phy.c 86.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/delay.h>

#include "e1000.h"

static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 38 39
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read);
40 41 42
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read);
43 44 45 46

/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] =
	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 48
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
		ARRAY_SIZE(e1000_m88_cable_length_table)
49 50 51 52 53 54 55 56 57 58 59

static const u16 e1000_igp_2_cable_length_table[] =
	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
	  124};
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60
		ARRAY_SIZE(e1000_igp_2_cable_length_table)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#define BM_PHY_REG_PAGE(offset) \
	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
#define BM_PHY_REG_NUM(offset) \
	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
		~MAX_PHY_REG_ADDRESS)))

#define HV_INTC_FC_PAGE_START             768
#define I82578_ADDR_REG                   29
#define I82577_ADDR_REG                   16
#define I82577_CFG_REG                    22
#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
#define I82577_CTRL_REG                   23

/* 82577 specific PHY registers */
#define I82577_PHY_CTRL_2            18
#define I82577_PHY_STATUS_2          26
#define I82577_PHY_DIAG_STATUS       31

/* I82577 PHY Status 2 */
#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
#define I82577_PHY_STATUS2_MDIX           0x0800
#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200

/* I82577 PHY Control 2 */
#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200

/* I82577 PHY Diagnostics Status */
#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2

/* BM PHY Copper Specific Control 1 */
#define BM_CS_CTRL1                       16

#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/**
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
	u32 manc;

	manc = er32(MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
	       E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
131
	s32 ret_val = 0;
132
	u16 phy_id;
133
	u16 retry_count = 0;
134

135
	if (!(phy->ops.read_reg))
136
		goto out;
137

138 139 140 141
	while (retry_count < 2) {
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			goto out;
142

143 144 145 146 147
		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			goto out;
148

149 150 151 152 153 154 155 156 157 158
		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
			goto out;

		retry_count++;
	}
out:
	return ret_val;
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
}

/**
 *  e1000e_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}

/**
179
 *  e1000e_read_phy_reg_mdic - Read MDI control register
180 181 182 183
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
184
 *  Reads the MDI control register in the PHY at offset and stores the
185 186
 *  information read to data.
 **/
187
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
188 189 190 191 192
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
193
		e_dbg("PHY Address %d is out of range\n", offset);
194 195 196
		return -E1000_ERR_PARAM;
	}

197 198
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
199 200 201 202 203 204 205 206 207
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	ew32(MDIC, mdic);

208 209 210 211 212
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
213
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 215 216 217 218 219
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
220
		e_dbg("MDI Read did not complete\n");
221 222 223
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
224
		e_dbg("MDI Error\n");
225 226 227 228 229 230 231 232
		return -E1000_ERR_PHY;
	}
	*data = (u16) mdic;

	return 0;
}

/**
233
 *  e1000e_write_phy_reg_mdic - Write MDI control register
234 235 236 237 238 239
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
240
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
241 242 243 244 245
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
246
		e_dbg("PHY Address %d is out of range\n", offset);
247 248 249
		return -E1000_ERR_PARAM;
	}

250 251
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
252 253 254 255 256 257 258 259 260 261
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	ew32(MDIC, mdic);

262 263 264 265 266 267 268
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
269 270 271 272 273
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
274
		e_dbg("MDI Write did not complete\n");
275 276
		return -E1000_ERR_PHY;
	}
277
	if (mdic & E1000_MDIC_ERROR) {
278
		e_dbg("MDI Error\n");
279 280
		return -E1000_ERR_PHY;
	}
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

	return 0;
}

/**
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

299
	ret_val = hw->phy.ops.acquire(hw);
300 301 302
	if (ret_val)
		return ret_val;

303 304
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
305

306
	hw->phy.ops.release(hw);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

324
	ret_val = hw->phy.ops.acquire(hw);
325 326 327
	if (ret_val)
		return ret_val;

328 329
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
330

331
	hw->phy.ops.release(hw);
332 333 334 335 336

	return ret_val;
}

/**
337
 *  __e1000e_read_phy_reg_igp - Read igp PHY register
338 339 340
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
341
 *  @locked: semaphore has already been acquired or not
342 343
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
344
 *  and stores the retrieved information in data.  Release any acquired
345 346
 *  semaphores before exiting.
 **/
347 348
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
                                    bool locked)
349
{
350
	s32 ret_val = 0;
351

352
	if (!locked) {
353
		if (!(hw->phy.ops.acquire))
354 355
			goto out;

356
		ret_val = hw->phy.ops.acquire(hw);
357 358 359
		if (ret_val)
			goto out;
	}
360 361

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
362 363 364
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
365 366
		if (ret_val)
			goto release;
367 368
	}

369
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
370
	                                  data);
371

372 373
release:
	if (!locked)
374
		hw->phy.ops.release(hw);
375
out:
376 377 378
	return ret_val;
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 *  e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores the
 *  retrieved information in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}

408 409 410 411 412
/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
413
 *  @locked: semaphore has already been acquired or not
414 415 416 417
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
418 419
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
                                     bool locked)
420
{
421
	s32 ret_val = 0;
422

423
	if (!locked) {
424
		if (!(hw->phy.ops.acquire))
425 426
			goto out;

427
		ret_val = hw->phy.ops.acquire(hw);
428 429 430
		if (ret_val)
			goto out;
	}
431 432

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
433 434 435
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
436 437
		if (ret_val)
			goto release;
438 439
	}

440 441
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
442

443 444
release:
	if (!locked)
445
		hw->phy.ops.release(hw);
446

447
out:
448 449 450 451
	return ret_val;
}

/**
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}

/**
 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.
 *  Assumes semaphore already acquired.
 **/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}

/**
 *  __e1000_read_kmrn_reg - Read kumeran register
481 482 483
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
484
 *  @locked: semaphore has already been acquired or not
485 486 487 488 489
 *
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release any acquired semaphores before exiting.
 **/
490 491
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
                                 bool locked)
492 493
{
	u32 kmrnctrlsta;
494
	s32 ret_val = 0;
495

496
	if (!locked) {
497
		if (!(hw->phy.ops.acquire))
498 499
			goto out;

500
		ret_val = hw->phy.ops.acquire(hw);
501 502 503
		if (ret_val)
			goto out;
	}
504 505 506 507 508 509 510 511 512 513

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

514
	if (!locked)
515
		hw->phy.ops.release(hw);
516

517
out:
518 519 520 521
	return ret_val;
}

/**
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
 *  e1000e_read_kmrn_reg -  Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset using the
 *  kumeran interface.  The information retrieved is stored in data.
 *  Release the acquired semaphore before exiting.
 **/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_kmrn_reg(hw, offset, data, false);
}

/**
537
 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
538 539 540 541 542 543 544 545
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the kumeran interface.  The
 *  information retrieved is stored in data.
 *  Assumes semaphore already acquired.
 **/
546
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
547 548 549 550 551 552
{
	return __e1000_read_kmrn_reg(hw, offset, data, true);
}

/**
 *  __e1000_write_kmrn_reg - Write kumeran register
553 554 555
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
556
 *  @locked: semaphore has already been acquired or not
557 558 559 560 561
 *
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 *  at the offset using the kumeran interface.  Release any acquired semaphores
 *  before exiting.
 **/
562 563
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
                                  bool locked)
564 565
{
	u32 kmrnctrlsta;
566
	s32 ret_val = 0;
567

568
	if (!locked) {
569
		if (!(hw->phy.ops.acquire))
570 571
			goto out;

572
		ret_val = hw->phy.ops.acquire(hw);
573 574 575
		if (ret_val)
			goto out;
	}
576 577 578 579 580 581 582

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);

	udelay(2);

583
	if (!locked)
584
		hw->phy.ops.release(hw);
585 586

out:
587 588 589
	return ret_val;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/**
 *  e1000e_write_kmrn_reg -  Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to the PHY register at the offset
 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 **/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_kmrn_reg(hw, offset, data, false);
}

/**
605
 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
606 607 608 609 610 611 612
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Write the data to PHY register at the offset using the kumeran interface.
 *  Assumes semaphore already acquired.
 **/
613
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
614 615 616 617
{
	return __e1000_write_kmrn_reg(hw, offset, data, true);
}

618 619 620 621 622 623 624 625 626 627 628 629 630
/**
 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up Carrier-sense on Transmit and downshift values.
 **/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

	/* Enable CRS on TX. This must be set for half-duplex operation. */
631
	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
632 633 634 635 636 637 638 639
	if (ret_val)
		goto out;

	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;

	/* Enable downshift */
	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;

640
	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
641 642 643 644 645

out:
	return ret_val;
}

646 647 648 649 650 651 652 653 654 655 656 657 658
/**
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

659
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
660 661 662 663
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

664 665
	/* For BM PHY this bit is downshift enable */
	if (phy->type != e1000_phy_bm)
666
		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
667

668 669
	/*
	 * Options:
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

694 695
	/*
	 * Options:
696 697 698 699 700 701 702 703 704
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	if (phy->disable_polarity_correction == 1)
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

705 706 707 708
	/* Enable downshift on BM (disabled by default) */
	if (phy->type == e1000_phy_bm)
		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;

709 710 711 712
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

713 714 715
	if ((phy->type == e1000_phy_m88) &&
	    (phy->revision < E1000_REVISION_4) &&
	    (phy->id != BME1000_E_PHY_ID_R2)) {
716 717
		/*
		 * Force TX_CLK in the Extended PHY Specific Control Register
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		 * to 25MHz clock.
		 */
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == 2) &&
		    (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

743 744 745 746 747 748 749 750 751 752 753 754
	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
		/* Set PHY page 0, register 29 to 0x0003 */
		ret_val = e1e_wphy(hw, 29, 0x0003);
		if (ret_val)
			return ret_val;

		/* Set PHY page 0, register 30 to 0x0000 */
		ret_val = e1e_wphy(hw, 30, 0x0000);
		if (ret_val)
			return ret_val;
	}

755 756
	/* Commit the changes. */
	ret_val = e1000e_commit_phy(hw);
757
	if (ret_val) {
758
		e_dbg("Error committing the PHY changes\n");
759 760
		return ret_val;
	}
761

762
	if (phy->type == e1000_phy_82578) {
763
		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
764 765 766 767 768 769 770
		                            &phy_data);
		if (ret_val)
			return ret_val;

		/* 82578 PHY - set the downshift count to 1x. */
		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
771
		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
772 773 774 775 776 777
		                             phy_data);
		if (ret_val)
			return ret_val;
	}

	return 0;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
}

/**
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1000_phy_hw_reset(hw);
	if (ret_val) {
795
		e_dbg("Error resetting the PHY.\n");
796 797 798
		return ret_val;
	}

799 800 801 802 803
	/*
	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);
804 805

	/* disable lplu d0 during driver init */
806
	ret_val = e1000_set_d0_lplu_state(hw, false);
807
	if (ret_val) {
808
		e_dbg("Error Disabling LPLU D0\n");
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		return ret_val;
	}
	/* Configure mdi-mdix settings */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
836 837
		/*
		 * when autonegotiation advertisement is only 1000Mbps then we
838
		 * should disable SmartSpeed and enable Auto MasterSlave
839 840
		 * resolution as hardware default.
		 */
841 842 843
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
844
					   &data);
845 846 847 848 849
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
850
					   data);
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
			if (ret_val)
				return ret_val;

			/* Set auto Master/Slave resolution process */
			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
			if (ret_val)
				return ret_val;

			data &= ~CR_1000T_MS_ENABLE;
			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
		if (ret_val)
			return ret_val;

		/* load defaults for future use */
		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
			((data & CR_1000T_MS_VALUE) ?
			e1000_ms_force_master :
			e1000_ms_force_slave) :
			e1000_ms_auto;

		switch (phy->ms_type) {
		case e1000_ms_force_master:
			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			data |= CR_1000T_MS_ENABLE;
			data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
	}

	return ret_val;
}

/**
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

925 926
	/*
	 * Need to parse both autoneg_advertised and fc and set up
927 928 929 930 931 932
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

933 934
	/*
	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
935 936 937 938 939 940 941 942 943
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

944
	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
945 946 947

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
948
		e_dbg("Advertise 10mb Half duplex\n");
949 950 951 952 953
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
954
		e_dbg("Advertise 10mb Full duplex\n");
955 956 957 958 959
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
960
		e_dbg("Advertise 100mb Half duplex\n");
961 962 963 964 965
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
966
		e_dbg("Advertise 100mb Full duplex\n");
967 968 969 970 971
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
972
		e_dbg("Advertise 1000mb Half duplex request denied!\n");
973 974 975

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
976
		e_dbg("Advertise 1000mb Full duplex\n");
977 978 979
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

980 981
	/*
	 * Check for a software override of the flow control settings, and
982 983 984 985 986 987 988 989 990 991 992 993
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *	  but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *	  but we do not support receiving pause frames).
994
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
995 996 997
	 *  other:  No software override.  The flow control configuration
	 *	  in the EEPROM is used.
	 */
998
	switch (hw->fc.current_mode) {
999
	case e1000_fc_none:
1000 1001
		/*
		 * Flow control (Rx & Tx) is completely disabled by a
1002 1003 1004 1005 1006
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:
1007 1008
		/*
		 * Rx Flow control is enabled, and Tx Flow control is
1009
		 * disabled, by a software over-ride.
1010 1011 1012 1013
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
1014 1015 1016 1017 1018 1019
		 * (in e1000e_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:
1020 1021
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
1022 1023 1024 1025 1026 1027
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:
1028 1029
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
1030 1031 1032 1033 1034
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
1035
		e_dbg("Flow control param set incorrectly\n");
1036 1037 1038 1039 1040 1041 1042 1043
		ret_val = -E1000_ERR_CONFIG;
		return ret_val;
	}

	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

1044
	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
	}

	return ret_val;
}

/**
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
1060
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1061 1062 1063 1064 1065 1066 1067
 **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

1068 1069
	/*
	 * Perform some bounds checking on the autoneg advertisement
1070 1071 1072 1073
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

1074 1075
	/*
	 * If autoneg_advertised is zero, we assume it was not defaulted
1076 1077 1078 1079 1080
	 * by the calling code so we set to advertise full capability.
	 */
	if (phy->autoneg_advertised == 0)
		phy->autoneg_advertised = phy->autoneg_mask;

1081
	e_dbg("Reconfiguring auto-neg advertisement params\n");
1082 1083
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
1084
		e_dbg("Error Setting up Auto-Negotiation\n");
1085 1086
		return ret_val;
	}
1087
	e_dbg("Restarting Auto-Neg\n");
1088

1089 1090
	/*
	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

1102 1103
	/*
	 * Does the user want to wait for Auto-Neg to complete here, or
1104 1105
	 * check at a later time (for example, callback routine).
	 */
1106
	if (phy->autoneg_wait_to_complete) {
1107 1108
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
1109
			e_dbg("Error while waiting for "
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
				 "autoneg to complete\n");
			return ret_val;
		}
	}

	hw->mac.get_link_status = 1;

	return ret_val;
}

/**
 *  e1000e_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
1135 1136 1137 1138
		/*
		 * Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
1139 1140 1141 1142
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			return ret_val;
	} else {
1143 1144 1145 1146
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
1147
		e_dbg("Forcing Speed and Duplex\n");
1148 1149
		ret_val = e1000_phy_force_speed_duplex(hw);
		if (ret_val) {
1150
			e_dbg("Error Forcing Speed and Duplex\n");
1151 1152 1153 1154
			return ret_val;
		}
	}

1155 1156
	/*
	 * Check link status. Wait up to 100 microseconds for link to become
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	 * valid.
	 */
	ret_val = e1000e_phy_has_link_generic(hw,
					     COPPER_LINK_UP_LIMIT,
					     10,
					     &link);
	if (ret_val)
		return ret_val;

	if (link) {
1167
		e_dbg("Valid link established!!!\n");
1168 1169 1170
		e1000e_config_collision_dist(hw);
		ret_val = e1000e_config_fc_after_link_up(hw);
	} else {
1171
		e_dbg("Unable to establish link!!!\n");
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1202 1203
	/*
	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1217
	e_dbg("IGP PSCR: %X\n", phy_data);
1218 1219 1220

	udelay(1);

1221
	if (phy->autoneg_wait_to_complete) {
1222
		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1223 1224 1225 1226 1227 1228 1229 1230 1231

		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;

		if (!link)
1232
			e_dbg("Link taking longer than expected.\n");
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
1253
 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1254 1255 1256 1257 1258 1259 1260 1261 1262
 *  successful completion, else return corresponding error code.
 **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

1263 1264
	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1276
	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

1288 1289 1290 1291
	/* Reset the phy to commit changes. */
	ret_val = e1000e_commit_phy(hw);
	if (ret_val)
		return ret_val;
1292

1293
	if (phy->autoneg_wait_to_complete) {
1294
		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1295 1296 1297 1298 1299 1300 1301

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
			if (hw->phy.type != e1000_phy_m88) {
				e_dbg("Link taking longer than expected.\n");
			} else {
				/*
				 * We didn't get link.
				 * Reset the DSP and cross our fingers.
				 */
				ret_val = e1e_wphy(hw,
						M88E1000_PHY_PAGE_SELECT,
						0x001d);
				if (ret_val)
					return ret_val;
				ret_val = e1000e_phy_reset_dsp(hw);
				if (ret_val)
					return ret_val;
			}
1318 1319 1320 1321 1322 1323 1324 1325 1326
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;
	}

1327 1328 1329
	if (hw->phy.type != e1000_phy_m88)
		return 0;

1330 1331 1332 1333
	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

1334 1335
	/*
	 * Resetting the phy means we need to re-force TX_CLK in the
1336 1337 1338 1339 1340 1341 1342 1343
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1344 1345
	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	 * duplex.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

	return ret_val;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
 *  @hw: pointer to the HW structure
 *
 *  Forces the speed and duplex settings of the PHY.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
	if (ret_val)
		goto out;

	e1000e_phy_force_speed_duplex_setup(hw, &data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
	if (ret_val)
		goto out;

	/* Disable MDI-X support for 10/100 */
	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		goto out;

	data &= ~IFE_PMC_AUTO_MDIX;
	data &= ~IFE_PMC_FORCE_MDIX;

	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
	if (ret_val)
		goto out;

	e_dbg("IFE PMC: %X\n", data);

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;

		if (!link)
			e_dbg("Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the PHY_CONTROL register for these settings to
 *  take affect.
 **/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
1443
	hw->fc.current_mode = e1000_fc_none;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	/* Force speed/duplex on the mac */
	ctrl = er32(CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1460
		e_dbg("Half Duplex\n");
1461 1462 1463
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1464
		e_dbg("Full Duplex\n");
1465 1466 1467 1468 1469 1470 1471
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= MII_CR_SPEED_100;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1472
		e_dbg("Forcing 100mb\n");
1473 1474 1475 1476
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl |= MII_CR_SPEED_10;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1477
		e_dbg("Forcing 10mb\n");
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	}

	e1000e_config_collision_dist(hw);

	ew32(CTRL, ctrl);
}

/**
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
1511
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1512 1513
		if (ret_val)
			return ret_val;
1514 1515
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1516 1517
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1518 1519
		 * SmartSpeed, so performance is maintained.
		 */
1520 1521
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1522
					   &data);
1523 1524 1525 1526 1527
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528
					   data);
1529 1530 1531 1532
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533
					   &data);
1534 1535 1536 1537 1538
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539
					   data);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
1564
 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_m88:
	case e1000_phy_gg82563:
1580
	case e1000_phy_bm:
1581
	case e1000_phy_82578:
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		offset	= M88E1000_PHY_SPEC_STATUS;
		mask	= M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
		offset	= IGP01E1000_PHY_LINK_HEALTH;
		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
1592
		phy->speed_downgraded = false;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		return 0;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->speed_downgraded = (phy_data & mask);

	return ret_val;
}

/**
 *  e1000_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
1612
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
1637
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1638 1639 1640 1641 1642
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

1643 1644 1645 1646
	/*
	 * Polarity is determined based on the speed of
	 * our connection.
	 */
1647 1648 1649 1650 1651 1652 1653 1654 1655
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset	= IGP01E1000_PHY_PCS_INIT_REG;
		mask	= IGP01E1000_PHY_POLARITY_MASK;
	} else {
1656 1657
		/*
		 * This really only applies to 10Mbps since
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset	= IGP01E1000_PHY_PORT_STATUS;
		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = e1e_rphy(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = (data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**
 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
 *  @hw: pointer to the HW structure
 *
 *  Polarity is determined on the polarity reversal feature being enabled.
 **/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	/*
	 * Polarity is determined based on the reversal feature being enabled.
	 */
	if (phy->polarity_correction) {
		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
		mask = IFE_PESC_POLARITY_REVERSED;
	} else {
		offset = IFE_PHY_SPECIAL_CONTROL;
		mask = IFE_PSC_FORCE_POLARITY;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->cable_polarity = (phy_data & mask)
		                       ? e1000_rev_polarity_reversed
		                       : e1000_rev_polarity_normal;

	return ret_val;
}

1707
/**
1708
 *  e1000_wait_autoneg - Wait for auto-neg completion
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

1732 1733
	/*
	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	 * has completed.
	 */
	return ret_val;
}

/**
 *  e1000e_phy_has_link_generic - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
			       u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
1755 1756
		/*
		 * Some PHYs require the PHY_STATUS register to be read
1757 1758 1759 1760 1761
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
1762 1763 1764 1765 1766 1767
			/*
			 * If the first read fails, another entity may have
			 * ownership of the resources, wait and try again to
			 * see if they have relinquished the resources yet.
			 */
			udelay(usec_interval);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval/1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations);

	return ret_val;
}

/**
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
1807
		goto out;
1808 1809

	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1810 1811 1812 1813 1814 1815
	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

1816
	phy->min_cable_length = e1000_m88_cable_length_table[index];
1817
	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1818 1819 1820

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

1821
out:
1822 1823 1824 1825 1826 1827 1828 1829 1830
	return ret_val;
}

/**
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
1831
 *  cable.  By reading the AGC registers, which represent the
B
Bruce Allan 已提交
1832
 *  combination of coarse and fine gain value, the value can be put
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
							 {IGP02E1000_PHY_AGC_A,
							  IGP02E1000_PHY_AGC_B,
							  IGP02E1000_PHY_AGC_C,
							  IGP02E1000_PHY_AGC_D};

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			return ret_val;

1855 1856
		/*
		 * Getting bits 15:9, which represent the combination of
B
Bruce Allan 已提交
1857
		 * coarse and fine gain values.  The result is a number
1858
		 * that can be put into the lookup table to obtain the
1859 1860
		 * approximate cable length.
		 */
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				IGP02E1000_AGC_LENGTH_MASK;

		/* Array index bound check. */
		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
		    (cur_agc_index == 0))
			return -E1000_ERR_PHY;

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return ret_val;
}

/**
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u16 phy_data;
	bool link;

1911
	if (phy->media_type != e1000_media_type_copper) {
1912
		e_dbg("Phy info is only valid for copper media\n");
1913 1914 1915 1916 1917 1918 1919 1920
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1921
		e_dbg("Phy info is only valid if link is up\n");
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy->polarity_correction = (phy_data &
				    M88E1000_PSCR_POLARITY_REVERSAL);

	ret_val = e1000_check_polarity_m88(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
1989
		e_dbg("Phy info is only valid if link is up\n");
1990 1991 1992
		return -E1000_ERR_CONFIG;
	}

1993
	phy->polarity_correction = true;
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	ret_val = e1000_check_polarity_igp(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/**
 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
 *  @hw: pointer to the HW structure
 *
 *  Populates "phy" structure with various feature states.
 **/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
		e_dbg("Phy info is only valid if link is up\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
	if (ret_val)
		goto out;
	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
	                           ? false : true;

	if (phy->polarity_correction) {
		ret_val = e1000_check_polarity_ife(hw);
		if (ret_val)
			goto out;
	} else {
		/* Polarity is forced */
		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;
	}

	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
	if (ret_val)
		goto out;

	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;

	/* The following parameters are undefined for 10/100 operation. */
	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
	phy->local_rx = e1000_1000t_rx_status_undefined;
	phy->remote_rx = e1000_1000t_rx_status_undefined;

out:
	return ret_val;
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
/**
 *  e1000e_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_ctrl;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= MII_CR_RESET;
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

	udelay(1);

	return ret_val;
}

/**
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
2119
 *  reset and release the semaphore (if necessary).
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
 **/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl;

	ret_val = e1000_check_reset_block(hw);
	if (ret_val)
		return 0;

2131
	ret_val = phy->ops.acquire(hw);
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	if (ret_val)
		return ret_val;

	ctrl = er32(CTRL);
	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
	e1e_flush();

	udelay(phy->reset_delay_us);

	ew32(CTRL, ctrl);
	e1e_flush();

	udelay(150);

2146
	phy->ops.release(hw);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

	return e1000_get_phy_cfg_done(hw);
}

/**
 *  e1000e_get_cfg_done - Generic configuration done
 *  @hw: pointer to the HW structure
 *
 *  Generic function to wait 10 milli-seconds for configuration to complete
 *  and return success.
 **/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
	mdelay(10);
	return 0;
}

2164 2165 2166 2167 2168 2169 2170 2171
/**
 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
 *  @hw: pointer to the HW structure
 *
 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
 **/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
2172
	e_dbg("Running IGP 3 PHY init script\n");
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

	/* PHY init IGP 3 */
	/* Enable rise/fall, 10-mode work in class-A */
	e1e_wphy(hw, 0x2F5B, 0x9018);
	/* Remove all caps from Replica path filter */
	e1e_wphy(hw, 0x2F52, 0x0000);
	/* Bias trimming for ADC, AFE and Driver (Default) */
	e1e_wphy(hw, 0x2FB1, 0x8B24);
	/* Increase Hybrid poly bias */
	e1e_wphy(hw, 0x2FB2, 0xF8F0);
	/* Add 4% to Tx amplitude in Gig mode */
	e1e_wphy(hw, 0x2010, 0x10B0);
	/* Disable trimming (TTT) */
	e1e_wphy(hw, 0x2011, 0x0000);
	/* Poly DC correction to 94.6% + 2% for all channels */
	e1e_wphy(hw, 0x20DD, 0x249A);
	/* ABS DC correction to 95.9% */
	e1e_wphy(hw, 0x20DE, 0x00D3);
	/* BG temp curve trim */
	e1e_wphy(hw, 0x28B4, 0x04CE);
	/* Increasing ADC OPAMP stage 1 currents to max */
	e1e_wphy(hw, 0x2F70, 0x29E4);
	/* Force 1000 ( required for enabling PHY regs configuration) */
	e1e_wphy(hw, 0x0000, 0x0140);
	/* Set upd_freq to 6 */
	e1e_wphy(hw, 0x1F30, 0x1606);
	/* Disable NPDFE */
	e1e_wphy(hw, 0x1F31, 0xB814);
	/* Disable adaptive fixed FFE (Default) */
	e1e_wphy(hw, 0x1F35, 0x002A);
	/* Enable FFE hysteresis */
	e1e_wphy(hw, 0x1F3E, 0x0067);
	/* Fixed FFE for short cable lengths */
	e1e_wphy(hw, 0x1F54, 0x0065);
	/* Fixed FFE for medium cable lengths */
	e1e_wphy(hw, 0x1F55, 0x002A);
	/* Fixed FFE for long cable lengths */
	e1e_wphy(hw, 0x1F56, 0x002A);
	/* Enable Adaptive Clip Threshold */
	e1e_wphy(hw, 0x1F72, 0x3FB0);
	/* AHT reset limit to 1 */
	e1e_wphy(hw, 0x1F76, 0xC0FF);
	/* Set AHT master delay to 127 msec */
	e1e_wphy(hw, 0x1F77, 0x1DEC);
	/* Set scan bits for AHT */
	e1e_wphy(hw, 0x1F78, 0xF9EF);
	/* Set AHT Preset bits */
	e1e_wphy(hw, 0x1F79, 0x0210);
	/* Change integ_factor of channel A to 3 */
	e1e_wphy(hw, 0x1895, 0x0003);
	/* Change prop_factor of channels BCD to 8 */
	e1e_wphy(hw, 0x1796, 0x0008);
	/* Change cg_icount + enable integbp for channels BCD */
	e1e_wphy(hw, 0x1798, 0xD008);
	/*
	 * Change cg_icount + enable integbp + change prop_factor_master
	 * to 8 for channel A
	 */
	e1e_wphy(hw, 0x1898, 0xD918);
	/* Disable AHT in Slave mode on channel A */
	e1e_wphy(hw, 0x187A, 0x0800);
	/*
	 * Enable LPLU and disable AN to 1000 in non-D0a states,
	 * Enable SPD+B2B
	 */
	e1e_wphy(hw, 0x0019, 0x008D);
	/* Enable restart AN on an1000_dis change */
	e1e_wphy(hw, 0x001B, 0x2080);
	/* Enable wh_fifo read clock in 10/100 modes */
	e1e_wphy(hw, 0x0014, 0x0045);
	/* Restart AN, Speed selection is 1000 */
	e1e_wphy(hw, 0x0000, 0x1340);

	return 0;
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
/* Internal function pointers */

/**
 *  e1000_get_phy_cfg_done - Generic PHY configuration done
 *  @hw: pointer to the HW structure
 *
 *  Return success if silicon family did not implement a family specific
 *  get_cfg_done function.
 **/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
	if (hw->phy.ops.get_cfg_done)
		return hw->phy.ops.get_cfg_done(hw);

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
 *  @hw: pointer to the HW structure
 *
 *  When the silicon family has not implemented a forced speed/duplex
 *  function for the PHY, simply return 0.
 **/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
	if (hw->phy.ops.force_speed_duplex)
		return hw->phy.ops.force_speed_duplex(hw);

	return 0;
}

/**
 *  e1000e_get_phy_type_from_id - Get PHY type from id
 *  @phy_id: phy_id read from the phy
 *
 *  Returns the phy type from the id.
 **/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	switch (phy_id) {
	case M88E1000_I_PHY_ID:
	case M88E1000_E_PHY_ID:
	case M88E1111_I_PHY_ID:
	case M88E1011_I_PHY_ID:
		phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
		phy_type = e1000_phy_igp_2;
		break;
	case GG82563_E_PHY_ID:
		phy_type = e1000_phy_gg82563;
		break;
	case IGP03E1000_E_PHY_ID:
		phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy_type = e1000_phy_ife;
		break;
2312 2313 2314 2315
	case BME1000_E_PHY_ID:
	case BME1000_E_PHY_ID_R2:
		phy_type = e1000_phy_bm;
		break;
2316 2317 2318 2319 2320 2321
	case I82578_E_PHY_ID:
		phy_type = e1000_phy_82578;
		break;
	case I82577_E_PHY_ID:
		phy_type = e1000_phy_82577;
		break;
2322 2323 2324 2325 2326 2327 2328
	default:
		phy_type = e1000_phy_unknown;
		break;
	}
	return phy_type;
}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
/**
 *  e1000e_determine_phy_address - Determines PHY address.
 *  @hw: pointer to the HW structure
 *
 *  This uses a trial and error method to loop through possible PHY
 *  addresses. It tests each by reading the PHY ID registers and
 *  checking for a match.
 **/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_PHY_TYPE;
2340 2341
	u32 phy_addr = 0;
	u32 i;
2342 2343
	enum e1000_phy_type phy_type = e1000_phy_unknown;

2344 2345 2346 2347 2348 2349 2350
	hw->phy.id = phy_type;

	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
		hw->phy.addr = phy_addr;
		i = 0;

		do {
2351 2352 2353
			e1000e_get_phy_id(hw);
			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);

2354
			/*
2355 2356 2357 2358 2359
			 * If phy_type is valid, break - we found our
			 * PHY address
			 */
			if (phy_type  != e1000_phy_unknown) {
				ret_val = 0;
2360
				goto out;
2361
			}
2362 2363 2364 2365
			msleep(1);
			i++;
		} while (i < 10);
	}
2366

2367
out:
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	return ret_val;
}

/**
 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
 *  @page: page to access
 *
 *  Returns the phy address for the page requested.
 **/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
	u32 phy_addr = 2;

	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000e_write_phy_reg_bm - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u32 page_select = 0;
	u32 page = offset >> IGP_PAGE_SHIFT;
	u32 page_shift = 0;

2403
	ret_val = hw->phy.ops.acquire(hw);
2404 2405 2406
	if (ret_val)
		return ret_val;

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2433
		if (ret_val)
2434 2435 2436 2437 2438 2439 2440
			goto out;
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                    data);

out:
2441
	hw->phy.ops.release(hw);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page_select = 0;
	u32 page = offset >> IGP_PAGE_SHIFT;
	u32 page_shift = 0;

2462
	ret_val = hw->phy.ops.acquire(hw);
2463 2464 2465
	if (ret_val)
		return ret_val;

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
2492
		if (ret_val)
2493 2494 2495 2496 2497 2498
			goto out;
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                   data);
out:
2499
	hw->phy.ops.release(hw);
2500 2501 2502
	return ret_val;
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
/**
 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2518
	ret_val = hw->phy.ops.acquire(hw);
2519 2520 2521
	if (ret_val)
		return ret_val;

2522 2523 2524 2525
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true);
2526
		goto out;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2537 2538
		if (ret_val)
			goto out;
2539 2540 2541 2542
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
2543
out:
2544
	hw->phy.ops.release(hw);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	return ret_val;
}

/**
 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);

2562
	ret_val = hw->phy.ops.acquire(hw);
2563 2564 2565
	if (ret_val)
		return ret_val;

2566 2567 2568 2569
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false);
2570
		goto out;
2571 2572 2573 2574 2575 2576 2577 2578 2579
	}

	hw->phy.addr = 1;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
						    page);

2580 2581
		if (ret_val)
			goto out;
2582 2583 2584 2585 2586
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);

2587
out:
2588
	hw->phy.ops.release(hw);
2589 2590 2591
	return ret_val;
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
/**
 *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to read or write
 *  @read: determines if operation is read or write
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting. Note that procedure to read the wakeup
 *  registers are different. It works as such:
 *  1) Set page 769, register 17, bit 2 = 1
 *  2) Set page to 800 for host (801 if we were manageability)
 *  3) Write the address using the address opcode (0x11)
 *  4) Read or write the data using the data opcode (0x12)
 *  5) Restore 769_17.2 to its original value
2608 2609
 *
 *  Assumes semaphore already acquired.
2610 2611 2612 2613 2614
 **/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read)
{
	s32 ret_val;
2615
	u16 reg = BM_PHY_REG_NUM(offset);
2616 2617
	u16 phy_reg = 0;

2618 2619 2620
	/* Gig must be disabled for MDIO accesses to page 800 */
	if ((hw->mac.type == e1000_pchlan) &&
	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
B
Bruce Allan 已提交
2621
		e_dbg("Attempting to access page 800 while gig enabled.\n");
2622

2623 2624 2625 2626 2627 2628 2629 2630
	/* All operations in this function are phy address 1 */
	hw->phy.addr = 1;

	/* Set page 769 */
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));

	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
B
Bruce Allan 已提交
2631 2632
	if (ret_val) {
		e_dbg("Could not read PHY page 769\n");
2633
		goto out;
B
Bruce Allan 已提交
2634
	}
2635 2636 2637 2638

	/* First clear bit 4 to avoid a power state change */
	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
B
Bruce Allan 已提交
2639 2640
	if (ret_val) {
		e_dbg("Could not clear PHY page 769 bit 4\n");
2641
		goto out;
B
Bruce Allan 已提交
2642
	}
2643 2644 2645 2646

	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
	                                    phy_reg | BM_WUC_ENABLE_BIT);
B
Bruce Allan 已提交
2647 2648
	if (ret_val) {
		e_dbg("Could not write PHY page 769 bit 2\n");
2649
		goto out;
B
Bruce Allan 已提交
2650
	}
2651 2652 2653 2654 2655 2656 2657

	/* Select page 800 */
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));

	/* Write the page 800 offset value using opcode 0x11 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
B
Bruce Allan 已提交
2658 2659
	if (ret_val) {
		e_dbg("Could not write address opcode to page 800\n");
2660
		goto out;
B
Bruce Allan 已提交
2661
	}
2662 2663 2664 2665 2666 2667

	if (read) {
	        /* Read the page 800 value using opcode 0x12 */
		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
		                                   data);
	} else {
B
Bruce Allan 已提交
2668
	        /* Write the page 800 value using opcode 0x12 */
2669 2670 2671 2672
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						    *data);
	}

B
Bruce Allan 已提交
2673 2674
	if (ret_val) {
		e_dbg("Could not access data value from page 800\n");
2675
		goto out;
B
Bruce Allan 已提交
2676
	}
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

	/*
	 * Restore 769_17.2 to its original value
	 * Set page 769
	 */
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));

	/* Clear 769_17.2 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
B
Bruce Allan 已提交
2687 2688 2689 2690
	if (ret_val) {
		e_dbg("Could not clear PHY page 769 bit 2\n");
		goto out;
	}
2691 2692 2693 2694 2695

out:
	return ret_val;
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
/**
 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg &= ~MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
}

/**
 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, restore the link to previous
 * settings.
 **/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
	u16 mii_reg = 0;

	/* The PHY will retain its settings across a power down/up cycle */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
	msleep(1);
}

2733 2734 2735 2736 2737 2738 2739 2740 2741
/**
 *  e1000e_commit_phy - Soft PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Performs a soft PHY reset on those that apply. This is a function pointer
 *  entry point called by drivers.
 **/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
2742 2743
	if (hw->phy.ops.commit)
		return hw->phy.ops.commit(hw);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768

	return 0;
}

/**
 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D0
 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.  This is a function pointer entry point called by drivers.
 **/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
	if (hw->phy.ops.set_d0_lplu_state)
		return hw->phy.ops.set_d0_lplu_state(hw, active);

	return 0;
}
2769 2770

/**
2771
 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2772 2773 2774
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
2775
 *  @locked: semaphore has already been acquired or not
2776 2777
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2778
 *  and stores the retrieved information in data.  Release any acquired
2779 2780
 *  semaphore before exiting.
 **/
2781 2782
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
                                   bool locked)
2783 2784 2785 2786 2787
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);

2788
	if (!locked) {
2789
		ret_val = hw->phy.ops.acquire(hw);
2790 2791 2792 2793
		if (ret_val)
			return ret_val;
	}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
		                                         data, true);
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         data, true);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);

	if (page == HV_INTC_FC_PAGE_START)
		page = 0;

	if (reg > MAX_PHY_MULTI_PAGE_REG) {
2813
		u32 phy_addr = hw->phy.addr;
2814

2815
		hw->phy.addr = 1;
2816

2817 2818 2819 2820 2821 2822 2823 2824
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw,
					     IGP01E1000_PHY_PAGE_SELECT,
					     (page << IGP_PAGE_SHIFT));
		hw->phy.addr = phy_addr;

		if (ret_val)
			goto out;
2825 2826 2827 2828 2829
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);
out:
2830
	if (!locked)
2831
		hw->phy.ops.release(hw);
2832

2833 2834 2835 2836
	return ret_val;
}

/**
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
 *  e1000_read_phy_reg_hv -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore then reads the PHY register at offset and stores
 *  the retrieved information in data.  Release the acquired semaphore
 *  before exiting.
 **/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, false);
}

/**
 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset and stores the retrieved information
 *  in data.  Assumes semaphore already acquired.
 **/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
	return __e1000_read_phy_reg_hv(hw, offset, data, true);
}

/**
 *  __e1000_write_phy_reg_hv - Write HV PHY register
2867 2868 2869
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
2870
 *  @locked: semaphore has already been acquired or not
2871 2872 2873 2874
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
2875 2876
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
                                    bool locked)
2877 2878 2879 2880 2881
{
	s32 ret_val;
	u16 page = BM_PHY_REG_PAGE(offset);
	u16 reg = BM_PHY_REG_NUM(offset);

2882
	if (!locked) {
2883
		ret_val = hw->phy.ops.acquire(hw);
2884 2885 2886 2887
		if (ret_val)
			return ret_val;
	}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
		                                         &data, false);
		goto out;
	}

	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
		                                         &data, false);
		goto out;
	}

	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);

	if (page == HV_INTC_FC_PAGE_START)
		page = 0;

	/*
	 * Workaround MDIO accesses being disabled after entering IEEE Power
	 * Down (whenever bit 11 of the PHY Control register is set)
	 */
	if ((hw->phy.type == e1000_phy_82578) &&
	    (hw->phy.revision >= 1) &&
	    (hw->phy.addr == 2) &&
	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
	    (data & (1 << 11))) {
		u16 data2 = 0x7EFF;
		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
		                                         &data2, false);
		if (ret_val)
			goto out;
	}

	if (reg > MAX_PHY_MULTI_PAGE_REG) {
2923
		u32 phy_addr = hw->phy.addr;
2924

2925
		hw->phy.addr = 1;
2926

2927 2928 2929 2930 2931 2932 2933 2934
		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw,
					     IGP01E1000_PHY_PAGE_SELECT,
					     (page << IGP_PAGE_SHIFT));
		hw->phy.addr = phy_addr;

		if (ret_val)
			goto out;
2935 2936 2937 2938 2939 2940
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
	                                  data);

out:
2941
	if (!locked)
2942
		hw->phy.ops.release(hw);
2943

2944 2945 2946
	return ret_val;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 *  e1000_write_phy_reg_hv - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore then writes the data to PHY register at the offset.
 *  Release the acquired semaphores before exiting.
 **/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, false);
}

/**
 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset.  Assumes semaphore
 *  already acquired.
 **/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
	return __e1000_write_phy_reg_hv(hw, offset, data, true);
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
/**
 *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
 *  @page: page to be accessed
 **/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
	u32 phy_addr = 2;

	if (page >= HV_INTC_FC_PAGE_START)
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to be read or written
 *  @read: determines if operation is read or written
 *
2996 2997 2998
 *  Reads the PHY register at offset and stores the retreived information
 *  in data.  Assumes semaphore already acquired.  Note that the procedure
 *  to read these regs uses the address port and data port to read/write.
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
 **/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
                                          u16 *data, bool read)
{
	s32 ret_val;
	u32 addr_reg = 0;
	u32 data_reg = 0;

	/* This takes care of the difference with desktop vs mobile phy */
	addr_reg = (hw->phy.type == e1000_phy_82578) ?
	           I82578_ADDR_REG : I82577_ADDR_REG;
	data_reg = addr_reg + 1;

	/* All operations in this function are phy address 2 */
	hw->phy.addr = 2;

	/* masking with 0x3F to remove the page from offset */
	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
	if (ret_val) {
3018
		e_dbg("Could not write PHY the HV address register\n");
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
		goto out;
	}

	/* Read or write the data value next */
	if (read)
		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
	else
		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);

	if (ret_val) {
3029
		e_dbg("Could not read data value from HV data register\n");
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_link_stall_workaround_hv - Si workaround
 *  @hw: pointer to the HW structure
 *
 *  This function works around a Si bug where the link partner can get
 *  a link up indication before the PHY does.  If small packets are sent
 *  by the link partner they can be placed in the packet buffer without
 *  being properly accounted for by the PHY and will stall preventing
 *  further packets from being received.  The workaround is to clear the
 *  packet buffer after the PHY detects link up.
 **/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 data;

	if (hw->phy.type != e1000_phy_82578)
		goto out;

3056
	/* Do not apply workaround if in PHY loopback bit 14 set */
3057
	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3058 3059 3060
	if (data & PHY_CONTROL_LB)
		goto out;

3061
	/* check if link is up and at 1Gbps */
3062
	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	if (ret_val)
		goto out;

	data &= BM_CS_STATUS_LINK_UP |
	        BM_CS_STATUS_RESOLVED |
	        BM_CS_STATUS_SPEED_MASK;

	if (data != (BM_CS_STATUS_LINK_UP |
	             BM_CS_STATUS_RESOLVED |
	             BM_CS_STATUS_SPEED_1000))
		goto out;

	mdelay(200);

	/* flush the packets in the fifo buffer */
3078
	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3079 3080 3081 3082 3083
	                                HV_MUX_DATA_CTRL_GEN_TO_MAC |
	                                HV_MUX_DATA_CTRL_FORCE_SPEED);
	if (ret_val)
		goto out;

3084
	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	                                HV_MUX_DATA_CTRL_GEN_TO_MAC);

out:
	return ret_val;
}

/**
 *  e1000_check_polarity_82577 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

3105
	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	if (!ret_val)
		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
		                      ? e1000_rev_polarity_reversed
		                      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
 *  @hw: pointer to the HW structure
 *
3119
 *  Calls the PHY setup function to force speed and duplex.
3120 3121 3122 3123 3124 3125 3126 3127
 **/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

3128
	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3129 3130 3131 3132 3133
	if (ret_val)
		goto out;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

3134
	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3135 3136 3137 3138 3139 3140
	if (ret_val)
		goto out;

	udelay(1);

	if (phy->autoneg_wait_to_complete) {
3141
		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3142 3143 3144 3145 3146 3147 3148 3149 3150

		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;

		if (!link)
3151
			e_dbg("Link taking longer than expected.\n");
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
		                                     PHY_FORCE_LIMIT,
		                                     100000,
		                                     &link);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link) {
3187
		e_dbg("Phy info is only valid if link is up\n");
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	phy->polarity_correction = true;

	ret_val = e1000_check_polarity_82577(hw);
	if (ret_val)
		goto out;

3198
	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	if (ret_val)
		goto out;

	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;

	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
		ret_val = hw->phy.ops.get_cable_length(hw);
		if (ret_val)
			goto out;

3210
		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		if (ret_val)
			goto out;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
		                ? e1000_1000t_rx_status_ok
		                : e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
		                 ? e1000_1000t_rx_status_ok
		                 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

out:
	return ret_val;
}

/**
 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
 *  @hw: pointer to the HW structure
 *
 * Reads the diagnostic status register and verifies result is valid before
 * placing it in the phy_cable_length field.
 **/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, length;

3244
	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3245 3246 3247 3248 3249 3250 3251
	if (ret_val)
		goto out;

	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;

	if (length == E1000_CABLE_LENGTH_UNDEFINED)
B
Bruce Allan 已提交
3252
		ret_val = -E1000_ERR_PHY;
3253 3254 3255 3256 3257 3258

	phy->cable_length = length;

out:
	return ret_val;
}