hw-me.c 30.5 KB
Newer Older
O
Oren Weil 已提交
1 2 3
/*
 *
 * Intel Management Engine Interface (Intel MEI) Linux driver
4
 * Copyright (c) 2003-2012, Intel Corporation.
O
Oren Weil 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <linux/pci.h>
18 19 20

#include <linux/kthread.h>
#include <linux/interrupt.h>
21
#include <linux/pm_runtime.h>
22 23

#include "mei_dev.h"
24 25
#include "hbm.h"

26 27
#include "hw-me.h"
#include "hw-me-regs.h"
28

T
Tomas Winkler 已提交
29 30
#include "mei-trace.h"

31
/**
32
 * mei_me_reg_read - Reads 32bit data from the mei device
33
 *
34
 * @hw: the me hardware structure
35 36
 * @offset: offset from which to read the data
 *
37
 * Return: register value (u32)
38
 */
39
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
40 41
			       unsigned long offset)
{
42
	return ioread32(hw->mem_addr + offset);
43 44 45 46
}


/**
47
 * mei_me_reg_write - Writes 32bit data to the mei device
48
 *
49
 * @hw: the me hardware structure
50 51 52
 * @offset: offset from which to write the data
 * @value: register value to write (u32)
 */
53
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
54 55
				 unsigned long offset, u32 value)
{
56
	iowrite32(value, hw->mem_addr + offset);
57
}
O
Oren Weil 已提交
58

59
/**
60
 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
T
Tomas Winkler 已提交
61
 *  read window register
62 63 64
 *
 * @dev: the device structure
 *
65
 * Return: ME_CB_RW register value (u32)
66
 */
67
static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
68
{
69
	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
70
}
71 72 73 74 75 76 77 78 79 80 81 82

/**
 * mei_me_hcbww_write - write 32bit data to the host circular buffer
 *
 * @dev: the device structure
 * @data: 32bit data to be written to the host circular buffer
 */
static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
{
	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
}

83
/**
84
 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
85
 *
86
 * @dev: the device structure
87
 *
88
 * Return: ME_CSR_HA register value (u32)
89
 */
90
static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
91
{
T
Tomas Winkler 已提交
92 93 94 95 96 97
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);

	return reg;
98
}
O
Oren Weil 已提交
99 100

/**
T
Tomas Winkler 已提交
101 102
 * mei_hcsr_read - Reads 32bit data from the host CSR
 *
103
 * @dev: the device structure
T
Tomas Winkler 已提交
104
 *
105
 * Return: H_CSR register value (u32)
T
Tomas Winkler 已提交
106
 */
107
static inline u32 mei_hcsr_read(const struct mei_device *dev)
T
Tomas Winkler 已提交
108
{
T
Tomas Winkler 已提交
109 110 111 112 113 114
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);

	return reg;
115 116 117 118 119 120 121 122 123 124
}

/**
 * mei_hcsr_write - writes H_CSR register to the mei device
 *
 * @dev: the device structure
 * @reg: new register value
 */
static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
{
T
Tomas Winkler 已提交
125
	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
126
	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
T
Tomas Winkler 已提交
127 128 129 130
}

/**
 * mei_hcsr_set - writes H_CSR register to the mei device,
O
Oren Weil 已提交
131 132
 * and ignores the H_IS bit for it is write-one-to-zero.
 *
133 134
 * @dev: the device structure
 * @reg: new register value
O
Oren Weil 已提交
135
 */
136
static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
O
Oren Weil 已提交
137
{
138
	reg &= ~H_CSR_IS_MASK;
139
	mei_hcsr_write(dev, reg);
O
Oren Weil 已提交
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153
/**
 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 *
 * @dev: the device structure
 *
 * Return: H_D0I3C register value (u32)
 */
static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
{
	u32 reg;

	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
154
	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
155 156 157 158 159 160 161 162 163 164 165 166

	return reg;
}

/**
 * mei_me_d0i3c_write - writes H_D0I3C register to device
 *
 * @dev: the device structure
 * @reg: new register value
 */
static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
{
167
	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
168 169 170
	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
}

171 172 173 174 175
/**
 * mei_me_fw_status - read fw status register from pci config space
 *
 * @dev: mei device
 * @fw_status: fw status register values
A
Alexander Usyskin 已提交
176 177
 *
 * Return: 0 on success, error otherwise
178 179 180 181 182
 */
static int mei_me_fw_status(struct mei_device *dev,
			    struct mei_fw_status *fw_status)
{
	struct pci_dev *pdev = to_pci_dev(dev->dev);
183 184
	struct mei_me_hw *hw = to_me_hw(dev);
	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
185 186 187 188 189 190 191 192
	int ret;
	int i;

	if (!fw_status)
		return -EINVAL;

	fw_status->count = fw_src->count;
	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
193 194 195 196 197
		ret = pci_read_config_dword(pdev, fw_src->status[i],
					    &fw_status->status[i]);
		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
				       fw_src->status[i],
				       fw_status->status[i]);
198 199 200 201 202 203
		if (ret)
			return ret;
	}

	return 0;
}
204 205

/**
206
 * mei_me_hw_config - configure hw dependent settings
207 208 209
 *
 * @dev: mei device
 */
210
static void mei_me_hw_config(struct mei_device *dev)
211
{
212
	struct pci_dev *pdev = to_pci_dev(dev->dev);
213
	struct mei_me_hw *hw = to_me_hw(dev);
214 215
	u32 hcsr, reg;

216
	/* Doesn't change in runtime */
217
	hcsr = mei_hcsr_read(dev);
218
	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
219

220 221
	reg = 0;
	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
222
	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
223 224
	hw->d0i3_supported =
		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
225 226 227 228 229 230 231

	hw->pg_state = MEI_PG_OFF;
	if (hw->d0i3_supported) {
		reg = mei_me_d0i3c_read(dev);
		if (reg & H_D0I3C_I3)
			hw->pg_state = MEI_PG_ON;
	}
232
}
233 234 235 236 237

/**
 * mei_me_pg_state  - translate internal pg state
 *   to the mei power gating state
 *
A
Alexander Usyskin 已提交
238 239 240
 * @dev:  mei device
 *
 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
241 242 243
 */
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
{
244
	struct mei_me_hw *hw = to_me_hw(dev);
245

246
	return hw->pg_state;
247 248
}

O
Oren Weil 已提交
249
/**
A
Alexander Usyskin 已提交
250
 * mei_me_intr_clear - clear and stop interrupts
251 252 253
 *
 * @dev: the device structure
 */
254
static void mei_me_intr_clear(struct mei_device *dev)
255
{
256
	u32 hcsr = mei_hcsr_read(dev);
257

258
	if (hcsr & H_CSR_IS_MASK)
259
		mei_hcsr_write(dev, hcsr);
260 261
}
/**
262
 * mei_me_intr_enable - enables mei device interrupts
O
Oren Weil 已提交
263 264 265
 *
 * @dev: the device structure
 */
266
static void mei_me_intr_enable(struct mei_device *dev)
O
Oren Weil 已提交
267
{
268
	u32 hcsr = mei_hcsr_read(dev);
269

270
	hcsr |= H_CSR_IE_MASK;
271
	mei_hcsr_set(dev, hcsr);
O
Oren Weil 已提交
272 273 274
}

/**
A
Alexander Usyskin 已提交
275
 * mei_me_intr_disable - disables mei device interrupts
O
Oren Weil 已提交
276 277 278
 *
 * @dev: the device structure
 */
279
static void mei_me_intr_disable(struct mei_device *dev)
O
Oren Weil 已提交
280
{
281
	u32 hcsr = mei_hcsr_read(dev);
282

283
	hcsr  &= ~H_CSR_IE_MASK;
284
	mei_hcsr_set(dev, hcsr);
O
Oren Weil 已提交
285 286
}

287 288 289 290 291 292 293
/**
 * mei_me_hw_reset_release - release device from the reset
 *
 * @dev: the device structure
 */
static void mei_me_hw_reset_release(struct mei_device *dev)
{
294
	u32 hcsr = mei_hcsr_read(dev);
295 296 297

	hcsr |= H_IG;
	hcsr &= ~H_RST;
298
	mei_hcsr_set(dev, hcsr);
T
Tomas Winkler 已提交
299 300 301

	/* complete this write before we set host ready on another CPU */
	mmiowb();
302
}
303

304
/**
305
 * mei_me_host_set_ready - enable device
306
 *
A
Alexander Usyskin 已提交
307
 * @dev: mei device
308
 */
309
static void mei_me_host_set_ready(struct mei_device *dev)
310
{
311
	u32 hcsr = mei_hcsr_read(dev);
312

313
	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
314
	mei_hcsr_set(dev, hcsr);
315
}
A
Alexander Usyskin 已提交
316

317
/**
318
 * mei_me_host_is_ready - check whether the host has turned ready
319
 *
320 321
 * @dev: mei device
 * Return: bool
322
 */
323
static bool mei_me_host_is_ready(struct mei_device *dev)
324
{
325
	u32 hcsr = mei_hcsr_read(dev);
326

327
	return (hcsr & H_RDY) == H_RDY;
328 329 330
}

/**
331
 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
332
 *
333 334
 * @dev: mei device
 * Return: bool
335
 */
336
static bool mei_me_hw_is_ready(struct mei_device *dev)
337
{
338
	u32 mecsr = mei_me_mecsr_read(dev);
339

340
	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
341
}
342

A
Alexander Usyskin 已提交
343 344 345 346 347 348 349
/**
 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 *  or timeout is reached
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
T
Tomas Winkler 已提交
350 351 352
static int mei_me_hw_ready_wait(struct mei_device *dev)
{
	mutex_unlock(&dev->device_lock);
353
	wait_event_timeout(dev->wait_hw_ready,
354
			dev->recvd_hw_ready,
355
			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
T
Tomas Winkler 已提交
356
	mutex_lock(&dev->device_lock);
357
	if (!dev->recvd_hw_ready) {
358
		dev_err(dev->dev, "wait hw ready failed\n");
359
		return -ETIME;
T
Tomas Winkler 已提交
360 361
	}

362
	mei_me_hw_reset_release(dev);
T
Tomas Winkler 已提交
363 364 365 366
	dev->recvd_hw_ready = false;
	return 0;
}

A
Alexander Usyskin 已提交
367 368 369 370 371 372
/**
 * mei_me_hw_start - hw start routine
 *
 * @dev: mei device
 * Return: 0 on success, error otherwise
 */
T
Tomas Winkler 已提交
373 374 375
static int mei_me_hw_start(struct mei_device *dev)
{
	int ret = mei_me_hw_ready_wait(dev);
376

T
Tomas Winkler 已提交
377 378
	if (ret)
		return ret;
379
	dev_dbg(dev->dev, "hw is ready\n");
T
Tomas Winkler 已提交
380 381 382 383 384 385

	mei_me_host_set_ready(dev);
	return ret;
}


O
Oren Weil 已提交
386
/**
387
 * mei_hbuf_filled_slots - gets number of device filled buffer slots
O
Oren Weil 已提交
388
 *
389
 * @dev: the device structure
O
Oren Weil 已提交
390
 *
391
 * Return: number of filled slots
O
Oren Weil 已提交
392
 */
393
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
O
Oren Weil 已提交
394
{
395
	u32 hcsr;
O
Oren Weil 已提交
396 397
	char read_ptr, write_ptr;

398
	hcsr = mei_hcsr_read(dev);
399

400 401
	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
O
Oren Weil 已提交
402 403 404 405 406

	return (unsigned char) (write_ptr - read_ptr);
}

/**
407
 * mei_me_hbuf_is_empty - checks if host buffer is empty.
O
Oren Weil 已提交
408 409 410
 *
 * @dev: the device structure
 *
411
 * Return: true if empty, false - otherwise.
O
Oren Weil 已提交
412
 */
413
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
O
Oren Weil 已提交
414
{
415
	return mei_hbuf_filled_slots(dev) == 0;
O
Oren Weil 已提交
416 417 418
}

/**
419
 * mei_me_hbuf_empty_slots - counts write empty slots.
O
Oren Weil 已提交
420 421 422
 *
 * @dev: the device structure
 *
423
 * Return: -EOVERFLOW if overflow, otherwise empty slots count
O
Oren Weil 已提交
424
 */
425
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
O
Oren Weil 已提交
426
{
427
	unsigned char filled_slots, empty_slots;
O
Oren Weil 已提交
428

429
	filled_slots = mei_hbuf_filled_slots(dev);
430
	empty_slots = dev->hbuf_depth - filled_slots;
O
Oren Weil 已提交
431 432

	/* check for overflow */
433
	if (filled_slots > dev->hbuf_depth)
O
Oren Weil 已提交
434 435 436 437 438
		return -EOVERFLOW;

	return empty_slots;
}

A
Alexander Usyskin 已提交
439 440 441 442 443 444 445
/**
 * mei_me_hbuf_max_len - returns size of hw buffer.
 *
 * @dev: the device structure
 *
 * Return: size of hw buffer in bytes
 */
446 447 448 449 450 451
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
{
	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
}


O
Oren Weil 已提交
452
/**
453
 * mei_me_write_message - writes a message to mei device.
O
Oren Weil 已提交
454 455
 *
 * @dev: the device structure
456
 * @header: mei HECI header of message
457
 * @buf: message payload will be written
O
Oren Weil 已提交
458
 *
459
 * Return: -EIO if write has failed
O
Oren Weil 已提交
460
 */
461 462 463
static int mei_me_write_message(struct mei_device *dev,
			struct mei_msg_hdr *header,
			unsigned char *buf)
O
Oren Weil 已提交
464
{
T
Tomas Winkler 已提交
465
	unsigned long rem;
466
	unsigned long length = header->length;
467
	u32 *reg_buf = (u32 *)buf;
468
	u32 hcsr;
T
Tomas Winkler 已提交
469
	u32 dw_cnt;
470 471
	int i;
	int empty_slots;
O
Oren Weil 已提交
472

473
	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
O
Oren Weil 已提交
474

475
	empty_slots = mei_hbuf_empty_slots(dev);
476
	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
O
Oren Weil 已提交
477

478
	dw_cnt = mei_data2slots(length);
479
	if (empty_slots < 0 || dw_cnt > empty_slots)
480
		return -EMSGSIZE;
O
Oren Weil 已提交
481

482
	mei_me_hcbww_write(dev, *((u32 *) header));
O
Oren Weil 已提交
483

484
	for (i = 0; i < length / 4; i++)
485
		mei_me_hcbww_write(dev, reg_buf[i]);
O
Oren Weil 已提交
486

487 488 489
	rem = length & 0x3;
	if (rem > 0) {
		u32 reg = 0;
490

491
		memcpy(&reg, &buf[length - rem], rem);
492
		mei_me_hcbww_write(dev, reg);
O
Oren Weil 已提交
493 494
	}

495 496
	hcsr = mei_hcsr_read(dev) | H_IG;
	mei_hcsr_set(dev, hcsr);
497
	if (!mei_me_hw_is_ready(dev))
498
		return -EIO;
O
Oren Weil 已提交
499

500
	return 0;
O
Oren Weil 已提交
501 502 503
}

/**
504
 * mei_me_count_full_read_slots - counts read full slots.
O
Oren Weil 已提交
505 506 507
 *
 * @dev: the device structure
 *
508
 * Return: -EOVERFLOW if overflow, otherwise filled slots count
O
Oren Weil 已提交
509
 */
510
static int mei_me_count_full_read_slots(struct mei_device *dev)
O
Oren Weil 已提交
511
{
512
	u32 me_csr;
O
Oren Weil 已提交
513 514 515
	char read_ptr, write_ptr;
	unsigned char buffer_depth, filled_slots;

516
	me_csr = mei_me_mecsr_read(dev);
517 518 519
	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
O
Oren Weil 已提交
520 521 522 523 524 525
	filled_slots = (unsigned char) (write_ptr - read_ptr);

	/* check for overflow */
	if (filled_slots > buffer_depth)
		return -EOVERFLOW;

526
	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
O
Oren Weil 已提交
527 528 529 530
	return (int)filled_slots;
}

/**
531
 * mei_me_read_slots - reads a message from mei device.
O
Oren Weil 已提交
532 533 534 535
 *
 * @dev: the device structure
 * @buffer: message buffer will be written
 * @buffer_length: message size will be read
A
Alexander Usyskin 已提交
536 537
 *
 * Return: always 0
O
Oren Weil 已提交
538
 */
539
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
540
		    unsigned long buffer_length)
O
Oren Weil 已提交
541
{
542
	u32 *reg_buf = (u32 *)buffer;
543
	u32 hcsr;
O
Oren Weil 已提交
544

545
	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
546
		*reg_buf++ = mei_me_mecbrw_read(dev);
O
Oren Weil 已提交
547 548

	if (buffer_length > 0) {
549
		u32 reg = mei_me_mecbrw_read(dev);
550

551
		memcpy(reg_buf, &reg, buffer_length);
O
Oren Weil 已提交
552 553
	}

554 555
	hcsr = mei_hcsr_read(dev) | H_IG;
	mei_hcsr_set(dev, hcsr);
556
	return 0;
O
Oren Weil 已提交
557 558
}

559
/**
560
 * mei_me_pg_set - write pg enter register
561 562 563
 *
 * @dev: the device structure
 */
564
static void mei_me_pg_set(struct mei_device *dev)
565 566
{
	struct mei_me_hw *hw = to_me_hw(dev);
T
Tomas Winkler 已提交
567 568 569 570
	u32 reg;

	reg = mei_me_reg_read(hw, H_HPG_CSR);
	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
571

572
	reg |= H_HPG_CSR_PGI;
T
Tomas Winkler 已提交
573 574

	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
575 576 577 578
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

/**
579
 * mei_me_pg_unset - write pg exit register
580 581 582
 *
 * @dev: the device structure
 */
583
static void mei_me_pg_unset(struct mei_device *dev)
584 585
{
	struct mei_me_hw *hw = to_me_hw(dev);
T
Tomas Winkler 已提交
586 587 588 589
	u32 reg;

	reg = mei_me_reg_read(hw, H_HPG_CSR);
	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
590 591 592 593

	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");

	reg |= H_HPG_CSR_PGIHEXR;
T
Tomas Winkler 已提交
594 595

	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
596 597 598
	mei_me_reg_write(hw, H_HPG_CSR, reg);
}

599
/**
600
 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
601 602 603
 *
 * @dev: the device structure
 *
604
 * Return: 0 on success an error code otherwise
605
 */
606
static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
624
		mei_me_pg_set(dev);
625 626 627 628 629 630 631 632 633 634 635 636
		ret = 0;
	} else {
		ret = -ETIME;
	}

	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_ON;

	return ret;
}

/**
637
 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
638 639 640
 *
 * @dev: the device structure
 *
641
 * Return: 0 on success an error code otherwise
642
 */
643
static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
644 645 646 647 648 649 650 651 652 653
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;

	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
		goto reply;

	dev->pg_event = MEI_PG_EVENT_WAIT;

654
	mei_me_pg_unset(dev);
655 656 657 658 659 660 661

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

reply:
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
		ret = -ETIME;
		goto out;
	}

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
	if (ret)
		return ret;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
		ret = 0;
679 680 681
	else
		ret = -ETIME;

682
out:
683 684 685 686 687 688
	dev->pg_event = MEI_PG_EVENT_IDLE;
	hw->pg_state = MEI_PG_OFF;

	return ret;
}

689 690 691 692 693 694 695 696 697 698 699 700 701
/**
 * mei_me_pg_in_transition - is device now in pg transition
 *
 * @dev: the device structure
 *
 * Return: true if in pg transition, false otherwise
 */
static bool mei_me_pg_in_transition(struct mei_device *dev)
{
	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
}

702 703 704 705 706
/**
 * mei_me_pg_is_enabled - detect if PG is supported by HW
 *
 * @dev: the device structure
 *
707
 * Return: true is pg supported, false otherwise
708 709 710
 */
static bool mei_me_pg_is_enabled(struct mei_device *dev)
{
711
	struct mei_me_hw *hw = to_me_hw(dev);
712
	u32 reg = mei_me_mecsr_read(dev);
713

714 715 716
	if (hw->d0i3_supported)
		return true;

717 718 719
	if ((reg & ME_PGIC_HRA) == 0)
		goto notsupported;

720
	if (!dev->hbm_f_pg_supported)
721 722 723 724 725
		goto notsupported;

	return true;

notsupported:
726 727
	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
		hw->d0i3_supported,
728 729 730 731 732 733 734 735 736
		!!(reg & ME_PGIC_HRA),
		dev->version.major_version,
		dev->version.minor_version,
		HBM_MAJOR_VERSION_PGI,
		HBM_MINOR_VERSION_PGI);

	return false;
}

737
/**
738
 * mei_me_d0i3_set - write d0i3 register bit on mei device.
739 740
 *
 * @dev: the device structure
741 742 743
 * @intr: ask for interrupt
 *
 * Return: D0I3C register value
744
 */
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
{
	u32 reg = mei_me_d0i3c_read(dev);

	reg |= H_D0I3C_I3;
	if (intr)
		reg |= H_D0I3C_IR;
	else
		reg &= ~H_D0I3C_IR;
	mei_me_d0i3c_write(dev, reg);
	/* read it to ensure HW consistency */
	reg = mei_me_d0i3c_read(dev);
	return reg;
}

/**
 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 *
 * @dev: the device structure
 *
 * Return: D0I3C register value
 */
static u32 mei_me_d0i3_unset(struct mei_device *dev)
{
	u32 reg = mei_me_d0i3c_read(dev);

	reg &= ~H_D0I3C_I3;
	reg |= H_D0I3C_IR;
	mei_me_d0i3c_write(dev, reg);
	/* read it to ensure HW consistency */
	reg = mei_me_d0i3c_read(dev);
	return reg;
}

/**
 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_enter_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
	int ret;
	u32 reg;

	reg = mei_me_d0i3c_read(dev);
	if (reg & H_D0I3C_I3) {
		/* we are in d0i3, nothing to do */
		dev_dbg(dev->dev, "d0i3 set not needed\n");
		ret = 0;
		goto on;
	}

	/* PGI entry procedure */
	dev->pg_event = MEI_PG_EVENT_WAIT;

	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
	if (ret)
		/* FIXME: should we reset here? */
		goto out;

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
		ret = -ETIME;
		goto out;
	}
	/* end PGI entry procedure */

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;

	reg = mei_me_d0i3_set(dev, true);
	if (!(reg & H_D0I3C_CIP)) {
		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
		ret = 0;
		goto on;
	}

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
		reg = mei_me_d0i3c_read(dev);
		if (!(reg & H_D0I3C_I3)) {
			ret = -ETIME;
			goto out;
		}
	}

	ret = 0;
on:
	hw->pg_state = MEI_PG_ON;
out:
	dev->pg_event = MEI_PG_EVENT_IDLE;
	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
	return ret;
}

/**
 * mei_me_d0i3_enter - perform d0i3 entry procedure
 *   no hbm PG handshake
 *   no waiting for confirmation; runs with interrupts
 *   disabled
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_enter(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 reg;

	reg = mei_me_d0i3c_read(dev);
	if (reg & H_D0I3C_I3) {
		/* we are in d0i3, nothing to do */
		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
		goto on;
	}

	mei_me_d0i3_set(dev, false);
on:
	hw->pg_state = MEI_PG_ON;
	dev->pg_event = MEI_PG_EVENT_IDLE;
	dev_dbg(dev->dev, "d0i3 enter\n");
	return 0;
}

/**
 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
static int mei_me_d0i3_exit_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);
	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
	int ret;
	u32 reg;

	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;

	reg = mei_me_d0i3c_read(dev);
	if (!(reg & H_D0I3C_I3)) {
		/* we are not in d0i3, nothing to do */
		dev_dbg(dev->dev, "d0i3 exit not needed\n");
		ret = 0;
		goto off;
	}

	reg = mei_me_d0i3_unset(dev);
	if (!(reg & H_D0I3C_CIP)) {
		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
		ret = 0;
		goto off;
	}

	mutex_unlock(&dev->device_lock);
	wait_event_timeout(dev->wait_pg,
		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
	mutex_lock(&dev->device_lock);

	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
		reg = mei_me_d0i3c_read(dev);
		if (reg & H_D0I3C_I3) {
			ret = -ETIME;
			goto out;
		}
	}

	ret = 0;
off:
	hw->pg_state = MEI_PG_OFF;
out:
	dev->pg_event = MEI_PG_EVENT_IDLE;

	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
	return ret;
}

/**
 * mei_me_pg_legacy_intr - perform legacy pg processing
 *			   in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_pg_legacy_intr(struct mei_device *dev)
943 944 945 946 947 948 949 950 951 952 953 954
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
		return;

	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
	hw->pg_state = MEI_PG_OFF;
	if (waitqueue_active(&dev->wait_pg))
		wake_up(&dev->wait_pg);
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_d0i3_intr(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
	    (hw->intr_source & H_D0I3C_IS)) {
		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
		if (hw->pg_state == MEI_PG_ON) {
			hw->pg_state = MEI_PG_OFF;
			if (dev->hbm_state != MEI_HBM_IDLE) {
				/*
				 * force H_RDY because it could be
				 * wiped off during PG
				 */
				dev_dbg(dev->dev, "d0i3 set host ready\n");
				mei_me_host_set_ready(dev);
			}
		} else {
			hw->pg_state = MEI_PG_ON;
		}

		wake_up(&dev->wait_pg);
	}

	if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
		/*
		 * HW sent some data and we are in D0i3, so
		 * we got here because of HW initiated exit from D0i3.
		 * Start runtime pm resume sequence to exit low power state.
		 */
		dev_dbg(dev->dev, "d0i3 want resume\n");
		mei_hbm_pg_resume(dev);
	}
}

/**
 * mei_me_pg_intr - perform pg processing in interrupt thread handler
 *
 * @dev: the device structure
 */
static void mei_me_pg_intr(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		mei_me_d0i3_intr(dev);
	else
		mei_me_pg_legacy_intr(dev);
}

/**
 * mei_me_pg_enter_sync - perform runtime pm entry procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_enter_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		return mei_me_d0i3_enter_sync(dev);
	else
		return mei_me_pg_legacy_enter_sync(dev);
}

/**
 * mei_me_pg_exit_sync - perform runtime pm exit procedure
 *
 * @dev: the device structure
 *
 * Return: 0 on success an error code otherwise
 */
int mei_me_pg_exit_sync(struct mei_device *dev)
{
	struct mei_me_hw *hw = to_me_hw(dev);

	if (hw->d0i3_supported)
		return mei_me_d0i3_exit_sync(dev);
	else
		return mei_me_pg_legacy_exit_sync(dev);
}

1044 1045 1046 1047 1048 1049
/**
 * mei_me_hw_reset - resets fw via mei csr register.
 *
 * @dev: the device structure
 * @intr_enable: if interrupt should be enabled after reset.
 *
1050
 * Return: 0 on success an error code otherwise
1051 1052 1053
 */
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	struct mei_me_hw *hw = to_me_hw(dev);
	int ret;
	u32 hcsr;

	if (intr_enable) {
		mei_me_intr_enable(dev);
		if (hw->d0i3_supported) {
			ret = mei_me_d0i3_exit_sync(dev);
			if (ret)
				return ret;
		}
	}
1066

1067 1068
	pm_runtime_set_active(dev->dev);

1069
	hcsr = mei_hcsr_read(dev);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/* H_RST may be found lit before reset is started,
	 * for example if preceding reset flow hasn't completed.
	 * In that case asserting H_RST will be ignored, therefore
	 * we need to clean H_RST bit to start a successful reset sequence.
	 */
	if ((hcsr & H_RST) == H_RST) {
		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
		hcsr &= ~H_RST;
		mei_hcsr_set(dev, hcsr);
		hcsr = mei_hcsr_read(dev);
	}

	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;

1084
	if (!intr_enable)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		hcsr &= ~H_CSR_IE_MASK;

	dev->recvd_hw_ready = false;
	mei_hcsr_write(dev, hcsr);

	/*
	 * Host reads the H_CSR once to ensure that the
	 * posted write to H_CSR completes.
	 */
	hcsr = mei_hcsr_read(dev);

	if ((hcsr & H_RST) == 0)
		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);

	if ((hcsr & H_RDY) == H_RDY)
		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);

1102
	if (!intr_enable) {
1103
		mei_me_hw_reset_release(dev);
1104 1105 1106 1107 1108 1109
		if (hw->d0i3_supported) {
			ret = mei_me_d0i3_enter(dev);
			if (ret)
				return ret;
		}
	}
1110 1111 1112
	return 0;
}

1113 1114 1115 1116 1117 1118
/**
 * mei_me_irq_quick_handler - The ISR of the MEI device
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
1119
 * Return: irqreturn_t
1120 1121 1122
 */
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
1123 1124 1125
	struct mei_device *dev = (struct mei_device *)dev_id;
	struct mei_me_hw *hw = to_me_hw(dev);
	u32 hcsr;
1126

1127 1128
	hcsr = mei_hcsr_read(dev);
	if (!(hcsr & H_CSR_IS_MASK))
1129 1130
		return IRQ_NONE;

1131 1132 1133 1134
	hw->intr_source = hcsr & H_CSR_IS_MASK;
	dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);

	/* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1135
	mei_hcsr_write(dev, hcsr);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	return IRQ_WAKE_THREAD;
}

/**
 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
 * processing.
 *
 * @irq: The irq number
 * @dev_id: pointer to the device structure
 *
1147
 * Return: irqreturn_t
1148 1149 1150 1151 1152 1153 1154
 *
 */
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
	struct mei_device *dev = (struct mei_device *) dev_id;
	struct mei_cl_cb complete_list;
	s32 slots;
1155
	int rets = 0;
1156

1157
	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1158 1159 1160 1161 1162
	/* initialize our complete list */
	mutex_lock(&dev->device_lock);
	mei_io_list_init(&complete_list);

	/* check if ME wants a reset */
1163
	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1164
		dev_warn(dev->dev, "FW not ready: resetting.\n");
1165 1166
		schedule_work(&dev->reset_work);
		goto end;
1167 1168
	}

1169 1170
	mei_me_pg_intr(dev);

1171 1172 1173
	/*  check if we need to start the dev */
	if (!mei_host_is_ready(dev)) {
		if (mei_hw_is_ready(dev)) {
1174
			dev_dbg(dev->dev, "we need to start the dev.\n");
T
Tomas Winkler 已提交
1175
			dev->recvd_hw_ready = true;
1176
			wake_up(&dev->wait_hw_ready);
1177
		} else {
1178
			dev_dbg(dev->dev, "Spurious Interrupt\n");
1179
		}
1180
		goto end;
1181 1182 1183 1184
	}
	/* check slots available for reading */
	slots = mei_count_full_read_slots(dev);
	while (slots > 0) {
1185
		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1186
		rets = mei_irq_read_handler(dev, &complete_list, &slots);
1187 1188 1189 1190 1191 1192 1193
		/* There is a race between ME write and interrupt delivery:
		 * Not all data is always available immediately after the
		 * interrupt, so try to read again on the next interrupt.
		 */
		if (rets == -ENODATA)
			break;

1194
		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1195
			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1196
						rets);
1197
			schedule_work(&dev->reset_work);
1198
			goto end;
1199
		}
1200
	}
1201

1202 1203
	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);

1204 1205 1206
	/*
	 * During PG handshake only allowed write is the replay to the
	 * PG exit message, so block calling write function
1207
	 * if the pg event is in PG handshake
1208
	 */
1209 1210
	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1211 1212 1213
		rets = mei_irq_write_handler(dev, &complete_list);
		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
	}
1214

1215
	mei_irq_compl_handler(dev, &complete_list);
1216

1217
end:
1218
	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1219
	mutex_unlock(&dev->device_lock);
1220 1221
	return IRQ_HANDLED;
}
1222

1223 1224
static const struct mei_hw_ops mei_me_hw_ops = {

1225
	.fw_status = mei_me_fw_status,
1226 1227
	.pg_state  = mei_me_pg_state,

1228 1229 1230 1231
	.host_is_ready = mei_me_host_is_ready,

	.hw_is_ready = mei_me_hw_is_ready,
	.hw_reset = mei_me_hw_reset,
T
Tomas Winkler 已提交
1232 1233
	.hw_config = mei_me_hw_config,
	.hw_start = mei_me_hw_start,
1234

1235
	.pg_in_transition = mei_me_pg_in_transition,
1236 1237
	.pg_is_enabled = mei_me_pg_is_enabled,

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	.intr_clear = mei_me_intr_clear,
	.intr_enable = mei_me_intr_enable,
	.intr_disable = mei_me_intr_disable,

	.hbuf_free_slots = mei_me_hbuf_empty_slots,
	.hbuf_is_ready = mei_me_hbuf_is_empty,
	.hbuf_max_len = mei_me_hbuf_max_len,

	.write = mei_me_write_message,

	.rdbuf_full_slots = mei_me_count_full_read_slots,
	.read_hdr = mei_me_mecbrw_read,
	.read = mei_me_read_slots
};

1253 1254 1255
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
{
	u32 reg;
1256

1257
	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1258
	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
	return (reg & 0x600) == 0x200;
}

#define MEI_CFG_FW_NM                           \
	.quirk_probe = mei_me_fw_type_nm

static bool mei_me_fw_type_sps(struct pci_dev *pdev)
{
	u32 reg;
1269 1270 1271 1272 1273 1274 1275 1276
	unsigned int devfn;

	/*
	 * Read ME FW Status register to check for SPS Firmware
	 * The SPS FW is only signaled in pci function 0
	 */
	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1277
	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1278 1279 1280 1281 1282 1283 1284 1285
	/* if bits [19:16] = 15, running SPS Firmware */
	return (reg & 0xf0000) == 0xf0000;
}

#define MEI_CFG_FW_SPS                           \
	.quirk_probe = mei_me_fw_type_sps


1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
#define MEI_CFG_LEGACY_HFS                      \
	.fw_status.count = 0

#define MEI_CFG_ICH_HFS                        \
	.fw_status.count = 1,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1

#define MEI_CFG_PCH_HFS                         \
	.fw_status.count = 2,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2

1298 1299 1300 1301 1302 1303 1304 1305
#define MEI_CFG_PCH8_HFS                        \
	.fw_status.count = 6,                   \
	.fw_status.status[0] = PCI_CFG_HFS_1,   \
	.fw_status.status[1] = PCI_CFG_HFS_2,   \
	.fw_status.status[2] = PCI_CFG_HFS_3,   \
	.fw_status.status[3] = PCI_CFG_HFS_4,   \
	.fw_status.status[4] = PCI_CFG_HFS_5,   \
	.fw_status.status[5] = PCI_CFG_HFS_6
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

/* ICH Legacy devices */
const struct mei_cfg mei_me_legacy_cfg = {
	MEI_CFG_LEGACY_HFS,
};

/* ICH devices */
const struct mei_cfg mei_me_ich_cfg = {
	MEI_CFG_ICH_HFS,
};

/* PCH devices */
const struct mei_cfg mei_me_pch_cfg = {
	MEI_CFG_PCH_HFS,
};

1322 1323 1324 1325 1326 1327 1328

/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
	MEI_CFG_PCH_HFS,
	MEI_CFG_FW_NM,
};

1329 1330 1331 1332 1333 1334 1335 1336
/* PCH8 Lynx Point and newer devices */
const struct mei_cfg mei_me_pch8_cfg = {
	MEI_CFG_PCH8_HFS,
};

/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
const struct mei_cfg mei_me_pch8_sps_cfg = {
	MEI_CFG_PCH8_HFS,
1337 1338 1339
	MEI_CFG_FW_SPS,
};

1340
/**
1341
 * mei_me_dev_init - allocates and initializes the mei device structure
1342 1343
 *
 * @pdev: The pci device structure
1344
 * @cfg: per device generation config
1345
 *
1346
 * Return: The mei_device_device pointer on success, NULL on failure.
1347
 */
1348 1349
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
				   const struct mei_cfg *cfg)
1350 1351
{
	struct mei_device *dev;
1352
	struct mei_me_hw *hw;
1353 1354 1355 1356 1357

	dev = kzalloc(sizeof(struct mei_device) +
			 sizeof(struct mei_me_hw), GFP_KERNEL);
	if (!dev)
		return NULL;
1358
	hw = to_me_hw(dev);
1359

1360
	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1361
	hw->cfg = cfg;
1362 1363
	return dev;
}
1364