acp-pcm-dma.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * AMD ALSA SoC PCM Driver for ACP 2.x
 *
 * Copyright 2014-2015 Advanced Micro Devices, Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/module.h>
#include <linux/delay.h>
18
#include <linux/io.h>
19
#include <linux/sizes.h>
20
#include <linux/pm_runtime.h>
21 22

#include <sound/soc.h>
23
#include <drm/amd_asic_type.h>
24 25
#include "acp.h"

26 27
#define DRV_NAME "acp_audio_dma"

28 29 30 31 32 33 34 35 36 37 38 39
#define PLAYBACK_MIN_NUM_PERIODS    2
#define PLAYBACK_MAX_NUM_PERIODS    2
#define PLAYBACK_MAX_PERIOD_SIZE    16384
#define PLAYBACK_MIN_PERIOD_SIZE    1024
#define CAPTURE_MIN_NUM_PERIODS     2
#define CAPTURE_MAX_NUM_PERIODS     2
#define CAPTURE_MAX_PERIOD_SIZE     16384
#define CAPTURE_MIN_PERIOD_SIZE     1024

#define MAX_BUFFER (PLAYBACK_MAX_PERIOD_SIZE * PLAYBACK_MAX_NUM_PERIODS)
#define MIN_BUFFER MAX_BUFFER

40
#define ST_PLAYBACK_MAX_PERIOD_SIZE 4096
41 42 43 44
#define ST_CAPTURE_MAX_PERIOD_SIZE  ST_PLAYBACK_MAX_PERIOD_SIZE
#define ST_MAX_BUFFER (ST_PLAYBACK_MAX_PERIOD_SIZE * PLAYBACK_MAX_NUM_PERIODS)
#define ST_MIN_BUFFER ST_MAX_BUFFER

45
#define DRV_NAME "acp_audio_dma"
46 47
bool bt_uart_enable = true;
EXPORT_SYMBOL(bt_uart_enable);
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
static const struct snd_pcm_hardware acp_pcm_hardware_playback = {
	.info = SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
		SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
		SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
	.formats = SNDRV_PCM_FMTBIT_S16_LE |
		SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
	.channels_min = 1,
	.channels_max = 8,
	.rates = SNDRV_PCM_RATE_8000_96000,
	.rate_min = 8000,
	.rate_max = 96000,
	.buffer_bytes_max = PLAYBACK_MAX_NUM_PERIODS * PLAYBACK_MAX_PERIOD_SIZE,
	.period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE,
	.period_bytes_max = PLAYBACK_MAX_PERIOD_SIZE,
	.periods_min = PLAYBACK_MIN_NUM_PERIODS,
	.periods_max = PLAYBACK_MAX_NUM_PERIODS,
};

static const struct snd_pcm_hardware acp_pcm_hardware_capture = {
	.info = SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
		SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
	    SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
	.formats = SNDRV_PCM_FMTBIT_S16_LE |
		SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
	.channels_min = 1,
	.channels_max = 2,
	.rates = SNDRV_PCM_RATE_8000_48000,
	.rate_min = 8000,
	.rate_max = 48000,
	.buffer_bytes_max = CAPTURE_MAX_NUM_PERIODS * CAPTURE_MAX_PERIOD_SIZE,
	.period_bytes_min = CAPTURE_MIN_PERIOD_SIZE,
	.period_bytes_max = CAPTURE_MAX_PERIOD_SIZE,
	.periods_min = CAPTURE_MIN_NUM_PERIODS,
	.periods_max = CAPTURE_MAX_NUM_PERIODS,
};

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static const struct snd_pcm_hardware acp_st_pcm_hardware_playback = {
	.info = SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
		SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
		SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
	.formats = SNDRV_PCM_FMTBIT_S16_LE |
		SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
	.channels_min = 1,
	.channels_max = 8,
	.rates = SNDRV_PCM_RATE_8000_96000,
	.rate_min = 8000,
	.rate_max = 96000,
	.buffer_bytes_max = ST_MAX_BUFFER,
	.period_bytes_min = PLAYBACK_MIN_PERIOD_SIZE,
	.period_bytes_max = ST_PLAYBACK_MAX_PERIOD_SIZE,
	.periods_min = PLAYBACK_MIN_NUM_PERIODS,
	.periods_max = PLAYBACK_MAX_NUM_PERIODS,
};

static const struct snd_pcm_hardware acp_st_pcm_hardware_capture = {
	.info = SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP |
		SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH |
		SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
	.formats = SNDRV_PCM_FMTBIT_S16_LE |
		SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE,
	.channels_min = 1,
	.channels_max = 2,
	.rates = SNDRV_PCM_RATE_8000_48000,
	.rate_min = 8000,
	.rate_max = 48000,
	.buffer_bytes_max = ST_MAX_BUFFER,
	.period_bytes_min = CAPTURE_MIN_PERIOD_SIZE,
	.period_bytes_max = ST_CAPTURE_MAX_PERIOD_SIZE,
	.periods_min = CAPTURE_MIN_NUM_PERIODS,
	.periods_max = CAPTURE_MAX_NUM_PERIODS,
};

125 126 127 128 129 130 131 132 133 134
static u32 acp_reg_read(void __iomem *acp_mmio, u32 reg)
{
	return readl(acp_mmio + (reg * 4));
}

static void acp_reg_write(u32 val, void __iomem *acp_mmio, u32 reg)
{
	writel(val, acp_mmio + (reg * 4));
}

135 136
/*
 * Configure a given dma channel parameters - enable/disable,
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 * number of descriptors, priority
 */
static void config_acp_dma_channel(void __iomem *acp_mmio, u8 ch_num,
				   u16 dscr_strt_idx, u16 num_dscrs,
				   enum acp_dma_priority_level priority_level)
{
	u32 dma_ctrl;

	/* disable the channel run field */
	dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
	dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRun_MASK;
	acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);

	/* program a DMA channel with first descriptor to be processed. */
	acp_reg_write((ACP_DMA_DSCR_STRT_IDX_0__DMAChDscrStrtIdx_MASK
			& dscr_strt_idx),
			acp_mmio, mmACP_DMA_DSCR_STRT_IDX_0 + ch_num);

155 156
	/*
	 * program a DMA channel with the number of descriptors to be
157
	 * processed in the transfer
158
	 */
159
	acp_reg_write(ACP_DMA_DSCR_CNT_0__DMAChDscrCnt_MASK & num_dscrs,
160
		      acp_mmio, mmACP_DMA_DSCR_CNT_0 + ch_num);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	/* set DMA channel priority */
	acp_reg_write(priority_level, acp_mmio, mmACP_DMA_PRIO_0 + ch_num);
}

/* Initialize a dma descriptor in SRAM based on descritor information passed */
static void config_dma_descriptor_in_sram(void __iomem *acp_mmio,
					  u16 descr_idx,
					  acp_dma_dscr_transfer_t *descr_info)
{
	u32 sram_offset;

	sram_offset = (descr_idx * sizeof(acp_dma_dscr_transfer_t));

	/* program the source base address. */
	acp_reg_write(sram_offset, acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
	acp_reg_write(descr_info->src,	acp_mmio, mmACP_SRBM_Targ_Idx_Data);
	/* program the destination base address. */
	acp_reg_write(sram_offset + 4,	acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
	acp_reg_write(descr_info->dest, acp_mmio, mmACP_SRBM_Targ_Idx_Data);

	/* program the number of bytes to be transferred for this descriptor. */
	acp_reg_write(sram_offset + 8,	acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
	acp_reg_write(descr_info->xfer_val, acp_mmio, mmACP_SRBM_Targ_Idx_Data);
}

187 188
/*
 * Initialize the DMA descriptor information for transfer between
189 190 191
 * system memory <-> ACP SRAM
 */
static void set_acp_sysmem_dma_descriptors(void __iomem *acp_mmio,
192 193 194 195
					   u32 size, int direction,
					   u32 pte_offset, u16 ch,
					   u32 sram_bank, u16 dma_dscr_idx,
					   u32 asic_type)
196 197 198 199 200 201 202
{
	u16 i;
	acp_dma_dscr_transfer_t dmadscr[NUM_DSCRS_PER_CHANNEL];

	for (i = 0; i < NUM_DSCRS_PER_CHANNEL; i++) {
		dmadscr[i].xfer_val = 0;
		if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
203
			dma_dscr_idx = dma_dscr_idx + i;
204
			dmadscr[i].dest = sram_bank + (i * (size / 2));
205
			dmadscr[i].src = ACP_INTERNAL_APERTURE_WINDOW_0_ADDRESS
206
				+ (pte_offset * SZ_4K) + (i * (size / 2));
207 208 209
			switch (asic_type) {
			case CHIP_STONEY:
				dmadscr[i].xfer_val |=
210
				(ACP_DMA_ATTR_DAGB_GARLIC_TO_SHAREDMEM  << 16) |
211 212 213 214
				(size / 2);
				break;
			default:
				dmadscr[i].xfer_val |=
215
				(ACP_DMA_ATTR_DAGB_ONION_TO_SHAREDMEM  << 16) |
216 217
				(size / 2);
			}
218
		} else {
219
			dma_dscr_idx = dma_dscr_idx + i;
220
			dmadscr[i].src = sram_bank + (i * (size / 2));
221 222
			dmadscr[i].dest =
			ACP_INTERNAL_APERTURE_WINDOW_0_ADDRESS +
223
			(pte_offset * SZ_4K) + (i * (size / 2));
224 225 226
			switch (asic_type) {
			case CHIP_STONEY:
				dmadscr[i].xfer_val |=
227
				(ACP_DMA_ATTR_SHARED_MEM_TO_DAGB_GARLIC << 16) |
228 229 230 231
				(size / 2);
				break;
			default:
				dmadscr[i].xfer_val |=
232
				(ACP_DMA_ATTR_SHAREDMEM_TO_DAGB_ONION << 16) |
233 234
				(size / 2);
			}
235 236
		}
		config_dma_descriptor_in_sram(acp_mmio, dma_dscr_idx,
237
					      &dmadscr[i]);
238
	}
239
	config_acp_dma_channel(acp_mmio, ch,
240 241 242
			       dma_dscr_idx - 1,
			       NUM_DSCRS_PER_CHANNEL,
			       ACP_DMA_PRIORITY_LEVEL_NORMAL);
243 244
}

245 246
/*
 * Initialize the DMA descriptor information for transfer between
247 248
 * ACP SRAM <-> I2S
 */
249
static void set_acp_to_i2s_dma_descriptors(void __iomem *acp_mmio, u32 size,
250 251 252
					   int direction, u32 sram_bank,
					   u16 destination, u16 ch,
					   u16 dma_dscr_idx, u32 asic_type)
253 254 255 256 257 258 259
{
	u16 i;
	acp_dma_dscr_transfer_t dmadscr[NUM_DSCRS_PER_CHANNEL];

	for (i = 0; i < NUM_DSCRS_PER_CHANNEL; i++) {
		dmadscr[i].xfer_val = 0;
		if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
260
			dma_dscr_idx = dma_dscr_idx + i;
261
			dmadscr[i].src = sram_bank  + (i * (size / 2));
262 263
			/* dmadscr[i].dest is unused by hardware. */
			dmadscr[i].dest = 0;
264
			dmadscr[i].xfer_val |= BIT(22) | (destination << 16) |
265 266
						(size / 2);
		} else {
267
			dma_dscr_idx = dma_dscr_idx + i;
268 269
			/* dmadscr[i].src is unused by hardware. */
			dmadscr[i].src = 0;
270 271
			dmadscr[i].dest =
				 sram_bank + (i * (size / 2));
272
			dmadscr[i].xfer_val |= BIT(22) |
273
				(destination << 16) | (size / 2);
274 275
		}
		config_dma_descriptor_in_sram(acp_mmio, dma_dscr_idx,
276
					      &dmadscr[i]);
277 278
	}
	/* Configure the DMA channel with the above descriptore */
279
	config_acp_dma_channel(acp_mmio, ch, dma_dscr_idx - 1,
280 281
			       NUM_DSCRS_PER_CHANNEL,
			       ACP_DMA_PRIORITY_LEVEL_NORMAL);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

/* Create page table entries in ACP SRAM for the allocated memory */
static void acp_pte_config(void __iomem *acp_mmio, struct page *pg,
			   u16 num_of_pages, u32 pte_offset)
{
	u16 page_idx;
	u64 addr;
	u32 low;
	u32 high;
	u32 offset;

	offset	= ACP_DAGB_GRP_SRBM_SRAM_BASE_OFFSET + (pte_offset * 8);
	for (page_idx = 0; page_idx < (num_of_pages); page_idx++) {
		/* Load the low address of page int ACP SRAM through SRBM */
		acp_reg_write((offset + (page_idx * 8)),
298
			      acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
299 300 301 302 303 304 305 306 307
		addr = page_to_phys(pg);

		low = lower_32_bits(addr);
		high = upper_32_bits(addr);

		acp_reg_write(low, acp_mmio, mmACP_SRBM_Targ_Idx_Data);

		/* Load the High address of page int ACP SRAM through SRBM */
		acp_reg_write((offset + (page_idx * 8) + 4),
308
			      acp_mmio, mmACP_SRBM_Targ_Idx_Addr);
309 310 311 312 313 314 315 316 317 318 319

		/* page enable in ACP */
		high |= BIT(31);
		acp_reg_write(high, acp_mmio, mmACP_SRBM_Targ_Idx_Data);

		/* Move to next physically contiguos page */
		pg++;
	}
}

static void config_acp_dma(void __iomem *acp_mmio,
320
			   struct audio_substream_data *rtd,
321
			   u32 asic_type)
322
{
323 324
	u16 ch_acp_sysmem, ch_acp_i2s;

325
	acp_pte_config(acp_mmio, rtd->pg, rtd->num_of_pages,
326
		       rtd->pte_offset);
327 328 329 330 331 332 333 334

	if (rtd->direction == SNDRV_PCM_STREAM_PLAYBACK) {
		ch_acp_sysmem = rtd->ch1;
		ch_acp_i2s = rtd->ch2;
	} else {
		ch_acp_i2s = rtd->ch1;
		ch_acp_sysmem = rtd->ch2;
	}
335
	/* Configure System memory <-> ACP SRAM DMA descriptors */
336
	set_acp_sysmem_dma_descriptors(acp_mmio, rtd->size,
337
				       rtd->direction, rtd->pte_offset,
338
				       ch_acp_sysmem, rtd->sram_bank,
339
				       rtd->dma_dscr_idx_1, asic_type);
340
	/* Configure ACP SRAM <-> I2S DMA descriptors */
341
	set_acp_to_i2s_dma_descriptors(acp_mmio, rtd->size,
342
				       rtd->direction, rtd->sram_bank,
343
				       rtd->destination, ch_acp_i2s,
344
				       rtd->dma_dscr_idx_2, asic_type);
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static void acp_dma_cap_channel_enable(void __iomem *acp_mmio,
				       u16 cap_channel)
{
	u32 val, ch_reg, imr_reg, res_reg;

	switch (cap_channel) {
	case CAP_CHANNEL1:
		ch_reg = mmACP_I2SMICSP_RER1;
		res_reg = mmACP_I2SMICSP_RCR1;
		imr_reg = mmACP_I2SMICSP_IMR1;
		break;
	case CAP_CHANNEL0:
	default:
		ch_reg = mmACP_I2SMICSP_RER0;
		res_reg = mmACP_I2SMICSP_RCR0;
		imr_reg = mmACP_I2SMICSP_IMR0;
		break;
	}
	val = acp_reg_read(acp_mmio,
			   mmACP_I2S_16BIT_RESOLUTION_EN);
	if (val & ACP_I2S_MIC_16BIT_RESOLUTION_EN) {
		acp_reg_write(0x0, acp_mmio, ch_reg);
		/* Set 16bit resolution on capture */
		acp_reg_write(0x2, acp_mmio, res_reg);
	}
	val = acp_reg_read(acp_mmio, imr_reg);
	val &= ~ACP_I2SMICSP_IMR1__I2SMICSP_RXDAM_MASK;
	val &= ~ACP_I2SMICSP_IMR1__I2SMICSP_RXFOM_MASK;
	acp_reg_write(val, acp_mmio, imr_reg);
	acp_reg_write(0x1, acp_mmio, ch_reg);
}

static void acp_dma_cap_channel_disable(void __iomem *acp_mmio,
					u16 cap_channel)
{
	u32 val, ch_reg, imr_reg;

	switch (cap_channel) {
	case CAP_CHANNEL1:
		imr_reg = mmACP_I2SMICSP_IMR1;
		ch_reg = mmACP_I2SMICSP_RER1;
		break;
	case CAP_CHANNEL0:
	default:
		imr_reg = mmACP_I2SMICSP_IMR0;
		ch_reg = mmACP_I2SMICSP_RER0;
		break;
	}
	val = acp_reg_read(acp_mmio, imr_reg);
	val |= ACP_I2SMICSP_IMR1__I2SMICSP_RXDAM_MASK;
	val |= ACP_I2SMICSP_IMR1__I2SMICSP_RXFOM_MASK;
	acp_reg_write(val, acp_mmio, imr_reg);
	acp_reg_write(0x0, acp_mmio, ch_reg);
}

402
/* Start a given DMA channel transfer */
403
static void acp_dma_start(void __iomem *acp_mmio, u16 ch_num)
404 405 406 407 408 409 410 411 412
{
	u32 dma_ctrl;

	/* read the dma control register and disable the channel run field */
	dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);

	/* Invalidating the DAGB cache */
	acp_reg_write(1, acp_mmio, mmACP_DAGB_ATU_CTRL);

413 414
	/*
	 * configure the DMA channel and start the DMA transfer
415 416 417 418 419 420 421
	 * set dmachrun bit to start the transfer and enable the
	 * interrupt on completion of the dma transfer
	 */
	dma_ctrl |= ACP_DMA_CNTL_0__DMAChRun_MASK;

	switch (ch_num) {
	case ACP_TO_I2S_DMA_CH_NUM:
422
	case I2S_TO_ACP_DMA_CH_NUM:
423
	case ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM:
424
	case I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM:
425 426 427 428 429 430 431
		dma_ctrl |= ACP_DMA_CNTL_0__DMAChIOCEn_MASK;
		break;
	default:
		dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChIOCEn_MASK;
		break;
	}

432 433
	/* circular for both DMA channel */
	dma_ctrl |= ACP_DMA_CNTL_0__Circular_DMA_En_MASK;
434 435 436 437 438 439 440 441 442 443 444 445 446

	acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
}

/* Stop a given DMA channel transfer */
static int acp_dma_stop(void __iomem *acp_mmio, u8 ch_num)
{
	u32 dma_ctrl;
	u32 dma_ch_sts;
	u32 count = ACP_DMA_RESET_TIME;

	dma_ctrl = acp_reg_read(acp_mmio, mmACP_DMA_CNTL_0 + ch_num);

447 448
	/*
	 * clear the dma control register fields before writing zero
449
	 * in reset bit
450
	 */
451 452 453 454 455 456 457
	dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRun_MASK;
	dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChIOCEn_MASK;

	acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
	dma_ch_sts = acp_reg_read(acp_mmio, mmACP_DMA_CH_STS);

	if (dma_ch_sts & BIT(ch_num)) {
458 459 460 461
		/*
		 * set the reset bit for this channel to stop the dma
		 *  transfer
		 */
462 463 464 465 466 467 468 469
		dma_ctrl |= ACP_DMA_CNTL_0__DMAChRst_MASK;
		acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0 + ch_num);
	}

	/* check the channel status bit for some time and return the status */
	while (true) {
		dma_ch_sts = acp_reg_read(acp_mmio, mmACP_DMA_CH_STS);
		if (!(dma_ch_sts & BIT(ch_num))) {
470 471 472 473
			/*
			 * clear the reset flag after successfully stopping
			 * the dma transfer and break from the loop
			 */
474 475 476
			dma_ctrl &= ~ACP_DMA_CNTL_0__DMAChRst_MASK;

			acp_reg_write(dma_ctrl, acp_mmio, mmACP_DMA_CNTL_0
477
				      + ch_num);
478 479 480 481 482 483 484 485 486 487 488
			break;
		}
		if (--count == 0) {
			pr_err("Failed to stop ACP DMA channel : %d\n", ch_num);
			return -ETIMEDOUT;
		}
		udelay(100);
	}
	return 0;
}

489
static void acp_set_sram_bank_state(void __iomem *acp_mmio, u16 bank,
490
				    bool power_on)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
{
	u32 val, req_reg, sts_reg, sts_reg_mask;
	u32 loops = 1000;

	if (bank < 32) {
		req_reg = mmACP_MEM_SHUT_DOWN_REQ_LO;
		sts_reg = mmACP_MEM_SHUT_DOWN_STS_LO;
		sts_reg_mask = 0xFFFFFFFF;

	} else {
		bank -= 32;
		req_reg = mmACP_MEM_SHUT_DOWN_REQ_HI;
		sts_reg = mmACP_MEM_SHUT_DOWN_STS_HI;
		sts_reg_mask = 0x0000FFFF;
	}

	val = acp_reg_read(acp_mmio, req_reg);
	if (val & (1 << bank)) {
		/* bank is in off state */
		if (power_on == true)
			/* request to on */
			val &= ~(1 << bank);
		else
			/* request to off */
			return;
	} else {
		/* bank is in on state */
		if (power_on == false)
			/* request to off */
			val |= 1 << bank;
		else
			/* request to on */
			return;
	}
	acp_reg_write(val, acp_mmio, req_reg);

	while (acp_reg_read(acp_mmio, sts_reg) != sts_reg_mask) {
		if (!loops--) {
			pr_err("ACP SRAM bank %d state change failed\n", bank);
			break;
		}
		cpu_relax();
	}
}

536
/* Initialize and bring ACP hardware to default state. */
537
static int acp_init(void __iomem *acp_mmio, u32 asic_type)
538
{
539
	u16 bank;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	u32 val, count, sram_pte_offset;

	/* Assert Soft reset of ACP */
	val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);

	val |= ACP_SOFT_RESET__SoftResetAud_MASK;
	acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET);

	count = ACP_SOFT_RESET_DONE_TIME_OUT_VALUE;
	while (true) {
		val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
		if (ACP_SOFT_RESET__SoftResetAudDone_MASK ==
		    (val & ACP_SOFT_RESET__SoftResetAudDone_MASK))
			break;
		if (--count == 0) {
			pr_err("Failed to reset ACP\n");
			return -ETIMEDOUT;
		}
		udelay(100);
	}

	/* Enable clock to ACP and wait until the clock is enabled */
	val = acp_reg_read(acp_mmio, mmACP_CONTROL);
	val = val | ACP_CONTROL__ClkEn_MASK;
	acp_reg_write(val, acp_mmio, mmACP_CONTROL);

	count = ACP_CLOCK_EN_TIME_OUT_VALUE;

	while (true) {
		val = acp_reg_read(acp_mmio, mmACP_STATUS);
570
		if (val & (u32)0x1)
571 572 573 574 575 576 577 578 579 580 581 582 583
			break;
		if (--count == 0) {
			pr_err("Failed to reset ACP\n");
			return -ETIMEDOUT;
		}
		udelay(100);
	}

	/* Deassert the SOFT RESET flags */
	val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
	val &= ~ACP_SOFT_RESET__SoftResetAud_MASK;
	acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET);

584 585 586 587 588 589 590
	/* For BT instance change pins from UART to BT */
	if (!bt_uart_enable) {
		val = acp_reg_read(acp_mmio, mmACP_BT_UART_PAD_SEL);
		val |= ACP_BT_UART_PAD_SELECT_MASK;
		acp_reg_write(val, acp_mmio, mmACP_BT_UART_PAD_SEL);
	}

591 592
	/* initiailize Onion control DAGB register */
	acp_reg_write(ACP_ONION_CNTL_DEFAULT, acp_mmio,
593
		      mmACP_AXI2DAGB_ONION_CNTL);
594 595 596

	/* initiailize Garlic control DAGB registers */
	acp_reg_write(ACP_GARLIC_CNTL_DEFAULT, acp_mmio,
597
		      mmACP_AXI2DAGB_GARLIC_CNTL);
598 599 600 601 602 603 604

	sram_pte_offset = ACP_DAGB_GRP_SRAM_BASE_ADDRESS |
			ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBSnoopSel_MASK |
			ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBTargetMemSel_MASK |
			ACP_DAGB_BASE_ADDR_GRP_1__AXI2DAGBGrpEnable_MASK;
	acp_reg_write(sram_pte_offset,  acp_mmio, mmACP_DAGB_BASE_ADDR_GRP_1);
	acp_reg_write(ACP_PAGE_SIZE_4K_ENABLE, acp_mmio,
605
		      mmACP_DAGB_PAGE_SIZE_GRP_1);
606 607

	acp_reg_write(ACP_SRAM_BASE_ADDRESS, acp_mmio,
608
		      mmACP_DMA_DESC_BASE_ADDR);
609 610 611 612

	/* Num of descriptiors in SRAM 0x4, means 256 descriptors;(64 * 4) */
	acp_reg_write(0x4, acp_mmio, mmACP_DMA_DESC_MAX_NUM_DSCR);
	acp_reg_write(ACP_EXTERNAL_INTR_CNTL__DMAIOCMask_MASK,
613
		      acp_mmio, mmACP_EXTERNAL_INTR_CNTL);
614

615 616
       /*
	* When ACP_TILE_P1 is turned on, all SRAM banks get turned on.
617 618
	* Now, turn off all of them. This can't be done in 'poweron' of
	* ACP pm domain, as this requires ACP to be initialized.
619 620 621
	* For Stoney, Memory gating is disabled,i.e SRAM Banks
	* won't be turned off. The default state for SRAM banks is ON.
	* Setting SRAM bank state code skipped for STONEY platform.
622
	*/
623 624 625 626
	if (asic_type != CHIP_STONEY) {
		for (bank = 1; bank < 48; bank++)
			acp_set_sram_bank_state(acp_mmio, bank, false);
	}
627 628 629
	return 0;
}

630
/* Deinitialize ACP */
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static int acp_deinit(void __iomem *acp_mmio)
{
	u32 val;
	u32 count;

	/* Assert Soft reset of ACP */
	val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);

	val |= ACP_SOFT_RESET__SoftResetAud_MASK;
	acp_reg_write(val, acp_mmio, mmACP_SOFT_RESET);

	count = ACP_SOFT_RESET_DONE_TIME_OUT_VALUE;
	while (true) {
		val = acp_reg_read(acp_mmio, mmACP_SOFT_RESET);
		if (ACP_SOFT_RESET__SoftResetAudDone_MASK ==
		    (val & ACP_SOFT_RESET__SoftResetAudDone_MASK))
			break;
		if (--count == 0) {
			pr_err("Failed to reset ACP\n");
			return -ETIMEDOUT;
		}
		udelay(100);
	}
654
	/* Disable ACP clock */
655 656 657 658 659 660 661 662
	val = acp_reg_read(acp_mmio, mmACP_CONTROL);
	val &= ~ACP_CONTROL__ClkEn_MASK;
	acp_reg_write(val, acp_mmio, mmACP_CONTROL);

	count = ACP_CLOCK_EN_TIME_OUT_VALUE;

	while (true) {
		val = acp_reg_read(acp_mmio, mmACP_STATUS);
663
		if (!(val & (u32)0x1))
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
			break;
		if (--count == 0) {
			pr_err("Failed to reset ACP\n");
			return -ETIMEDOUT;
		}
		udelay(100);
	}
	return 0;
}

/* ACP DMA irq handler routine for playback, capture usecases */
static irqreturn_t dma_irq_handler(int irq, void *arg)
{
	u32 intr_flag, ext_intr_status;
	struct audio_drv_data *irq_data;
	void __iomem *acp_mmio;
	struct device *dev = arg;
	bool valid_irq = false;

	irq_data = dev_get_drvdata(dev);
	acp_mmio = irq_data->acp_mmio;

	ext_intr_status = acp_reg_read(acp_mmio, mmACP_EXTERNAL_INTR_STAT);
	intr_flag = (((ext_intr_status &
		      ACP_EXTERNAL_INTR_STAT__DMAIOCStat_MASK) >>
		     ACP_EXTERNAL_INTR_STAT__DMAIOCStat__SHIFT));

	if ((intr_flag & BIT(ACP_TO_I2S_DMA_CH_NUM)) != 0) {
		valid_irq = true;
693
		snd_pcm_period_elapsed(irq_data->play_i2ssp_stream);
694
		acp_reg_write((intr_flag & BIT(ACP_TO_I2S_DMA_CH_NUM)) << 16,
695
			      acp_mmio, mmACP_EXTERNAL_INTR_STAT);
696 697
	}

698 699 700 701 702 703 704 705
	if ((intr_flag & BIT(ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM)) != 0) {
		valid_irq = true;
		snd_pcm_period_elapsed(irq_data->play_i2sbt_stream);
		acp_reg_write((intr_flag &
			      BIT(ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM)) << 16,
			      acp_mmio, mmACP_EXTERNAL_INTR_STAT);
	}

706
	if ((intr_flag & BIT(I2S_TO_ACP_DMA_CH_NUM)) != 0) {
707
		valid_irq = true;
708
		snd_pcm_period_elapsed(irq_data->capture_i2ssp_stream);
709
		acp_reg_write((intr_flag & BIT(I2S_TO_ACP_DMA_CH_NUM)) << 16,
710
			      acp_mmio, mmACP_EXTERNAL_INTR_STAT);
711 712
	}

713
	if ((intr_flag & BIT(I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM)) != 0) {
714
		valid_irq = true;
715
		snd_pcm_period_elapsed(irq_data->capture_i2sbt_stream);
716
		acp_reg_write((intr_flag &
717
			      BIT(I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM)) << 16,
718 719 720
			      acp_mmio, mmACP_EXTERNAL_INTR_STAT);
	}

721 722 723 724 725 726 727 728
	if (valid_irq)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
}

static int acp_dma_open(struct snd_pcm_substream *substream)
{
729
	u16 bank;
730 731 732
	int ret = 0;
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct snd_soc_pcm_runtime *prtd = substream->private_data;
733 734
	struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd,
								    DRV_NAME);
735
	struct audio_drv_data *intr_data = dev_get_drvdata(component->dev);
736 737
	struct audio_substream_data *adata =
		kzalloc(sizeof(struct audio_substream_data), GFP_KERNEL);
738
	if (!adata)
739 740
		return -ENOMEM;

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		switch (intr_data->asic_type) {
		case CHIP_STONEY:
			runtime->hw = acp_st_pcm_hardware_playback;
			break;
		default:
			runtime->hw = acp_pcm_hardware_playback;
		}
	} else {
		switch (intr_data->asic_type) {
		case CHIP_STONEY:
			runtime->hw = acp_st_pcm_hardware_capture;
			break;
		default:
			runtime->hw = acp_pcm_hardware_capture;
		}
	}
758 759 760 761

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);
	if (ret < 0) {
762
		dev_err(component->dev, "set integer constraint failed\n");
D
Dan Carpenter 已提交
763
		kfree(adata);
764 765 766 767 768 769
		return ret;
	}

	adata->acp_mmio = intr_data->acp_mmio;
	runtime->private_data = adata;

770 771
	/*
	 * Enable ACP irq, when neither playback or capture streams are
772 773 774
	 * active by the time when a new stream is being opened.
	 * This enablement is not required for another stream, if current
	 * stream is not closed
775
	 */
776 777
	if (!intr_data->play_i2ssp_stream && !intr_data->capture_i2ssp_stream &&
	    !intr_data->play_i2sbt_stream && !intr_data->capture_i2sbt_stream)
778 779
		acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);

780
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
781 782
		/*
		 * For Stoney, Memory gating is disabled,i.e SRAM Banks
783 784 785 786 787 788 789 790
		 * won't be turned off. The default state for SRAM banks is ON.
		 * Setting SRAM bank state code skipped for STONEY platform.
		 */
		if (intr_data->asic_type != CHIP_STONEY) {
			for (bank = 1; bank <= 4; bank++)
				acp_set_sram_bank_state(intr_data->acp_mmio,
							bank, true);
		}
791
	} else {
792 793 794 795 796
		if (intr_data->asic_type != CHIP_STONEY) {
			for (bank = 5; bank <= 8; bank++)
				acp_set_sram_bank_state(intr_data->acp_mmio,
							bank, true);
		}
797
	}
798 799 800 801 802 803 804 805 806

	return 0;
}

static int acp_dma_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params)
{
	int status;
	uint64_t size;
807
	u32 val = 0;
808 809 810
	struct page *pg;
	struct snd_pcm_runtime *runtime;
	struct audio_substream_data *rtd;
811
	struct snd_soc_pcm_runtime *prtd = substream->private_data;
812 813
	struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd,
								    DRV_NAME);
814
	struct audio_drv_data *adata = dev_get_drvdata(component->dev);
815 816
	struct snd_soc_card *card = prtd->card;
	struct acp_platform_info *pinfo = snd_soc_card_get_drvdata(card);
817 818 819 820 821 822 823

	runtime = substream->runtime;
	rtd = runtime->private_data;

	if (WARN_ON(!rtd))
		return -EINVAL;

824
	if (pinfo) {
825
		rtd->i2s_instance = pinfo->i2s_instance;
826 827
		rtd->capture_channel = pinfo->capture_channel;
	}
828
	if (adata->asic_type == CHIP_STONEY) {
829 830
		val = acp_reg_read(adata->acp_mmio,
				   mmACP_I2S_16BIT_RESOLUTION_EN);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
			switch (rtd->i2s_instance) {
			case I2S_BT_INSTANCE:
				val |= ACP_I2S_BT_16BIT_RESOLUTION_EN;
				break;
			case I2S_SP_INSTANCE:
			default:
				val |= ACP_I2S_SP_16BIT_RESOLUTION_EN;
			}
		} else {
			switch (rtd->i2s_instance) {
			case I2S_BT_INSTANCE:
				val |= ACP_I2S_BT_16BIT_RESOLUTION_EN;
				break;
			case I2S_SP_INSTANCE:
			default:
				val |= ACP_I2S_MIC_16BIT_RESOLUTION_EN;
			}
		}
850 851
		acp_reg_write(val, adata->acp_mmio,
			      mmACP_I2S_16BIT_RESOLUTION_EN);
852
	}
853 854

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
855 856 857 858 859 860 861 862 863 864 865 866 867 868
		switch (rtd->i2s_instance) {
		case I2S_BT_INSTANCE:
			rtd->pte_offset = ACP_ST_BT_PLAYBACK_PTE_OFFSET;
			rtd->ch1 = SYSRAM_TO_ACP_BT_INSTANCE_CH_NUM;
			rtd->ch2 = ACP_TO_I2S_DMA_BT_INSTANCE_CH_NUM;
			rtd->sram_bank = ACP_SRAM_BANK_3_ADDRESS;
			rtd->destination = TO_BLUETOOTH;
			rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH8;
			rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH9;
			rtd->byte_cnt_high_reg_offset =
					mmACP_I2S_BT_TRANSMIT_BYTE_CNT_HIGH;
			rtd->byte_cnt_low_reg_offset =
					mmACP_I2S_BT_TRANSMIT_BYTE_CNT_LOW;
			adata->play_i2sbt_stream = substream;
869
			break;
870
		case I2S_SP_INSTANCE:
871
		default:
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
			switch (adata->asic_type) {
			case CHIP_STONEY:
				rtd->pte_offset = ACP_ST_PLAYBACK_PTE_OFFSET;
				break;
			default:
				rtd->pte_offset = ACP_PLAYBACK_PTE_OFFSET;
			}
			rtd->ch1 = SYSRAM_TO_ACP_CH_NUM;
			rtd->ch2 = ACP_TO_I2S_DMA_CH_NUM;
			rtd->sram_bank = ACP_SRAM_BANK_1_ADDRESS;
			rtd->destination = TO_ACP_I2S_1;
			rtd->dma_dscr_idx_1 = PLAYBACK_START_DMA_DESCR_CH12;
			rtd->dma_dscr_idx_2 = PLAYBACK_START_DMA_DESCR_CH13;
			rtd->byte_cnt_high_reg_offset =
					mmACP_I2S_TRANSMIT_BYTE_CNT_HIGH;
			rtd->byte_cnt_low_reg_offset =
					mmACP_I2S_TRANSMIT_BYTE_CNT_LOW;
			adata->play_i2ssp_stream = substream;
890
		}
891
	} else {
892 893 894
		switch (rtd->i2s_instance) {
		case I2S_BT_INSTANCE:
			rtd->pte_offset = ACP_ST_BT_CAPTURE_PTE_OFFSET;
895 896
			rtd->ch1 = I2S_TO_ACP_DMA_BT_INSTANCE_CH_NUM;
			rtd->ch2 = ACP_TO_SYSRAM_BT_INSTANCE_CH_NUM;
897 898 899 900 901 902 903 904 905
			rtd->sram_bank = ACP_SRAM_BANK_4_ADDRESS;
			rtd->destination = FROM_BLUETOOTH;
			rtd->dma_dscr_idx_1 = CAPTURE_START_DMA_DESCR_CH10;
			rtd->dma_dscr_idx_2 = CAPTURE_START_DMA_DESCR_CH11;
			rtd->byte_cnt_high_reg_offset =
					mmACP_I2S_BT_RECEIVE_BYTE_CNT_HIGH;
			rtd->byte_cnt_low_reg_offset =
					mmACP_I2S_BT_RECEIVE_BYTE_CNT_LOW;
			adata->capture_i2sbt_stream = substream;
906
			break;
907
		case I2S_SP_INSTANCE:
908 909
		default:
			rtd->pte_offset = ACP_CAPTURE_PTE_OFFSET;
910 911
			rtd->ch1 = I2S_TO_ACP_DMA_CH_NUM;
			rtd->ch2 = ACP_TO_SYSRAM_CH_NUM;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
			switch (adata->asic_type) {
			case CHIP_STONEY:
				rtd->pte_offset = ACP_ST_CAPTURE_PTE_OFFSET;
				rtd->sram_bank = ACP_SRAM_BANK_2_ADDRESS;
				break;
			default:
				rtd->pte_offset = ACP_CAPTURE_PTE_OFFSET;
				rtd->sram_bank = ACP_SRAM_BANK_5_ADDRESS;
			}
			rtd->destination = FROM_ACP_I2S_1;
			rtd->dma_dscr_idx_1 = CAPTURE_START_DMA_DESCR_CH14;
			rtd->dma_dscr_idx_2 = CAPTURE_START_DMA_DESCR_CH15;
			rtd->byte_cnt_high_reg_offset =
					mmACP_I2S_RECEIVED_BYTE_CNT_HIGH;
			rtd->byte_cnt_low_reg_offset =
					mmACP_I2S_RECEIVED_BYTE_CNT_LOW;
			adata->capture_i2ssp_stream = substream;
929
		}
930 931
	}

932 933 934 935 936 937 938 939
	size = params_buffer_bytes(params);
	status = snd_pcm_lib_malloc_pages(substream, size);
	if (status < 0)
		return status;

	memset(substream->runtime->dma_area, 0, params_buffer_bytes(params));
	pg = virt_to_page(substream->dma_buffer.area);

940
	if (pg) {
941
		acp_set_sram_bank_state(rtd->acp_mmio, 0, true);
942 943 944 945 946 947 948 949 950 951
		/* Save for runtime private data */
		rtd->pg = pg;
		rtd->order = get_order(size);

		/* Fill the page table entries in ACP SRAM */
		rtd->pg = pg;
		rtd->size = size;
		rtd->num_of_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
		rtd->direction = substream->stream;

952
		config_acp_dma(rtd->acp_mmio, rtd, adata->asic_type);
953 954 955 956 957 958 959 960 961 962 963 964
		status = 0;
	} else {
		status = -ENOMEM;
	}
	return status;
}

static int acp_dma_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

965
static u64 acp_get_byte_count(struct audio_substream_data *rtd)
966
{
967
	union acp_dma_count byte_count;
968

969 970 971 972 973
	byte_count.bcount.high = acp_reg_read(rtd->acp_mmio,
					      rtd->byte_cnt_high_reg_offset);
	byte_count.bcount.low  = acp_reg_read(rtd->acp_mmio,
					      rtd->byte_cnt_low_reg_offset);
	return byte_count.bytescount;
974 975
}

976 977
static snd_pcm_uframes_t acp_dma_pointer(struct snd_pcm_substream *substream)
{
978
	u32 buffersize;
979
	u32 pos = 0;
980
	u64 bytescount = 0;
981 982 983 984

	struct snd_pcm_runtime *runtime = substream->runtime;
	struct audio_substream_data *rtd = runtime->private_data;

985 986 987
	if (!rtd)
		return -EINVAL;

988
	buffersize = frames_to_bytes(runtime, runtime->buffer_size);
989
	bytescount = acp_get_byte_count(rtd);
990

991
	bytescount -= rtd->bytescount;
992
	pos = do_div(bytescount, buffersize);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	return bytes_to_frames(runtime, pos);
}

static int acp_dma_mmap(struct snd_pcm_substream *substream,
			struct vm_area_struct *vma)
{
	return snd_pcm_lib_default_mmap(substream, vma);
}

static int acp_dma_prepare(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct audio_substream_data *rtd = runtime->private_data;
1006
	u16 ch_acp_sysmem, ch_acp_i2s;
1007

1008 1009
	if (!rtd)
		return -EINVAL;
1010

1011 1012 1013 1014 1015 1016 1017
	if (rtd->direction == SNDRV_PCM_STREAM_PLAYBACK) {
		ch_acp_sysmem = rtd->ch1;
		ch_acp_i2s = rtd->ch2;
	} else {
		ch_acp_i2s = rtd->ch1;
		ch_acp_sysmem = rtd->ch2;
	}
1018
	config_acp_dma_channel(rtd->acp_mmio,
1019
			       ch_acp_sysmem,
1020 1021 1022
			       rtd->dma_dscr_idx_1,
			       NUM_DSCRS_PER_CHANNEL, 0);
	config_acp_dma_channel(rtd->acp_mmio,
1023
			       ch_acp_i2s,
1024 1025
			       rtd->dma_dscr_idx_2,
			       NUM_DSCRS_PER_CHANNEL, 0);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return 0;
}

static int acp_dma_trigger(struct snd_pcm_substream *substream, int cmd)
{
	int ret;

	struct snd_pcm_runtime *runtime = substream->runtime;
	struct audio_substream_data *rtd = runtime->private_data;

	if (!rtd)
		return -EINVAL;
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_RESUME:
1042
		rtd->bytescount = acp_get_byte_count(rtd);
1043
		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			if (rtd->capture_channel == CAP_CHANNEL0) {
				acp_dma_cap_channel_disable(rtd->acp_mmio,
							    CAP_CHANNEL1);
				acp_dma_cap_channel_enable(rtd->acp_mmio,
							   CAP_CHANNEL0);
			}
			if (rtd->capture_channel == CAP_CHANNEL1) {
				acp_dma_cap_channel_disable(rtd->acp_mmio,
							    CAP_CHANNEL0);
				acp_dma_cap_channel_enable(rtd->acp_mmio,
							   CAP_CHANNEL1);
			}
1056
		}
1057 1058
		acp_dma_start(rtd->acp_mmio, rtd->ch1);
		acp_dma_start(rtd->acp_mmio, rtd->ch2);
1059 1060 1061 1062 1063
		ret = 0;
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_SUSPEND:
D
Daniel Kurtz 已提交
1064 1065
		acp_dma_stop(rtd->acp_mmio, rtd->ch2);
		ret = acp_dma_stop(rtd->acp_mmio, rtd->ch1);
1066 1067 1068 1069 1070 1071 1072 1073 1074
		break;
	default:
		ret = -EINVAL;
	}
	return ret;
}

static int acp_dma_new(struct snd_soc_pcm_runtime *rtd)
{
1075
	int ret;
1076 1077
	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd,
								    DRV_NAME);
1078
	struct audio_drv_data *adata = dev_get_drvdata(component->dev);
1079 1080 1081 1082

	switch (adata->asic_type) {
	case CHIP_STONEY:
		ret = snd_pcm_lib_preallocate_pages_for_all(rtd->pcm,
1083 1084 1085
							    SNDRV_DMA_TYPE_DEV,
							    NULL, ST_MIN_BUFFER,
							    ST_MAX_BUFFER);
1086 1087 1088
		break;
	default:
		ret = snd_pcm_lib_preallocate_pages_for_all(rtd->pcm,
1089 1090 1091
							    SNDRV_DMA_TYPE_DEV,
							    NULL, MIN_BUFFER,
							    MAX_BUFFER);
1092 1093 1094
		break;
	}
	if (ret < 0)
1095
		dev_err(component->dev,
1096
			"buffer preallocation failure error:%d\n", ret);
1097
	return ret;
1098 1099 1100 1101
}

static int acp_dma_close(struct snd_pcm_substream *substream)
{
1102
	u16 bank;
1103 1104 1105
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct audio_substream_data *rtd = runtime->private_data;
	struct snd_soc_pcm_runtime *prtd = substream->private_data;
1106 1107
	struct snd_soc_component *component = snd_soc_rtdcom_lookup(prtd,
								    DRV_NAME);
1108
	struct audio_drv_data *adata = dev_get_drvdata(component->dev);
1109

1110
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		switch (rtd->i2s_instance) {
		case I2S_BT_INSTANCE:
			adata->play_i2sbt_stream = NULL;
			break;
		case I2S_SP_INSTANCE:
		default:
			adata->play_i2ssp_stream = NULL;
			/*
			 * For Stoney, Memory gating is disabled,i.e SRAM Banks
			 * won't be turned off. The default state for SRAM banks
			 * is ON.Setting SRAM bank state code skipped for STONEY
			 * platform. Added condition checks for Carrizo platform
			 * only.
			 */
			if (adata->asic_type != CHIP_STONEY) {
				for (bank = 1; bank <= 4; bank++)
					acp_set_sram_bank_state(adata->acp_mmio,
								bank, false);
			}
1130 1131
		}
	} else  {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		switch (rtd->i2s_instance) {
		case I2S_BT_INSTANCE:
			adata->capture_i2sbt_stream = NULL;
			break;
		case I2S_SP_INSTANCE:
		default:
			adata->capture_i2ssp_stream = NULL;
			if (adata->asic_type != CHIP_STONEY) {
				for (bank = 5; bank <= 8; bank++)
					acp_set_sram_bank_state(adata->acp_mmio,
								bank, false);
			}
1144
		}
1145
	}
1146

1147 1148
	/*
	 * Disable ACP irq, when the current stream is being closed and
1149
	 * another stream is also not active.
1150
	 */
1151 1152
	if (!adata->play_i2ssp_stream && !adata->capture_i2ssp_stream &&
	    !adata->play_i2sbt_stream && !adata->capture_i2sbt_stream)
1153
		acp_reg_write(0, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
1154
	kfree(rtd);
1155 1156 1157
	return 0;
}

1158
static const struct snd_pcm_ops acp_dma_ops = {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	.open = acp_dma_open,
	.close = acp_dma_close,
	.ioctl = snd_pcm_lib_ioctl,
	.hw_params = acp_dma_hw_params,
	.hw_free = acp_dma_hw_free,
	.trigger = acp_dma_trigger,
	.pointer = acp_dma_pointer,
	.mmap = acp_dma_mmap,
	.prepare = acp_dma_prepare,
};

1170
static const struct snd_soc_component_driver acp_asoc_platform = {
1171
	.name = DRV_NAME,
1172 1173 1174 1175 1176 1177 1178 1179 1180
	.ops = &acp_dma_ops,
	.pcm_new = acp_dma_new,
};

static int acp_audio_probe(struct platform_device *pdev)
{
	int status;
	struct audio_drv_data *audio_drv_data;
	struct resource *res;
1181
	const u32 *pdata = pdev->dev.platform_data;
1182

1183 1184 1185 1186 1187
	if (!pdata) {
		dev_err(&pdev->dev, "Missing platform data\n");
		return -ENODEV;
	}

1188
	audio_drv_data = devm_kzalloc(&pdev->dev, sizeof(struct audio_drv_data),
1189 1190
				      GFP_KERNEL);
	if (!audio_drv_data)
1191 1192 1193 1194
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	audio_drv_data->acp_mmio = devm_ioremap_resource(&pdev->dev, res);
1195 1196
	if (IS_ERR(audio_drv_data->acp_mmio))
		return PTR_ERR(audio_drv_data->acp_mmio);
1197

1198 1199
	/*
	 * The following members gets populated in device 'open'
1200 1201 1202 1203
	 * function. Till then interrupts are disabled in 'acp_init'
	 * and device doesn't generate any interrupts.
	 */

1204 1205
	audio_drv_data->play_i2ssp_stream = NULL;
	audio_drv_data->capture_i2ssp_stream = NULL;
1206 1207
	audio_drv_data->play_i2sbt_stream = NULL;
	audio_drv_data->capture_i2sbt_stream = NULL;
1208

1209
	audio_drv_data->asic_type =  *pdata;
1210 1211 1212 1213 1214 1215 1216 1217

	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		dev_err(&pdev->dev, "IORESOURCE_IRQ FAILED\n");
		return -ENODEV;
	}

	status = devm_request_irq(&pdev->dev, res->start, dma_irq_handler,
1218
				  0, "ACP_IRQ", &pdev->dev);
1219 1220 1221 1222 1223 1224 1225 1226
	if (status) {
		dev_err(&pdev->dev, "ACP IRQ request failed\n");
		return status;
	}

	dev_set_drvdata(&pdev->dev, audio_drv_data);

	/* Initialize the ACP */
1227 1228 1229 1230 1231
	status = acp_init(audio_drv_data->acp_mmio, audio_drv_data->asic_type);
	if (status) {
		dev_err(&pdev->dev, "ACP Init failed status:%d\n", status);
		return status;
	}
1232

1233
	status = devm_snd_soc_register_component(&pdev->dev,
1234
						 &acp_asoc_platform, NULL, 0);
1235 1236 1237 1238 1239
	if (status != 0) {
		dev_err(&pdev->dev, "Fail to register ALSA platform device\n");
		return status;
	}

1240 1241 1242 1243
	pm_runtime_set_autosuspend_delay(&pdev->dev, 10000);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

1244 1245 1246 1247 1248
	return status;
}

static int acp_audio_remove(struct platform_device *pdev)
{
1249
	int status;
1250 1251
	struct audio_drv_data *adata = dev_get_drvdata(&pdev->dev);

1252 1253 1254
	status = acp_deinit(adata->acp_mmio);
	if (status)
		dev_err(&pdev->dev, "ACP Deinit failed status:%d\n", status);
1255
	pm_runtime_disable(&pdev->dev);
1256 1257 1258 1259

	return 0;
}

1260 1261
static int acp_pcm_resume(struct device *dev)
{
1262
	u16 bank;
1263
	int status;
1264
	struct audio_substream_data *rtd;
1265 1266
	struct audio_drv_data *adata = dev_get_drvdata(dev);

1267 1268 1269 1270 1271
	status = acp_init(adata->acp_mmio, adata->asic_type);
	if (status) {
		dev_err(dev, "ACP Init failed status:%d\n", status);
		return status;
	}
1272

1273
	if (adata->play_i2ssp_stream && adata->play_i2ssp_stream->runtime) {
1274 1275
		/*
		 * For Stoney, Memory gating is disabled,i.e SRAM Banks
1276 1277 1278 1279 1280 1281
		 * won't be turned off. The default state for SRAM banks is ON.
		 * Setting SRAM bank state code skipped for STONEY platform.
		 */
		if (adata->asic_type != CHIP_STONEY) {
			for (bank = 1; bank <= 4; bank++)
				acp_set_sram_bank_state(adata->acp_mmio, bank,
1282
							true);
1283
		}
1284 1285
		rtd = adata->play_i2ssp_stream->runtime->private_data;
		config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
1286
	}
1287 1288
	if (adata->capture_i2ssp_stream &&
	    adata->capture_i2ssp_stream->runtime) {
1289 1290 1291
		if (adata->asic_type != CHIP_STONEY) {
			for (bank = 5; bank <= 8; bank++)
				acp_set_sram_bank_state(adata->acp_mmio, bank,
1292
							true);
1293
		}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		rtd =  adata->capture_i2ssp_stream->runtime->private_data;
		config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
	}
	if (adata->asic_type != CHIP_CARRIZO) {
		if (adata->play_i2sbt_stream &&
		    adata->play_i2sbt_stream->runtime) {
			rtd = adata->play_i2sbt_stream->runtime->private_data;
			config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
		}
		if (adata->capture_i2sbt_stream &&
		    adata->capture_i2sbt_stream->runtime) {
			rtd = adata->capture_i2sbt_stream->runtime->private_data;
			config_acp_dma(adata->acp_mmio, rtd, adata->asic_type);
		}
1308
	}
1309 1310 1311 1312 1313 1314
	acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
	return 0;
}

static int acp_pcm_runtime_suspend(struct device *dev)
{
1315
	int status;
1316 1317
	struct audio_drv_data *adata = dev_get_drvdata(dev);

1318 1319 1320
	status = acp_deinit(adata->acp_mmio);
	if (status)
		dev_err(dev, "ACP Deinit failed status:%d\n", status);
1321 1322 1323 1324 1325 1326
	acp_reg_write(0, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
	return 0;
}

static int acp_pcm_runtime_resume(struct device *dev)
{
1327
	int status;
1328 1329
	struct audio_drv_data *adata = dev_get_drvdata(dev);

1330 1331 1332 1333 1334
	status = acp_init(adata->acp_mmio, adata->asic_type);
	if (status) {
		dev_err(dev, "ACP Init failed status:%d\n", status);
		return status;
	}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	acp_reg_write(1, adata->acp_mmio, mmACP_EXTERNAL_INTR_ENB);
	return 0;
}

static const struct dev_pm_ops acp_pm_ops = {
	.resume = acp_pcm_resume,
	.runtime_suspend = acp_pcm_runtime_suspend,
	.runtime_resume = acp_pcm_runtime_resume,
};

1345 1346 1347 1348
static struct platform_driver acp_dma_driver = {
	.probe = acp_audio_probe,
	.remove = acp_audio_remove,
	.driver = {
1349
		.name = DRV_NAME,
1350
		.pm = &acp_pm_ops,
1351 1352 1353 1354 1355
	},
};

module_platform_driver(acp_dma_driver);

1356
MODULE_AUTHOR("Vijendar.Mukunda@amd.com");
1357 1358 1359
MODULE_AUTHOR("Maruthi.Bayyavarapu@amd.com");
MODULE_DESCRIPTION("AMD ACP PCM Driver");
MODULE_LICENSE("GPL v2");
1360
MODULE_ALIAS("platform:"DRV_NAME);