctrlsta;
580
	s32 ret_val = 0;
581

582
	if (!locked) {
583
		if (!(hw->phy.ops.acquire))
584 585
			goto out;

586
		ret_val = hw->phy.ops.acquire(hw);
587 588 589
		if (ret_val)
			goto out;
	}
590 591 592 593 594 595 596

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);

	udelay(2);

597
	if (!locked)
598
		hw->phy.ops.release(hw);
599 600

out:
601 602 603
	return ret_val;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/**
 *  e1000e_write_kmrn_reg -  Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to the PHY register at the offset
 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 **/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_kmrn_reg(hw, offset, data, false);
}

/**
619
 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
620 621 622 623 624 625 626
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Write the data to PHY register at the offset using the kumeran interface.
 *  Assumes semaphore already acquired.
 **/
627
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
628 629 630 631
{
	return __e1000_write_kmrn_reg(hw, offset, data, true);
}

632 633 634 635 636 637 638 639 640 641 642
/**
 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up Carrier-sense on Transmit and downshift values.
 **/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;

643
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
644
	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
645 646 647 648 649 650 651 652
	if (ret_val)
		goto out;

	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;

	/* Enable downshift */
	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;

653
	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
654 655 656 657 658

out:
	return ret_val;
}

659 660 661 662 663 664 665 666 667 668 669 670 671
/**
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

672
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
673 674 675 676
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

677 678
	/* For BM PHY this bit is downshift enable */
	if (phy->type != e1000_phy_bm)
679
		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
680

681 682
	/*
	 * Options:
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

707 708
	/*
	 * Options:
709 710 711 712 713 714 715 716 717
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	if (phy->disable_polarity_correction == 1)
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

718 719 720 721
	/* Enable downshift on BM (disabled by default) */
	if (phy->type == e1000_phy_bm)
		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;

722 723 724 725
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

726 727 728
	if ((phy->type == e1000_phy_m88) &&
	    (phy->revision < E1000_REVISION_4) &&
	    (phy->id != BME1000_E_PHY_ID_R2)) {
729 730
		/*
		 * Force TX_CLK in the Extended PHY Specific Control Register
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		 * to 25MHz clock.
		 */
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == 2) &&
		    (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

756 757 758 759 760 761 762 763 764 765 766 767
	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
		/* Set PHY page 0, register 29 to 0x0003 */
		ret_val = e1e_wphy(hw, 29, 0x0003);
		if (ret_val)
			return ret_val;

		/* Set PHY page 0, register 30 to 0x0000 */
		ret_val = e1e_wphy(hw, 30, 0x0000);
		if (ret_val)
			return ret_val;
	}

768 769
	/* Commit the changes. */
	ret_val = e1000e_commit_phy(hw);
770
	if (ret_val) {
771
		e_dbg("Error committing the PHY changes\n");
772 773
		return ret_val;
	}
774

775
	if (phy->type == e1000_phy_82578) {
776
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
777 778 779 780 781 782
		if (ret_val)
			return ret_val;

		/* 82578 PHY - set the downshift count to 1x. */
		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
783
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
784 785 786 787 788
		if (ret_val)
			return ret_val;
	}

	return 0;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
}

/**
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1000_phy_hw_reset(hw);
	if (ret_val) {
806
		e_dbg("Error resetting the PHY.\n");
807 808 809
		return ret_val;
	}

810 811 812 813 814
	/*
	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);
815 816

	/* disable lplu d0 during driver init */
817
	ret_val = e1000_set_d0_lplu_state(hw, false);
818
	if (ret_val) {
819
		e_dbg("Error Disabling LPLU D0\n");
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return ret_val;
	}
	/* Configure mdi-mdix settings */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
847 848
		/*
		 * when autonegotiation advertisement is only 1000Mbps then we
849
		 * should disable SmartSpeed and enable Auto MasterSlave
850 851
		 * resolution as hardware default.
		 */
852 853 854
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
855
					   &data);
856 857 858 859 860
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
861
					   data);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
			if (ret_val)
				return ret_val;

			/* Set auto Master/Slave resolution process */
			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
			if (ret_val)
				return ret_val;

			data &= ~CR_1000T_MS_ENABLE;
			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
		if (ret_val)
			return ret_val;

		/* load defaults for future use */
		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
			((data & CR_1000T_MS_VALUE) ?
			e1000_ms_force_master :
			e1000_ms_force_slave) :
			e1000_ms_auto;

		switch (phy->ms_type) {
		case e1000_ms_force_master:
			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			data |= CR_1000T_MS_ENABLE;
			data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
	}

	return ret_val;
}

/**
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

936 937
	/*
	 * Need to parse both autoneg_advertised and fc and set up
938 939 940 941 942 943
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

944 945
	/*
	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
946 947 948 949 950 951 952 953 954
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

955
	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
956 957 958

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
959
		e_dbg("Advertise 10mb Half duplex\n");
960 961 962 963 964
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
965
		e_dbg("Advertise 10mb Full duplex\n");
966 967 968 969 970
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
971
		e_dbg("Advertise 100mb Half duplex\n");
972 973 974 975 976
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
977
		e_dbg("Advertise 100mb Full duplex\n");
978 979 980 981 982
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
983
		e_dbg("Advertise 1000mb Half duplex request denied!\n");
984 985 986

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
987
		e_dbg("Advertise 1000mb Full duplex\n");
988 989 990
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

991 992
	/*
	 * Check for a software override of the flow control settings, and
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *	  but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *	  but we do not support receiving pause frames).
1005
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1006 1007 1008
	 *  other:  No software override.  The flow control configuration
	 *	  in the EEPROM is used.
	 */
1009
	switch (hw->fc.current_mode) {
1010
	case e1000_fc_none:
1011 1012
		/*
		 * Flow control (Rx & Tx) is completely disabled by a
1013 1014 1015 1016 1017
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:
1018 1019
		/*
		 * Rx Flow control is enabled, and Tx Flow control is
1020
		 * disabled, by a software over-ride.
1021 1022 1023 1024
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
1025 1026 1027 1028 1029 1030
		 * (in e1000e_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:
1031 1032
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
1033 1034 1035 1036 1037 1038
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:
1039 1040
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
1041 1042 1043 1044 1045
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
1046
		e_dbg("Flow control param set incorrectly\n");
1047 1048 1049 1050 1051 1052 1053 1054
		ret_val = -E1000_ERR_CONFIG;
		return ret_val;
	}

	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

1055
	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1056

B
Bruce Allan 已提交
1057
	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);

	return ret_val;
}

/**
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
1070
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1071 1072 1073 1074 1075 1076 1077
 **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

1078 1079
	/*
	 * Perform some bounds checking on the autoneg advertisement
1080 1081 1082 1083
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

1084 1085
	/*
	 * If autoneg_advertised is zero, we assume it was not defaulted
1086 1087 1088 1089 1090
	 * by the calling code so we set to advertise full capability.
	 */
	if (phy->autoneg_advertised == 0)
		phy->autoneg_advertised = phy->autoneg_mask;

1091
	e_dbg("Reconfiguring auto-neg advertisement params\n");
1092 1093
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
1094
		e_dbg("Error Setting up Auto-Negotiation\n");
1095 1096
		return ret_val;
	}
1097
	e_dbg("Restarting Auto-Neg\n");
1098

1099 1100
	/*
	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

1112 1113
	/*
	 * Does the user want to wait for Auto-Neg to complete here, or
1114 1115
	 * check at a later time (for example, callback routine).
	 */
1116
	if (phy->autoneg_wait_to_complete) {
1117 1118
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
1119
			e_dbg("Error while waiting for "
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
				 "autoneg to complete\n");
			return ret_val;
		}
	}

	hw->mac.get_link_status = 1;

	return ret_val;
}

/**
 *  e1000e_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
1145 1146 1147 1148
		/*
		 * Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
1149 1150 1151 1152
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			return ret_val;
	} else {
1153 1154 1155 1156
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
1157
		e_dbg("Forcing Speed and Duplex\n");
1158 1159
		ret_val = e1000_phy_force_speed_duplex(hw);
		if (ret_val) {
1160
			e_dbg("Error Forcing Speed and Duplex\n");
1161 1162 1163 1164
			return ret_val;
		}
	}

1165 1166
	/*
	 * Check link status. Wait up to 100 microseconds for link to become
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	 * valid.
	 */
	ret_val = e1000e_phy_has_link_generic(hw,
					     COPPER_LINK_UP_LIMIT,
					     10,
					     &link);
	if (ret_val)
		return ret_val;

	if (link) {
1177
		e_dbg("Valid link established!!!\n");
1178 1179 1180
		e1000e_config_collision_dist(hw);
		ret_val = e1000e_config_fc_after_link_up(hw);
	} else {
1181
		e_dbg("Unable to establish link!!!\n");
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1212 1213
	/*
	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1227
	e_dbg("IGP PSCR: %X\n", phy_data);
1228 1229 1230

	udelay(1);

1231
	if (phy->autoneg_wait_to_complete) {
1232
		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1233 1234 1235 1236 1237 1238 1239 1240 1241

		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;

		if (!link)
1242
			e_dbg("Link taking longer than expected.\n");
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
1263
 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1264 1265 1266 1267 1268 1269 1270 1271 1272
 *  successful completion, else return corresponding error code.
 **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

1273 1274
	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1286
	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1298 1299 1300 1301
	/* Reset the phy to commit changes. */
	ret_val = e1000e_commit_phy(hw);
	if (ret_val)
		return ret_val;
1302

1303
	if (phy->autoneg_wait_to_complete) {
1304
		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1305 1306 1307 1308 1309 1310 1311

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
1312 1313 1314 1315 1316 1317 1318
			if (hw->phy.type != e1000_phy_m88) {
				e_dbg("Link taking longer than expected.\n");
			} else {
				/*
				 * We didn't get link.
				 * Reset the DSP and cross our fingers.
				 */
1319 1320
				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
						   0x001d);
1321 1322 1323 1324 1325 1326
				if (ret_val)
					return ret_val;
				ret_val = e1000e_phy_reset_dsp(hw);
				if (ret_val)
					return ret_val;
			}
1327 1328 1329 1330 1331 1332 1333 1334 1335
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;
	}

1336 1337 1338
	if (hw->phy.type != e1000_phy_m88)
		return 0;

1339 1340 1341 1342
	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

1343 1344
	/*
	 * Resetting the phy means we need to re-force TX_CLK in the
1345 1346 1347 1348 1349 1350 1351 1352
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1353 1354
	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	 * duplex.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

	return ret_val;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/**
 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
	if (ret_val)
		goto out;

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
	if (ret_val)
		goto out;

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		goto out;

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
		goto out;

	e_dbg("IFE PMC: %X\n", data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/**
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the PHY_CONTROL register for these settings to
 *  take affect.
 **/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
1452
	hw->fc.current_mode = e1000_fc_none;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	/* Force speed/duplex on the mac */
	ctrl = er32(CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1469
		e_dbg("Half Duplex\n");
1470 1471 1472
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1473
		e_dbg("Full Duplex\n");
1474 1475 1476 1477 1478 1479 1480
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= MII_CR_SPEED_100;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1481
		e_dbg("Forcing 100mb\n");
1482 1483 1484 1485
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl |= MII_CR_SPEED_10;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1486
		e_dbg("Forcing 10mb\n");
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	}

	e1000e_config_collision_dist(hw);

	ew32(CTRL, ctrl);
}

/**
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
1520
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1521 1522
		if (ret_val)
			return ret_val;
1523 1524
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1525 1526
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1527 1528
		 * SmartSpeed, so performance is maintained.
		 */
1529 1530
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1531
					   &data);
1532 1533 1534 1535 1536
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537
					   data);
1538 1539 1540 1541
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1542
					   &data);
1543 1544 1545 1546 1547
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1548
					   data);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
1573
 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_m88:
	case e1000_phy_gg82563:
1589
	case e1000_phy_bm:
1590
	case e1000_phy_82578:
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		offset	= M88E1000_PHY_SPEC_STATUS;
		mask	= M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
		offset	= IGP01E1000_PHY_LINK_HEALTH;
		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
1601
		phy->speed_downgraded = false;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		return 0;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->speed_downgraded = (phy_data & mask);

	return ret_val;
}

/**
 *  e1000_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
1621
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
1646
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1647 1648 1649 1650 1651
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

1652 1653 1654 1655
	/*
	 * Polarity is determined based on the speed of
	 * our connection.
	 */
1656 1657 1658 1659 1660 1661 1662 1663 1664
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset	= IGP01E1000_PHY_PCS_INIT_REG;
		mask	= IGP01E1000_PHY_POLARITY_MASK;
	} else {
1665 1666
		/*
		 * This really only applies to 10Mbps since
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset	= IGP01E1000_PHY_PORT_STATUS;
		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = e1e_rphy(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = (data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/**
 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
 *  Polarity is determined on the polarity reversal feature being enabled.
 **/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	/*
	 * Polarity is determined based on the reversal feature being enabled.
	 */
	if (phy->polarity_correction) {
		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask = IFE_PESC_POLARITY_REVERSED;
	} else {
		offset = IFE_PHY_SPECIAL_CONTROL;
		mask = IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = (phy_data & mask)
		                       ? e1000_rev_polarity_reversed
		                       : e1000_rev_polarity_normal;

	return ret_val;
}

1716
/**
1717
 *  e1000_wait_autoneg - Wait for auto-neg completion
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

1741 1742
	/*
	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	 * has completed.
	 */
	return ret_val;
}

/**
 *  e1000e_phy_has_link_generic - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
			       u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
1764 1765
		/*
		 * Some PHYs require the PHY_STATUS register to be read
1766 1767 1768 1769 1770
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
1771 1772 1773 1774 1775 1776
			/*
			 * If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			udelay(usec_interval);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval/1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations);

	return ret_val;
}

/**
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
1816
		goto out;
1817 1818

	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1819 1820 1821 1822 1823 1824
	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

1825
	phy->min_cable_length = e1000_m88_cable_length_table[index];
1826
	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1827 1828 1829

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

1830
out:
1831 1832 1833 1834 1835 1836 1837 1838 1839
	return ret_val;
}

/**
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
1840
 *  cable.  By reading the AGC registers, which represent the
B
Bruce Allan 已提交
1841
 *  combination of coarse and fine gain value, the value can be put
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1852 1853 1854 1855 1856 1857
	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
	       IGP02E1000_PHY_AGC_A,
	       IGP02E1000_PHY_AGC_B,
	       IGP02E1000_PHY_AGC_C,
	       IGP02E1000_PHY_AGC_D
	};
1858 1859 1860 1861 1862 1863 1864

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			return ret_val;

1865 1866
		/*
		 * Getting bits 15:9, which represent the combination of
B
Bruce Allan 已提交
1867
		 * coarse and fine gain values.  The result is a number
1868
		 * that can be put into the lookup table to obtain the
1869 1870
		 * approximate cable length.
		 */
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				IGP02E1000_AGC_LENGTH_MASK;

		/* Array index bound check. */
		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
		    (cur_agc_index == 0))
			return -E1000_ERR_PHY;

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return ret_val;
}

/**
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u16 phy_data;
	bool link;

1921
	if (phy->media_type != e1000_media_type_copper) {
1922
		e_dbg("Phy info is only valid for copper media\n");
1923 1924 1925 1926 1927 1928 1929 1930
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1931
		e_dbg("Phy info is only valid if link is up\n");
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy->polarity_correction = (phy_data &
				    M88E1000_PSCR_POLARITY_REVERSAL);

	ret_val = e1000_check_polarity_m88(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1999
		e_dbg("Phy info is only valid if link is up\n");
2000 2001 2002
		return -E1000_ERR_CONFIG;
	}

2003
	phy->polarity_correction = true;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

	ret_val = e1000_check_polarity_igp(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
/**
 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 **/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
		goto out;
	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
	                           ? false : true;

	if (phy->polarity_correction) {
		ret_val = e1000_check_polarity_ife(hw);
		if (ret_val)
			goto out;
	} else {
		/* Polarity is forced */
		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		goto out;

	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

out:
	return ret_val;
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
/**
 *  e1000e_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_ctrl;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= MII_CR_RESET;
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

	udelay(1);

	return ret_val;
}

/**
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
2129
 *  reset and release the semaphore (if necessary).
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
 **/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl;

	ret_val = e1000_check_reset_block(hw);
	if (ret_val)
		return 0;

2141
	ret_val = phy->ops.acquire(hw);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	if (ret_val)
		return ret_val;

	ctrl = er32(CTRL);
	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
	e1e_flush();

	udelay(phy->reset_delay_us);

	ew32(CTRL, ctrl);
	e1e_flush();

	udelay(150);

2156
	phy->ops.release(hw);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	return e1000_get_phy_cfg_done(hw);
}

/**
 *  e1000e_get_cfg_done - Generic configuration done
 *  @hw: pointer to the HW structure
 *
 *  Generic function to wait 10 milli-seconds for configuration to complete
 *  and return success.
 **/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
	mdelay(10);
	return 0;
}

2174 2175 2176 2177 2178 2179 2180 2181
/**
 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
 **/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
2182
	e_dbg("Running IGP 3 PHY init script\n");
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	/* PHY init IGP 3 */
	/* Enable rise/fall, 10-mode work in class-A */
	e1e_wphy(hw, 0x2F5B, 0x9018);
	/* Remove all caps from Replica path filter */
	e1e_wphy(hw, 0x2F52, 0x0000);
	/* Bias trimming for ADC, AFE and Driver (Default) */
	e1e_wphy(hw, 0x2FB1, 0x8B24);
	/* Increase Hybrid poly bias */
	e1e_wphy(hw, 0x2FB2, 0xF8F0);
	/* Add 4% to Tx amplitude in Gig mode */
	e1e_wphy(hw, 0x2010, 0x10B0);
	/* Disable trimming (TTT) */
	e1e_wphy(hw, 0x2011, 0x0000);
	/* Poly DC correction to 94.6% + 2% for all channels */
	e1e_wphy(hw, 0x20DD, 0x249A);
	/* ABS DC correction to 95.9% */
	e1e_wphy(hw, 0x20DE, 0x00D3);
	/* BG temp curve trim */
	e1e_wphy(hw, 0x28B4, 0x04CE);
	/* Increasing ADC OPAMP stage 1 currents to max */
	e1e_wphy(hw, 0x2F70, 0x29E4);
	/* Force 1000 ( required for enabling PHY regs configuration) */
	e1e_wphy(hw, 0x0000, 0x0140);
	/* Set upd_freq to 6 */
	e1e_wphy(hw, 0x1F30, 0x1606);
	/* Disable NPDFE */
	e1e_wphy(hw, 0x1F31, 0xB814);
	/* Disable adaptive fixed FFE (Default) */
	e1e_wphy(hw, 0x1F35, 0x002A);
	/* Enable FFE hysteresis */
	e1e_wphy(hw, 0x1F3E, 0x0067);
	/* Fixed FFE for short cable lengths */
	e1e_wphy(hw, 0x1F54, 0x0065);
	/* Fixed FFE for medium cable lengths */
	e1e_wphy(hw, 0x1F55, 0x002A);
	/* Fixed FFE for long cable lengths */
	e1e_wphy(hw, 0x1F56, 0x002A);
	/* Enable Adaptive Clip Threshold */
	e1e_wphy(hw, 0x1F72, 0x3FB0);
	/* AHT reset limit to 1 */
	e1e_wphy(hw, 0x1F76, 0xC0FF);
	/* Set AHT master delay to 127 msec */
	e1e_wphy(hw, 0x1F77, 0x1DEC);
	/* Set scan bits for AHT */
	e1e_wphy(hw, 0x1F78, 0xF9EF);
	/* Set AHT Preset bits */
	e1e_wphy(hw, 0x1F79, 0x0210);
	/* Change integ_factor of channel A to 3 */
	e1e_wphy(hw, 0x1895, 0x0003);
	/* Change prop_factor of channels BCD to 8 */
	e1e_wphy(hw, 0x1796, 0x0008);
	/* Change cg_icount + enable integbp for channels BCD */
	e1e_wphy(hw, 0x1798, 0xD008);
	/*
	 * Change cg_icount + enable integbp + change prop_factor_master
	 * to 8 for channel A
	 */
	e1e_wphy(hw, 0x1898, 0xD918);
	/* Disable AHT in Slave mode on channel A */
	e1e_wphy(hw, 0x187A, 0x0800);
	/*
	 * Enable LPLU and disable AN to 1000 in non-D0a states,
	 * Enable SPD+B2B
	 */
	e1e_wphy(hw, 0x0019, 0x008D);
	/* Enable restart AN on an1000_dis change */
	e1e_wphy(hw, 0x001B, 0x2080);
	/* Enable wh_fifo read clock in 10/100 modes */
	e1e_wphy(hw, 0x0014, 0x0045);
	/* Restart AN, Speed selection is 1000 */
	e1e_wphy(hw, 0x0000, 0x1340);

	return 0;
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
/* Internal function pointers */

/**
 *  e1000_get_phy_cfg_done - Generic PHY configuration done
 *  @hw: pointer to the HW structure
 *
 *  Return success if silicon family did not implement a family specific
 *  get_cfg_done function.
 **/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
	if (hw->phy.ops.get_cfg_done)
		return hw->phy.ops.get_cfg_done(hw);

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
 *  @hw: pointer to the HW structure
 *
 *  When the silicon family has not implemented a forced speed/duplex
 *  function for the PHY, simply return 0.
 **/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
	if (hw->phy.ops.force_speed_duplex)
		return hw->phy.ops.force_speed_duplex(hw);

	return 0;
}

/**
 *  e1000e_get_phy_type_from_id - Get PHY type from id
 *  @phy_id: phy_id read from the phy
 *
 *  Returns the phy type from the id.
 **/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	switch (phy_id) {
	case M88E1000_I_PHY_ID:
	case M88E1000_E_PHY_ID:
	case M88E1111_I_PHY_ID:
	case M88E1011_I_PHY_ID:
		phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
		phy_type = e1000_phy_igp_2;
		break;
	case GG82563_E_PHY_ID:
		phy_type = e1000_phy_gg82563;
		break;
	case IGP03E1000_E_PHY_ID:
		phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy_type = e1000_phy_ife;
		break;
2322 2323 2324 2325
	case BME1000_E_PHY_ID:
	case BME1000_E_PHY_ID_R2:
		phy_type = e1000_phy_bm;
		break;
2326 2327 2328 2329 2330 2331
	case I82578_E_PHY_ID:
		phy_type = e1000_phy_82578;
		break;
	case I82577_E_PHY_ID:
		phy_type = e1000_phy_82577;
		break;
2332 2333 2334
	case I82579_E_PHY_ID:
		phy_type = e1000_phy_82579;
		break;
2335 2336 2337 2338 2339 2340 2341
	default:
		phy_type = e1000_phy_unknown;
		break;
	}
	return phy_type;
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 *  e1000e_determine_phy_address - Determines PHY address.
 *  @hw: pointer to the HW structure
 *
 *  This uses a trial and error method to loop through possible PHY
 *  addresses. It tests each by reading the PHY ID registers and
 *  checking for a match.
 **/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_PHY_TYPE;
2353 2354
	u32 phy_addr = 0;
	u32 i;
2355 2356
	enum e1000_phy_type phy_type = e1000_phy_unknown;

2357 2358 2359 2360 2361 2362 2363
	hw->phy.id = phy_type;

	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
		hw->phy.addr = phy_addr;
		i = 0;

		do {
2364 2365 2366
			e1000e_get_phy_id(hw);
			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);

2367
			/*
2368 2369 2370 2371 2372
			 * If phy_type is valid, break - we found our
			 * PHY address
			 */
			if (phy_type  != e1000_phy_unknown) {
				ret_val = 0;
2373
				goto out;
2374
			}
2375
			usleep_range(1000, 2000);
2376 2377 2378
			i++;
		} while (i < 10);
	}
2379

2380
out:
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	return ret_val;
}

/**
 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
 *  @page: page to access
 *
 *  Returns the phy address for the page requested.
 **/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
	u32 phy_addr = 2;

	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000e_write_phy_reg_bm - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

2414
	ret_val = hw->phy.ops.acquire(hw);
2415 2416 2417
	if (ret_val)
		return ret_val;

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2428 2429
		u32 page_shift, page_select;

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2446
		if (ret_val)
2447 2448 2449 2450 2451 2452 2453
			goto out;
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                    data);

out:
2454
	hw->phy.ops.release(hw);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page = offset >> IGP_PAGE_SHIFT;

2473
	ret_val = hw->phy.ops.acquire(hw);
2474 2475 2476
	if (ret_val)
		return ret_val;

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487 2488
		u32 page_shift, page_select;

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2505
		if (ret_val)
2506 2507 2508 2509 2510 2511
			goto out;
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                   data);
out:
2512
	hw->phy.ops.release(hw);
2513 2514 2515
	return ret_val;
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/**
 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2531
	ret_val = hw->phy.ops.acquire(hw);
2532 2533 2534
	if (ret_val)
		return ret_val;

2535 2536 2537 2538
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true);
2539
		goto out;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2550 2551
		if (ret_val)
			goto out;
2552 2553 2554 2555
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
2556
out:
2557
	hw->phy.ops.release(hw);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	return ret_val;
}

/**
 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2575
	ret_val = hw->phy.ops.acquire(hw);
2576 2577 2578
	if (ret_val)
		return ret_val;

2579 2580 2581 2582
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false);
2583
		goto out;
2584 2585 2586 2587 2588 2589 2590 2591 2592
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2593 2594
		if (ret_val)
			goto out;
2595 2596 2597 2598 2599
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

2600
out:
2601
	hw->phy.ops.release(hw);
2602 2603 2604
	return ret_val;
}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
/**
 *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to read or write
 *  @read: determines if operation is read or write
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting. Note that procedure to read the wakeup
 *  registers are different. It works as such:
 *  1) Set page 769, register 17, bit 2 = 1
 *  2) Set page to 800 for host (801 if we were manageability)
 *  3) Write the address using the address opcode (0x11)
 *  4) Read or write the data using the data opcode (0x12)
 *  5) Restore 769_17.2 to its original value
2621 2622
 *
 *  Assumes semaphore already acquired.
2623 2624 2625 2626 2627
 **/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read)
{
	s32 ret_val;
2628
	u16 reg = BM_PHY_REG_NUM(offset);
2629 2630
	u16 phy_reg = 0;

2631 2632 2633
	/* Gig must be disabled for MDIO accesses to page 800 */
	if ((hw->mac.type == e1000_pchlan) &&
	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
B
Bruce Allan 已提交
2634
		e_dbg("Attempting to access page 800 while gig enabled.\n");
2635

2636 2637 2638 2639 2640 2641 2642 2643
	/* All operations in this function are phy address 1 */
	hw->phy.addr = 1;

	/* Set page 769 */
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));

	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
B
Bruce Allan 已提交
2644 2645
	if (ret_val) {
		e_dbg("Could not read PHY page 769\n");
2646
		goto out;
B
Bruce Allan 已提交
2647
	}
2648 2649 2650 2651

	/* First clear bit 4 to avoid a power state change */
	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
B
Bruce Allan 已提交
2652 2653
	if (ret_val) {
		e_dbg("Could not clear PHY page 769 bit 4\n");
2654
		goto out;
B
Bruce Allan 已提交
2655
	}
2656 2657 2658 2659

	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
	                                    phy_reg | BM_WUC_ENABLE_BIT);
B
Bruce Allan 已提交
2660 2661
	if (ret_val) {
		e_dbg("Could not write PHY page 769 bit 2\n");
2662
		goto out;
B
Bruce Allan 已提交
2663
	}
2664 2665 2666 2667 2668 2669 2670

	/* Select page 800 */
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));

	/* Write the page 800 offset value using opcode 0x11 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
B
Bruce Allan 已提交
2671 2672
	if (ret_val) {
		e_dbg("Could not write address opcode to page 800\n");
2673
		goto out;
B
Bruce Allan 已提交
2674
	}
2675 2676 2677 2678 2679 2680

	if (read) {
	        /* Read the page 800 value using opcode 0x12 */
		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
		                                   data);
	} else {
B
Bruce Allan 已提交
2681
	        /* Write the page 800 value using opcode 0x12 */
2682 2683 2684 2685
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						    *data);
	}

B
Bruce Allan 已提交
2686 2687
	if (ret_val) {
		e_dbg("Could not access data value from page 800\n");
2688
		goto out;
B
Bruce Allan 已提交
2689
	}
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	/*
	 * Restore 769_17.2 to its original value
	 * Set page 769
	 */
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));

	/* Clear 769_17.2 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
B
Bruce Allan 已提交
2700 2701 2702 2703
	if (ret_val) {
		e_dbg("Could not clear PHY page 769 bit 2\n");
		goto out;
	}
2704 2705 2706 2707 2708

out:
	return ret_val;
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
/**
 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg &= ~MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
}

/**
 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2743
	usleep_range(1000, 2000);
2744 2745
}

2746 2747 2748 2749 2750 2751 2752 2753 2754
/**
 *  e1000e_commit_phy - Soft PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Performs a soft PHY reset on those that apply. This is a function pointer
 *  entry point called by drivers.
 **/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
2755 2756
	if (hw->phy.ops.commit)
		return hw->phy.ops.commit(hw);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

	return 0;
}

/**
 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D0
 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.  This is a function pointer entry point called by drivers.
 **/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
	if (hw->phy.ops.set_d0_lplu_state)
		return hw->phy.ops.set_d0_lplu_state(hw, active);

	return 0;
}
2782 2783

/**
2784
 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2785 2786 2787
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
2788
 *  @locked: semaphore has already been acquired or not
2789 2790
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2791
 *  and stores the retrieved information in data.  Release any acquired
2792 2793
 *  semaphore before exiting.
 **/
2794 2795
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
                                   bool locked)
2796 2797 2798 2799 2800
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);

2801
	if (!locked) {
2802
		ret_val = hw->phy.ops.acquire(hw);
2803 2804 2805 2806
		if (ret_val)
			return ret_val;
	}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
		                                         data, true);
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         data, true);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);

	if (page == HV_INTC_FC_PAGE_START)
		page = 0;

	if (reg > MAX_PHY_MULTI_PAGE_REG) {
2826
		u32 phy_addr = hw->phy.addr;
2827

2828
		hw->phy.addr = 1;
2829

2830 2831 2832 2833 2834 2835 2836 2837
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw,
					     IGP01E1000_PHY_PAGE_SELECT,
					     (page << IGP_PAGE_SHIFT));
		hw->phy.addr = phy_addr;

		if (ret_val)
			goto out;
2838 2839 2840 2841 2842
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);
out:
2843
	if (!locked)
2844
		hw->phy.ops.release(hw);
2845

2846 2847 2848 2849
	return ret_val;
}

/**
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
 *  e1000_read_phy_reg_hv -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores
 *  the retrieved information in data.  Release the acquired semaphore
 *  before exiting.
 **/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, false);
}

/**
 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, true);
}

/**
 *  __e1000_write_phy_reg_hv - Write HV PHY register
2880 2881 2882
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
2883
 *  @locked: semaphore has already been acquired or not
2884 2885 2886 2887
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
2888 2889
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
                                    bool locked)
2890 2891 2892 2893 2894
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);

2895
	if (!locked) {
2896
		ret_val = hw->phy.ops.acquire(hw);
2897 2898 2899 2900
		if (ret_val)
			return ret_val;
	}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
		                                         &data, false);
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         &data, false);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);

	if (page == HV_INTC_FC_PAGE_START)
		page = 0;

	/*
	 * Workaround MDIO accesses being disabled after entering IEEE Power
	 * Down (whenever bit 11 of the PHY Control register is set)
	 */
	if ((hw->phy.type == e1000_phy_82578) &&
	    (hw->phy.revision >= 1) &&
	    (hw->phy.addr == 2) &&
	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
	    (data & (1 << 11))) {
		u16 data2 = 0x7EFF;
		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
		                                         &data2, false);
		if (ret_val)
			goto out;
	}

	if (reg > MAX_PHY_MULTI_PAGE_REG) {
2936
		u32 phy_addr = hw->phy.addr;
2937

2938
		hw->phy.addr = 1;
2939

2940 2941 2942 2943 2944 2945 2946 2947
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw,
					     IGP01E1000_PHY_PAGE_SELECT,
					     (page << IGP_PAGE_SHIFT));
		hw->phy.addr = phy_addr;

		if (ret_val)
			goto out;
2948 2949 2950 2951 2952 2953
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);

out:
2954
	if (!locked)
2955
		hw->phy.ops.release(hw);
2956

2957 2958 2959
	return ret_val;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/**
 *  e1000_write_phy_reg_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register at the offset.
 *  Release the acquired semaphores before exiting.
 **/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, false);
}

/**
 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired.
 **/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, true);
}

2988
/**
2989
 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
 *  @page: page to be accessed
 **/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
	u32 phy_addr = 2;

	if (page >= HV_INTC_FC_PAGE_START)
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to be read or written
 *  @read: determines if operation is read or written
 *
3009 3010 3011
 *  Reads the PHY register at offset and stores the retreived information
 *  in data.  Assumes semaphore already acquired.  Note that the procedure
 *  to read these regs uses the address port and data port to read/write.
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
 **/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read)
{
	s32 ret_val;
	u32 addr_reg = 0;
	u32 data_reg = 0;

	/* This takes care of the difference with desktop vs mobile phy */
	addr_reg = (hw->phy.type == e1000_phy_82578) ?
	           I82578_ADDR_REG : I82577_ADDR_REG;
	data_reg = addr_reg + 1;

	/* All operations in this function are phy address 2 */
	hw->phy.addr = 2;

	/* masking with 0x3F to remove the page from offset */
	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
	if (ret_val) {
3031
		e_dbg("Could not write PHY the HV address register\n");
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
		goto out;
	}

	/* Read or write the data value next */
	if (read)
		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
	else
		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);

	if (ret_val) {
3042
		e_dbg("Could not read data value from HV data register\n");
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_link_stall_workaround_hv - Si workaround
 *  @hw: pointer to the HW structure
 *
 *  This function works around a Si bug where the link partner can get
 *  a link up indication before the PHY does.  If small packets are sent
 *  by the link partner they can be placed in the packet buffer without
 *  being properly accounted for by the PHY and will stall preventing
 *  further packets from being received.  The workaround is to clear the
 *  packet buffer after the PHY detects link up.
 **/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 data;

	if (hw->phy.type != e1000_phy_82578)
		goto out;

3069
	/* Do not apply workaround if in PHY loopback bit 14 set */
3070
	e1e_rphy(hw, PHY_CONTROL, &data);
3071 3072 3073
	if (data & PHY_CONTROL_LB)
		goto out;

3074
	/* check if link is up and at 1Gbps */
3075
	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	if (ret_val)
		goto out;

	data &= BM_CS_STATUS_LINK_UP |
	        BM_CS_STATUS_RESOLVED |
	        BM_CS_STATUS_SPEED_MASK;

	if (data != (BM_CS_STATUS_LINK_UP |
	             BM_CS_STATUS_RESOLVED |
	             BM_CS_STATUS_SPEED_1000))
		goto out;

	mdelay(200);

	/* flush the packets in the fifo buffer */
3091 3092
	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3093 3094 3095
	if (ret_val)
		goto out;

3096
	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115

out:
	return ret_val;
}

/**
 *  e1000_check_polarity_82577 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

3116
	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129

	if (!ret_val)
		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
 *  @hw: pointer to the HW structure
 *
3130
 *  Calls the PHY setup function to force speed and duplex.
3131 3132 3133 3134 3135 3136 3137 3138
 **/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

3139
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3140 3141 3142 3143 3144
	if (ret_val)
		goto out;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

3145
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3146 3147 3148 3149 3150 3151
	if (ret_val)
		goto out;

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
3152
		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3153 3154 3155 3156 3157 3158 3159 3160 3161

		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;

		if (!link)
3162
			e_dbg("Link taking longer than expected.\n");
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
3198
		e_dbg("Phy info is only valid if link is up\n");
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	phy->polarity_correction = true;

	ret_val = e1000_check_polarity_82577(hw);
	if (ret_val)
		goto out;

3209
	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	if (ret_val)
		goto out;

	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;

	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
			goto out;

3221
		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		if (ret_val)
			goto out;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
		                ? e1000_1000t_rx_status_ok
		                : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
		                 ? e1000_1000t_rx_status_ok
		                 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

out:
	return ret_val;
}

/**
 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
 *  @hw: pointer to the HW structure
 *
 * Reads the diagnostic status register and verifies result is valid before
 * placing it in the phy_cable_length field.
 **/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, length;

3255
	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3256 3257 3258 3259 3260 3261 3262
	if (ret_val)
		goto out;

	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;

	if (length == E1000_CABLE_LENGTH_UNDEFINED)
B
Bruce Allan 已提交
3263
		ret_val = -E1000_ERR_PHY;
3264 3265 3266 3267 3268 3269

	phy->cable_length = length;

out:
	return ret_val;
}