ordered-data.c 30.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

#include <linux/slab.h>
7
#include <linux/blkdev.h>
8
#include <linux/writeback.h>
9
#include <linux/sched/mm.h>
10
#include "misc.h"
C
Chris Mason 已提交
11 12 13
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
14
#include "extent_io.h"
15
#include "disk-io.h"
16
#include "compression.h"
17
#include "delalloc-space.h"
18
#include "qgroup.h"
19
#include "subpage.h"
C
Chris Mason 已提交
20

21 22
static struct kmem_cache *btrfs_ordered_extent_cache;

23
static u64 entry_end(struct btrfs_ordered_extent *entry)
C
Chris Mason 已提交
24
{
25
	if (entry->file_offset + entry->num_bytes < entry->file_offset)
26
		return (u64)-1;
27
	return entry->file_offset + entry->num_bytes;
C
Chris Mason 已提交
28 29
}

C
Chris Mason 已提交
30 31 32
/* returns NULL if the insertion worked, or it returns the node it did find
 * in the tree
 */
33 34
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
				   struct rb_node *node)
C
Chris Mason 已提交
35
{
C
Chris Mason 已提交
36 37
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
38
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
39

C
Chris Mason 已提交
40
	while (*p) {
C
Chris Mason 已提交
41
		parent = *p;
42
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
43

44
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
45
			p = &(*p)->rb_left;
46
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
47 48 49 50 51 52 53 54 55 56
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

C
Chris Mason 已提交
57 58 59 60
/*
 * look for a given offset in the tree, and if it can't be found return the
 * first lesser offset
 */
61 62
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
				     struct rb_node **prev_ret)
C
Chris Mason 已提交
63
{
C
Chris Mason 已提交
64
	struct rb_node *n = root->rb_node;
C
Chris Mason 已提交
65
	struct rb_node *prev = NULL;
66 67 68
	struct rb_node *test;
	struct btrfs_ordered_extent *entry;
	struct btrfs_ordered_extent *prev_entry = NULL;
C
Chris Mason 已提交
69

C
Chris Mason 已提交
70
	while (n) {
71
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
72 73 74
		prev = n;
		prev_entry = entry;

75
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
76
			n = n->rb_left;
77
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
78 79 80 81 82 83 84
			n = n->rb_right;
		else
			return n;
	}
	if (!prev_ret)
		return NULL;

C
Chris Mason 已提交
85
	while (prev && file_offset >= entry_end(prev_entry)) {
86 87 88 89 90 91 92 93 94 95 96 97 98
		test = rb_next(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		if (file_offset < entry_end(prev_entry))
			break;

		prev = test;
	}
	if (prev)
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
				      rb_node);
C
Chris Mason 已提交
99
	while (prev && file_offset < entry_end(prev_entry)) {
100 101 102 103 104 105
		test = rb_prev(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		prev = test;
C
Chris Mason 已提交
106 107 108 109 110
	}
	*prev_ret = prev;
	return NULL;
}

111 112 113 114
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
			  u64 len)
{
	if (file_offset + len <= entry->file_offset ||
115
	    entry->file_offset + entry->num_bytes <= file_offset)
116 117 118 119
		return 0;
	return 1;
}

C
Chris Mason 已提交
120 121 122 123
/*
 * look find the first ordered struct that has this offset, otherwise
 * the first one less than this offset
 */
124 125
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
					  u64 file_offset)
C
Chris Mason 已提交
126
{
127
	struct rb_root *root = &tree->tree;
128
	struct rb_node *prev = NULL;
C
Chris Mason 已提交
129
	struct rb_node *ret;
130 131 132 133 134
	struct btrfs_ordered_extent *entry;

	if (tree->last) {
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
				 rb_node);
135
		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 137 138
			return tree->last;
	}
	ret = __tree_search(root, file_offset, &prev);
C
Chris Mason 已提交
139
	if (!ret)
140 141 142
		ret = prev;
	if (ret)
		tree->last = ret;
C
Chris Mason 已提交
143 144 145
	return ret;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/**
 * Add an ordered extent to the per-inode tree.
 *
 * @inode:           Inode that this extent is for.
 * @file_offset:     Logical offset in file where the extent starts.
 * @num_bytes:       Logical length of extent in file.
 * @ram_bytes:       Full length of unencoded data.
 * @disk_bytenr:     Offset of extent on disk.
 * @disk_num_bytes:  Size of extent on disk.
 * @offset:          Offset into unencoded data where file data starts.
 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 * @compress_type:   Compression algorithm used for data.
 *
 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 * tree is given a single reference on the ordered extent that was inserted.
161
 *
162
 * Return: 0 or -ENOMEM.
163
 */
164 165 166 167
int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
			     u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
			     u64 disk_num_bytes, u64 offset, unsigned flags,
			     int compress_type)
C
Chris Mason 已提交
168
{
169 170 171
	struct btrfs_root *root = inode->root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
172 173
	struct rb_node *node;
	struct btrfs_ordered_extent *entry;
174 175
	int ret;

176 177
	if (flags &
	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
178
		/* For nocow write, we can release the qgroup rsv right now */
179
		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
180 181 182 183 184 185 186 187
		if (ret < 0)
			return ret;
		ret = 0;
	} else {
		/*
		 * The ordered extent has reserved qgroup space, release now
		 * and pass the reserved number for qgroup_record to free.
		 */
188
		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
189 190 191
		if (ret < 0)
			return ret;
	}
192
	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
C
Chris Mason 已提交
193 194 195
	if (!entry)
		return -ENOMEM;

196
	entry->file_offset = file_offset;
197
	entry->num_bytes = num_bytes;
198 199
	entry->ram_bytes = ram_bytes;
	entry->disk_bytenr = disk_bytenr;
200
	entry->disk_num_bytes = disk_num_bytes;
201
	entry->offset = offset;
202
	entry->bytes_left = num_bytes;
203
	entry->inode = igrab(&inode->vfs_inode);
204
	entry->compress_type = compress_type;
205
	entry->truncated_len = (u64)-1;
206
	entry->qgroup_rsv = ret;
207
	entry->physical = (u64)-1;
208

209 210
	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
	entry->flags = flags;
211

212 213 214
	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
				 fs_info->delalloc_batch);

215
	/* one ref for the tree */
216
	refcount_set(&entry->refs, 1);
217 218
	init_waitqueue_head(&entry->wait);
	INIT_LIST_HEAD(&entry->list);
219
	INIT_LIST_HEAD(&entry->log_list);
220
	INIT_LIST_HEAD(&entry->root_extent_list);
221 222
	INIT_LIST_HEAD(&entry->work_list);
	init_completion(&entry->completion);
C
Chris Mason 已提交
223

224
	trace_btrfs_ordered_extent_add(inode, entry);
225

226
	spin_lock_irq(&tree->lock);
227 228
	node = tree_insert(&tree->tree, file_offset,
			   &entry->rb_node);
229
	if (node)
230 231 232
		btrfs_panic(fs_info, -EEXIST,
				"inconsistency in ordered tree at offset %llu",
				file_offset);
233
	spin_unlock_irq(&tree->lock);
C
Chris Mason 已提交
234

235
	spin_lock(&root->ordered_extent_lock);
236
	list_add_tail(&entry->root_extent_list,
237 238 239
		      &root->ordered_extents);
	root->nr_ordered_extents++;
	if (root->nr_ordered_extents == 1) {
240
		spin_lock(&fs_info->ordered_root_lock);
241
		BUG_ON(!list_empty(&root->ordered_root));
242 243
		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
		spin_unlock(&fs_info->ordered_root_lock);
244 245
	}
	spin_unlock(&root->ordered_extent_lock);
246

J
Josef Bacik 已提交
247 248 249 250 251
	/*
	 * We don't need the count_max_extents here, we can assume that all of
	 * that work has been done at higher layers, so this is truly the
	 * smallest the extent is going to get.
	 */
252 253 254
	spin_lock(&inode->lock);
	btrfs_mod_outstanding_extents(inode, 1);
	spin_unlock(&inode->lock);
J
Josef Bacik 已提交
255

C
Chris Mason 已提交
256 257 258
	return 0;
}

259 260
/*
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261 262
 * when an ordered extent is finished.  If the list covers more than one
 * ordered extent, it is split across multiples.
263
 */
264
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
265
			   struct btrfs_ordered_sum *sum)
C
Chris Mason 已提交
266
{
267
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
268

269
	tree = &BTRFS_I(entry->inode)->ordered_tree;
270
	spin_lock_irq(&tree->lock);
271
	list_add_tail(&sum->list, &entry->list);
272
	spin_unlock_irq(&tree->lock);
C
Chris Mason 已提交
273 274
}

275
/*
276
 * Mark all ordered extents io inside the specified range finished.
277
 *
278 279 280 281 282 283 284 285
 * @page:	 The invovled page for the opeartion.
 *		 For uncompressed buffered IO, the page status also needs to be
 *		 updated to indicate whether the pending ordered io is finished.
 *		 Can be NULL for direct IO and compressed write.
 *		 For these cases, callers are ensured they won't execute the
 *		 endio function twice.
 * @finish_func: The function to be executed when all the IO of an ordered
 *		 extent are finished.
286
 *
287 288
 * This function is called for endio, thus the range must have ordered
 * extent(s) coveri it.
289
 */
290 291 292 293
void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
				struct page *page, u64 file_offset,
				u64 num_bytes, btrfs_func_t finish_func,
				bool uptodate)
294
{
295
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
296 297
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_workqueue *wq;
298 299
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;
300
	unsigned long flags;
301 302 303 304 305 306 307 308 309 310
	u64 cur = file_offset;

	if (btrfs_is_free_space_inode(inode))
		wq = fs_info->endio_freespace_worker;
	else
		wq = fs_info->endio_write_workers;

	if (page)
		ASSERT(page->mapping && page_offset(page) <= file_offset &&
		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
311

312
	spin_lock_irqsave(&tree->lock, flags);
313 314 315 316 317 318 319 320 321
	while (cur < file_offset + num_bytes) {
		u64 entry_end;
		u64 end;
		u32 len;

		node = tree_search(tree, cur);
		/* No ordered extents at all */
		if (!node)
			break;
322

323 324
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		entry_end = entry->file_offset + entry->num_bytes;
325
		/*
326 327 328
		 * |<-- OE --->|  |
		 *		  cur
		 * Go to next OE.
329
		 */
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
		if (cur >= entry_end) {
			node = rb_next(node);
			/* No more ordered extents, exit */
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_ordered_extent,
					 rb_node);

			/* Go to next ordered extent and continue */
			cur = entry->file_offset;
			continue;
		}
		/*
		 * |	|<--- OE --->|
		 * cur
		 * Go to the start of OE.
		 */
		if (cur < entry->file_offset) {
			cur = entry->file_offset;
			continue;
		}

		/*
		 * Now we are definitely inside one ordered extent.
		 *
		 * |<--- OE --->|
		 *	|
		 *	cur
		 */
		end = min(entry->file_offset + entry->num_bytes,
			  file_offset + num_bytes) - 1;
		ASSERT(end + 1 - cur < U32_MAX);
		len = end + 1 - cur;

		if (page) {
			/*
366 367
			 * Ordered (Private2) bit indicates whether we still
			 * have pending io unfinished for the ordered extent.
368 369 370
			 *
			 * If there's no such bit, we need to skip to next range.
			 */
371
			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
372 373 374
				cur += len;
				continue;
			}
375
			btrfs_page_clear_ordered(fs_info, page, cur, len);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
		}

		/* Now we're fine to update the accounting */
		if (unlikely(len > entry->bytes_left)) {
			WARN_ON(1);
			btrfs_crit(fs_info,
"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
				   inode->root->root_key.objectid,
				   btrfs_ino(inode),
				   entry->file_offset,
				   entry->num_bytes,
				   len, entry->bytes_left);
			entry->bytes_left = 0;
		} else {
			entry->bytes_left -= len;
		}

		if (!uptodate)
			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);

		/*
		 * All the IO of the ordered extent is finished, we need to queue
		 * the finish_func to be executed.
		 */
		if (entry->bytes_left == 0) {
			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
			cond_wake_up(&entry->wait);
			refcount_inc(&entry->refs);
			spin_unlock_irqrestore(&tree->lock, flags);
			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
			btrfs_queue_work(wq, &entry->work);
			spin_lock_irqsave(&tree->lock, flags);
		}
		cur += len;
410
	}
411
	spin_unlock_irqrestore(&tree->lock, flags);
412 413
}

414
/*
415 416 417 418 419 420 421 422
 * Finish IO for one ordered extent across a given range.  The range can only
 * contain one ordered extent.
 *
 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 *               search and use the ordered extent directly.
 * 		 Will be also used to store the finished ordered extent.
 * @file_offset: File offset for the finished IO
 * @io_size:	 Length of the finish IO range
423
 *
424 425 426 427 428 429
 * Return true if the ordered extent is finished in the range, and update
 * @cached.
 * Return false otherwise.
 *
 * NOTE: The range can NOT cross multiple ordered extents.
 * Thus caller should ensure the range doesn't cross ordered extents.
430
 */
431 432
bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
				    struct btrfs_ordered_extent **cached,
433
				    u64 file_offset, u64 io_size)
C
Chris Mason 已提交
434
{
435
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
C
Chris Mason 已提交
436
	struct rb_node *node;
437
	struct btrfs_ordered_extent *entry = NULL;
438
	unsigned long flags;
439
	bool finished = false;
440

441 442 443 444 445 446
	spin_lock_irqsave(&tree->lock, flags);
	if (cached && *cached) {
		entry = *cached;
		goto have_entry;
	}

447
	node = tree_search(tree, file_offset);
448
	if (!node)
449
		goto out;
C
Chris Mason 已提交
450

451
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
452
have_entry:
453
	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
454 455
		goto out;

456
	if (io_size > entry->bytes_left)
457
		btrfs_crit(inode->root->fs_info,
458
			   "bad ordered accounting left %llu size %llu",
459
		       entry->bytes_left, io_size);
460

461
	entry->bytes_left -= io_size;
462

463
	if (entry->bytes_left == 0) {
464 465 466 467 468
		/*
		 * Ensure only one caller can set the flag and finished_ret
		 * accordingly
		 */
		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
469 470
		/* test_and_set_bit implies a barrier */
		cond_wake_up_nomb(&entry->wait);
471
	}
472
out:
473
	if (finished && cached && entry) {
474
		*cached = entry;
475
		refcount_inc(&entry->refs);
476
	}
477
	spin_unlock_irqrestore(&tree->lock, flags);
478
	return finished;
479
}
C
Chris Mason 已提交
480

481 482 483 484
/*
 * used to drop a reference on an ordered extent.  This will free
 * the extent if the last reference is dropped
 */
485
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
486
{
487 488 489
	struct list_head *cur;
	struct btrfs_ordered_sum *sum;

490
	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
491

492
	if (refcount_dec_and_test(&entry->refs)) {
493
		ASSERT(list_empty(&entry->root_extent_list));
494
		ASSERT(list_empty(&entry->log_list));
495
		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
496 497
		if (entry->inode)
			btrfs_add_delayed_iput(entry->inode);
C
Chris Mason 已提交
498
		while (!list_empty(&entry->list)) {
499 500 501
			cur = entry->list.next;
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
			list_del(&sum->list);
502
			kvfree(sum);
503
		}
504
		kmem_cache_free(btrfs_ordered_extent_cache, entry);
505
	}
C
Chris Mason 已提交
506
}
507

508 509
/*
 * remove an ordered extent from the tree.  No references are dropped
510
 * and waiters are woken up.
511
 */
512
void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
513
				 struct btrfs_ordered_extent *entry)
514
{
515
	struct btrfs_ordered_inode_tree *tree;
J
Josef Bacik 已提交
516
	struct btrfs_root *root = btrfs_inode->root;
517
	struct btrfs_fs_info *fs_info = root->fs_info;
518
	struct rb_node *node;
519
	bool pending;
520

J
Josef Bacik 已提交
521 522 523 524 525
	/* This is paired with btrfs_add_ordered_extent. */
	spin_lock(&btrfs_inode->lock);
	btrfs_mod_outstanding_extents(btrfs_inode, -1);
	spin_unlock(&btrfs_inode->lock);
	if (root != fs_info->tree_root)
526 527
		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
						false);
J
Josef Bacik 已提交
528

529 530
	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
				 fs_info->delalloc_batch);
J
Josef Bacik 已提交
531

J
Josef Bacik 已提交
532
	tree = &btrfs_inode->ordered_tree;
533
	spin_lock_irq(&tree->lock);
534
	node = &entry->rb_node;
535
	rb_erase(node, &tree->tree);
536
	RB_CLEAR_NODE(node);
537 538
	if (tree->last == node)
		tree->last = NULL;
539
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
540
	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
541
	spin_unlock_irq(&tree->lock);
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	/*
	 * The current running transaction is waiting on us, we need to let it
	 * know that we're complete and wake it up.
	 */
	if (pending) {
		struct btrfs_transaction *trans;

		/*
		 * The checks for trans are just a formality, it should be set,
		 * but if it isn't we don't want to deref/assert under the spin
		 * lock, so be nice and check if trans is set, but ASSERT() so
		 * if it isn't set a developer will notice.
		 */
		spin_lock(&fs_info->trans_lock);
		trans = fs_info->running_transaction;
		if (trans)
			refcount_inc(&trans->use_count);
		spin_unlock(&fs_info->trans_lock);

		ASSERT(trans);
		if (trans) {
			if (atomic_dec_and_test(&trans->pending_ordered))
				wake_up(&trans->pending_wait);
			btrfs_put_transaction(trans);
		}
	}

570
	spin_lock(&root->ordered_extent_lock);
571
	list_del_init(&entry->root_extent_list);
572
	root->nr_ordered_extents--;
573

574
	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
575

576
	if (!root->nr_ordered_extents) {
577
		spin_lock(&fs_info->ordered_root_lock);
578 579
		BUG_ON(list_empty(&root->ordered_root));
		list_del_init(&root->ordered_root);
580
		spin_unlock(&fs_info->ordered_root_lock);
581 582
	}
	spin_unlock(&root->ordered_extent_lock);
583
	wake_up(&entry->wait);
584 585
}

586
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
587 588 589 590
{
	struct btrfs_ordered_extent *ordered;

	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
591
	btrfs_start_ordered_extent(ordered, 1);
592 593 594
	complete(&ordered->completion);
}

C
Chris Mason 已提交
595 596 597 598
/*
 * wait for all the ordered extents in a root.  This is done when balancing
 * space between drives.
 */
599
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
600
			       const u64 range_start, const u64 range_len)
601
{
602
	struct btrfs_fs_info *fs_info = root->fs_info;
603 604 605
	LIST_HEAD(splice);
	LIST_HEAD(skipped);
	LIST_HEAD(works);
606
	struct btrfs_ordered_extent *ordered, *next;
607
	u64 count = 0;
608
	const u64 range_end = range_start + range_len;
609

610
	mutex_lock(&root->ordered_extent_mutex);
611 612
	spin_lock(&root->ordered_extent_lock);
	list_splice_init(&root->ordered_extents, &splice);
613
	while (!list_empty(&splice) && nr) {
614 615
		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
					   root_extent_list);
616

617 618
		if (range_end <= ordered->disk_bytenr ||
		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
619 620 621 622 623
			list_move_tail(&ordered->root_extent_list, &skipped);
			cond_resched_lock(&root->ordered_extent_lock);
			continue;
		}

624 625
		list_move_tail(&ordered->root_extent_list,
			       &root->ordered_extents);
626
		refcount_inc(&ordered->refs);
627
		spin_unlock(&root->ordered_extent_lock);
628

629 630
		btrfs_init_work(&ordered->flush_work,
				btrfs_run_ordered_extent_work, NULL, NULL);
631
		list_add_tail(&ordered->work_list, &works);
632
		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
633

634
		cond_resched();
635
		spin_lock(&root->ordered_extent_lock);
636
		if (nr != U64_MAX)
637 638
			nr--;
		count++;
639
	}
640
	list_splice_tail(&skipped, &root->ordered_extents);
641
	list_splice_tail(&splice, &root->ordered_extents);
642
	spin_unlock(&root->ordered_extent_lock);
643 644 645 646 647 648 649

	list_for_each_entry_safe(ordered, next, &works, work_list) {
		list_del_init(&ordered->work_list);
		wait_for_completion(&ordered->completion);
		btrfs_put_ordered_extent(ordered);
		cond_resched();
	}
650
	mutex_unlock(&root->ordered_extent_mutex);
651 652

	return count;
653 654
}

655
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
656
			     const u64 range_start, const u64 range_len)
657 658 659
{
	struct btrfs_root *root;
	struct list_head splice;
660
	u64 done;
661 662 663

	INIT_LIST_HEAD(&splice);

664
	mutex_lock(&fs_info->ordered_operations_mutex);
665 666
	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
667
	while (!list_empty(&splice) && nr) {
668 669
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
670
		root = btrfs_grab_root(root);
671 672 673 674 675
		BUG_ON(!root);
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
		spin_unlock(&fs_info->ordered_root_lock);

676 677
		done = btrfs_wait_ordered_extents(root, nr,
						  range_start, range_len);
678
		btrfs_put_root(root);
679 680

		spin_lock(&fs_info->ordered_root_lock);
681
		if (nr != U64_MAX) {
682 683
			nr -= done;
		}
684
	}
685
	list_splice_tail(&splice, &fs_info->ordered_roots);
686
	spin_unlock(&fs_info->ordered_root_lock);
687
	mutex_unlock(&fs_info->ordered_operations_mutex);
688 689
}

690 691 692 693 694 695 696
/*
 * Used to start IO or wait for a given ordered extent to finish.
 *
 * If wait is one, this effectively waits on page writeback for all the pages
 * in the extent, and it waits on the io completion code to insert
 * metadata into the btree corresponding to the extent
 */
697
void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
698 699
{
	u64 start = entry->file_offset;
700
	u64 end = start + entry->num_bytes - 1;
701
	struct btrfs_inode *inode = BTRFS_I(entry->inode);
702

703
	trace_btrfs_ordered_extent_start(inode, entry);
704

705 706 707
	/*
	 * pages in the range can be dirty, clean or writeback.  We
	 * start IO on any dirty ones so the wait doesn't stall waiting
708
	 * for the flusher thread to find them
709
	 */
710
	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
711
		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
C
Chris Mason 已提交
712
	if (wait) {
713 714
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
						 &entry->flags));
C
Chris Mason 已提交
715
	}
716
}
717

718 719 720
/*
 * Used to wait on ordered extents across a large range of bytes.
 */
721
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
722
{
723
	int ret = 0;
724
	int ret_wb = 0;
725
	u64 end;
726
	u64 orig_end;
727
	struct btrfs_ordered_extent *ordered;
728 729

	if (start + len < start) {
730
		orig_end = INT_LIMIT(loff_t);
731 732
	} else {
		orig_end = start + len - 1;
733 734
		if (orig_end > INT_LIMIT(loff_t))
			orig_end = INT_LIMIT(loff_t);
735
	}
736

737 738 739
	/* start IO across the range first to instantiate any delalloc
	 * extents
	 */
740
	ret = btrfs_fdatawrite_range(inode, start, orig_end);
741 742
	if (ret)
		return ret;
743

744 745 746 747 748 749 750 751
	/*
	 * If we have a writeback error don't return immediately. Wait first
	 * for any ordered extents that haven't completed yet. This is to make
	 * sure no one can dirty the same page ranges and call writepages()
	 * before the ordered extents complete - to avoid failures (-EEXIST)
	 * when adding the new ordered extents to the ordered tree.
	 */
	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
752

753
	end = orig_end;
C
Chris Mason 已提交
754
	while (1) {
755
		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
C
Chris Mason 已提交
756
		if (!ordered)
757
			break;
758
		if (ordered->file_offset > orig_end) {
759 760 761
			btrfs_put_ordered_extent(ordered);
			break;
		}
762
		if (ordered->file_offset + ordered->num_bytes <= start) {
763 764 765
			btrfs_put_ordered_extent(ordered);
			break;
		}
766
		btrfs_start_ordered_extent(ordered, 1);
767
		end = ordered->file_offset;
768 769 770 771 772
		/*
		 * If the ordered extent had an error save the error but don't
		 * exit without waiting first for all other ordered extents in
		 * the range to complete.
		 */
773 774
		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
			ret = -EIO;
775
		btrfs_put_ordered_extent(ordered);
776
		if (end == 0 || end == start)
777 778 779
			break;
		end--;
	}
780
	return ret_wb ? ret_wb : ret;
781 782
}

783 784 785 786
/*
 * find an ordered extent corresponding to file_offset.  return NULL if
 * nothing is found, otherwise take a reference on the extent and return it
 */
787
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
788 789 790 791 792
							 u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;
793
	unsigned long flags;
794

795
	tree = &inode->ordered_tree;
796
	spin_lock_irqsave(&tree->lock, flags);
797 798 799 800 801
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
802
	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
803 804
		entry = NULL;
	if (entry)
805
		refcount_inc(&entry->refs);
806
out:
807
	spin_unlock_irqrestore(&tree->lock, flags);
808 809 810
	return entry;
}

811 812 813
/* Since the DIO code tries to lock a wide area we need to look for any ordered
 * extents that exist in the range, rather than just the start of the range.
 */
814 815
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
		struct btrfs_inode *inode, u64 file_offset, u64 len)
816 817 818 819 820
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

821
	tree = &inode->ordered_tree;
822
	spin_lock_irq(&tree->lock);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	node = tree_search(tree, file_offset);
	if (!node) {
		node = tree_search(tree, file_offset + len);
		if (!node)
			goto out;
	}

	while (1) {
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			break;

		if (entry->file_offset >= file_offset + len) {
			entry = NULL;
			break;
		}
		entry = NULL;
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	if (entry)
846
		refcount_inc(&entry->refs);
847
	spin_unlock_irq(&tree->lock);
848 849 850
	return entry;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
/*
 * Adds all ordered extents to the given list. The list ends up sorted by the
 * file_offset of the ordered extents.
 */
void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
					   struct list_head *list)
{
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
	struct rb_node *n;

	ASSERT(inode_is_locked(&inode->vfs_inode));

	spin_lock_irq(&tree->lock);
	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
		struct btrfs_ordered_extent *ordered;

		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);

		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
			continue;

		ASSERT(list_empty(&ordered->log_list));
		list_add_tail(&ordered->log_list, list);
		refcount_inc(&ordered->refs);
	}
	spin_unlock_irq(&tree->lock);
}

879 880 881 882
/*
 * lookup and return any extent before 'file_offset'.  NULL is returned
 * if none is found
 */
883
struct btrfs_ordered_extent *
884
btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
885 886 887 888 889
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

890
	tree = &inode->ordered_tree;
891
	spin_lock_irq(&tree->lock);
892 893 894 895 896
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
897
	refcount_inc(&entry->refs);
898
out:
899
	spin_unlock_irq(&tree->lock);
900
	return entry;
901
}
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/*
 * Lookup the first ordered extent that overlaps the range
 * [@file_offset, @file_offset + @len).
 *
 * The difference between this and btrfs_lookup_first_ordered_extent() is
 * that this one won't return any ordered extent that does not overlap the range.
 * And the difference against btrfs_lookup_ordered_extent() is, this function
 * ensures the first ordered extent gets returned.
 */
struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
			struct btrfs_inode *inode, u64 file_offset, u64 len)
{
	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
	struct rb_node *node;
	struct rb_node *cur;
	struct rb_node *prev;
	struct rb_node *next;
	struct btrfs_ordered_extent *entry = NULL;

	spin_lock_irq(&tree->lock);
	node = tree->tree.rb_node;
	/*
	 * Here we don't want to use tree_search() which will use tree->last
	 * and screw up the search order.
	 * And __tree_search() can't return the adjacent ordered extents
	 * either, thus here we do our own search.
	 */
	while (node) {
		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);

		if (file_offset < entry->file_offset) {
			node = node->rb_left;
		} else if (file_offset >= entry_end(entry)) {
			node = node->rb_right;
		} else {
			/*
			 * Direct hit, got an ordered extent that starts at
			 * @file_offset
			 */
			goto out;
		}
	}
	if (!entry) {
		/* Empty tree */
		goto out;
	}

	cur = &entry->rb_node;
	/* We got an entry around @file_offset, check adjacent entries */
	if (entry->file_offset < file_offset) {
		prev = cur;
		next = rb_next(cur);
	} else {
		prev = rb_prev(cur);
		next = cur;
	}
	if (prev) {
		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			goto out;
	}
	if (next) {
		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
		if (range_overlaps(entry, file_offset, len))
			goto out;
	}
	/* No ordered extent in the range */
	entry = NULL;
out:
	if (entry)
		refcount_inc(&entry->refs);
	spin_unlock_irq(&tree->lock);
	return entry;
}

978 979 980 981 982 983 984 985 986 987 988 989 990
/*
 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
 * ordered extents in it are run to completion.
 *
 * @inode:        Inode whose ordered tree is to be searched
 * @start:        Beginning of range to flush
 * @end:          Last byte of range to lock
 * @cached_state: If passed, will return the extent state responsible for the
 * locked range. It's the caller's responsibility to free the cached state.
 *
 * This function always returns with the given range locked, ensuring after it's
 * called no order extent can be pending.
 */
991
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
992 993 994 995
					u64 end,
					struct extent_state **cached_state)
{
	struct btrfs_ordered_extent *ordered;
996 997
	struct extent_state *cache = NULL;
	struct extent_state **cachedp = &cache;
998 999

	if (cached_state)
1000
		cachedp = cached_state;
1001 1002

	while (1) {
1003
		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1004 1005
		ordered = btrfs_lookup_ordered_range(inode, start,
						     end - start + 1);
1006 1007 1008 1009 1010 1011 1012
		if (!ordered) {
			/*
			 * If no external cached_state has been passed then
			 * decrement the extra ref taken for cachedp since we
			 * aren't exposing it outside of this function
			 */
			if (!cached_state)
1013
				refcount_dec(&cache->refs);
1014
			break;
1015
		}
1016
		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1017
		btrfs_start_ordered_extent(ordered, 1);
1018 1019 1020 1021
		btrfs_put_ordered_extent(ordered);
	}
}

1022 1023 1024 1025
static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
				u64 len)
{
	struct inode *inode = ordered->inode;
1026
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1027 1028
	u64 file_offset = ordered->file_offset + pos;
	u64 disk_bytenr = ordered->disk_bytenr + pos;
1029
	unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1030

1031
	/*
1032 1033
	 * The splitting extent is already counted and will be added again in
	 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1034
	 */
1035
	percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1036
				 fs_info->delalloc_batch);
1037 1038 1039 1040
	WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
	return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
					disk_bytenr, len, 0, flags,
					ordered->compress_type);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
				u64 post)
{
	struct inode *inode = ordered->inode;
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct rb_node *node;
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	int ret = 0;

	spin_lock_irq(&tree->lock);
	/* Remove from tree once */
	node = &ordered->rb_node;
	rb_erase(node, &tree->tree);
	RB_CLEAR_NODE(node);
	if (tree->last == node)
		tree->last = NULL;

	ordered->file_offset += pre;
	ordered->disk_bytenr += pre;
	ordered->num_bytes -= (pre + post);
	ordered->disk_num_bytes -= (pre + post);
	ordered->bytes_left -= (pre + post);

	/* Re-insert the node */
	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
	if (node)
		btrfs_panic(fs_info, -EEXIST,
			"zoned: inconsistency in ordered tree at offset %llu",
			    ordered->file_offset);

	spin_unlock_irq(&tree->lock);

	if (pre)
		ret = clone_ordered_extent(ordered, 0, pre);
1077
	if (ret == 0 && post)
1078 1079 1080 1081 1082 1083
		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
					   post);

	return ret;
}

1084 1085 1086 1087
int __init ordered_data_init(void)
{
	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
				     sizeof(struct btrfs_ordered_extent), 0,
1088
				     SLAB_MEM_SPREAD,
1089 1090 1091
				     NULL);
	if (!btrfs_ordered_extent_cache)
		return -ENOMEM;
1092

1093 1094 1095
	return 0;
}

1096
void __cold ordered_data_exit(void)
1097
{
1098
	kmem_cache_destroy(btrfs_ordered_extent_cache);
1099
}