percpu.c 66.2 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
34
 * guaranteed to be equal to or larger than the maximum contiguous
35 36 37 38 39 40 41 42
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70
#include <linux/kmemleak.h>
71 72

#include <asm/cacheflush.h>
73
#include <asm/sections.h>
74
#include <asm/tlbflush.h>
75
#include <asm/io.h>
76 77 78

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 80
#define PCPU_ATOMIC_MAP_MARGIN_LOW	32
#define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
81 82
#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4
83

84
#ifdef CONFIG_SMP
85 86 87
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
88 89 90
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
91 92 93
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
94 95 96
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
97
#endif
98 99 100 101 102
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
103

104 105 106 107
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
108
	void			*base_addr;	/* base address of this chunk */
109

110
	int			map_used;	/* # of map entries used before the sentry */
111 112
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
113 114
	struct work_struct	map_extend_work;/* async ->map[] extension */

115
	void			*data;		/* chunk data */
A
Al Viro 已提交
116
	int			first_free;	/* no free below this */
117
	bool			immutable;	/* no [de]population allowed */
118
	int			nr_populated;	/* # of populated pages */
T
Tejun Heo 已提交
119
	unsigned long		populated[];	/* populated bitmap */
120 121
};

122 123
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
124
static int pcpu_nr_units __read_mostly;
125
static int pcpu_atom_size __read_mostly;
126 127
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
128

T
Tejun Heo 已提交
129 130 131
/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __read_mostly;
static unsigned int pcpu_high_unit_cpu __read_mostly;
132

133
/* the address of the first chunk which starts with the kernel static area */
134
void *pcpu_base_addr __read_mostly;
135 136
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
137 138
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
139

140 141 142 143 144
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

145 146 147 148 149 150 151 152 153 154 155 156 157 158
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
159 160 161
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

T
Tejun Heo 已提交
162 163
static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
164

165
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166

167 168 169 170 171 172
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
static int pcpu_nr_empty_pop_pages;

173 174 175 176 177 178
/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
179 180
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
181 182 183 184 185 186 187 188
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

205
static int __pcpu_size_to_slot(int size)
206
{
T
Tejun Heo 已提交
207
	int highbit = fls(size);	/* size is in bytes */
208 209 210
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

211 212 213 214 215 216 217
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

218 219 220 221 222 223 224 225
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

226 227 228 229 230 231 232 233 234 235 236 237 238
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
239
{
240
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
241 242
}

243 244
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
245
{
T
Tejun Heo 已提交
246
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
247
		(page_idx << PAGE_SHIFT);
248 249
}

250 251
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
252 253 254 255 256
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

257 258
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
259 260 261 262 263 264 265
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
266
 * page regions between @start and @end in @chunk.  @rs and @re should
T
Tejun Heo 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

280
/**
281
 * pcpu_mem_zalloc - allocate memory
282
 * @size: bytes to allocate
283
 *
284
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
285
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
286
 * memory is always zeroed.
287
 *
288 289 290
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
291
 * RETURNS:
292
 * Pointer to the allocated area on success, NULL on failure.
293
 */
294
static void *pcpu_mem_zalloc(size_t size)
295
{
296 297 298
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

299 300
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
301 302
	else
		return vzalloc(size);
303
}
304

305 306 307 308 309
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
310
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
311 312 313
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
314
	if (size <= PAGE_SIZE)
315
		kfree(ptr);
316
	else
317
		vfree(ptr);
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * pcpu_count_occupied_pages - count the number of pages an area occupies
 * @chunk: chunk of interest
 * @i: index of the area in question
 *
 * Count the number of pages chunk's @i'th area occupies.  When the area's
 * start and/or end address isn't aligned to page boundary, the straddled
 * page is included in the count iff the rest of the page is free.
 */
static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
{
	int off = chunk->map[i] & ~1;
	int end = chunk->map[i + 1] & ~1;

	if (!PAGE_ALIGNED(off) && i > 0) {
		int prev = chunk->map[i - 1];

		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
			off = round_down(off, PAGE_SIZE);
	}

	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
		int next = chunk->map[i + 1];
		int nend = chunk->map[i + 2] & ~1;

		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
			end = round_up(end, PAGE_SIZE);
	}

	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
}

352 353 354 355 356 357 358
/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
359 360
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
361 362 363
 *
 * CONTEXT:
 * pcpu_lock.
364 365 366 367 368
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

369
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
370 371 372 373 374 375 376
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

377
/**
378 379
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
380
 * @is_atomic: the allocation context
381
 *
382 383 384 385 386 387
 * Determine whether area map of @chunk needs to be extended.  If
 * @is_atomic, only the amount necessary for a new allocation is
 * considered; however, async extension is scheduled if the left amount is
 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 * ensures that the map is likely to have enough available space to
 * accomodate atomic allocations which can't extend maps directly.
388
 *
389
 * CONTEXT:
390
 * pcpu_lock.
391
 *
392
 * RETURNS:
393 394
 * New target map allocation length if extension is necessary, 0
 * otherwise.
395
 */
396
static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
397
{
398 399 400 401
	int margin, new_alloc;

	if (is_atomic) {
		margin = 3;
402

403
		if (chunk->map_alloc <
404 405
		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
		    pcpu_async_enabled)
406 407 408 409 410 411
			schedule_work(&chunk->map_extend_work);
	} else {
		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
	}

	if (chunk->map_alloc >= chunk->map_used + margin)
412 413 414
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
415
	while (new_alloc < chunk->map_used + margin)
416 417
		new_alloc *= 2;

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

440
	new = pcpu_mem_zalloc(new_size);
441
	if (!new)
442
		return -ENOMEM;
443

444 445 446 447 448
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
449

450
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
451 452 453
	old = chunk->map;

	memcpy(new, old, old_size);
454 455 456

	chunk->map_alloc = new_alloc;
	chunk->map = new;
457 458 459 460 461 462 463 464 465 466 467 468
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

469 470 471
	return 0;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void pcpu_map_extend_workfn(struct work_struct *work)
{
	struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
						map_extend_work);
	int new_alloc;

	spin_lock_irq(&pcpu_lock);
	new_alloc = pcpu_need_to_extend(chunk, false);
	spin_unlock_irq(&pcpu_lock);

	if (new_alloc)
		pcpu_extend_area_map(chunk, new_alloc);
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 * @chunk: chunk the candidate area belongs to
 * @off: the offset to the start of the candidate area
 * @this_size: the size of the candidate area
 * @size: the size of the target allocation
 * @align: the alignment of the target allocation
 * @pop_only: only allocate from already populated region
 *
 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 * at @off sized @this_size is a candidate.  This function determines
 * whether the target allocation fits in the candidate area and returns the
 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 * is returned.
 *
 * If @pop_only is %true, this function only considers the already
 * populated part of the candidate area.
 */
static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
			    int size, int align, bool pop_only)
{
	int cand_off = off;

	while (true) {
		int head = ALIGN(cand_off, align) - off;
		int page_start, page_end, rs, re;

		if (this_size < head + size)
			return -1;

		if (!pop_only)
			return head;

		/*
		 * If the first unpopulated page is beyond the end of the
		 * allocation, the whole allocation is populated;
		 * otherwise, retry from the end of the unpopulated area.
		 */
		page_start = PFN_DOWN(head + off);
		page_end = PFN_UP(head + off + size);

		rs = page_start;
		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
		if (rs >= page_end)
			return head;
		cand_off = re * PAGE_SIZE;
	}
}

535 536 537
/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
538
 * @size: wanted size in bytes
539
 * @align: wanted align
540
 * @pop_only: allocate only from the populated area
541
 * @occ_pages_p: out param for the number of pages the area occupies
542 543 544 545 546
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
547 548
 * @chunk->map must have at least two free slots.
 *
549 550 551
 * CONTEXT:
 * pcpu_lock.
 *
552
 * RETURNS:
553 554
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
555
 */
556
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
557
			   bool pop_only, int *occ_pages_p)
558 559 560 561
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;
A
Al Viro 已提交
562
	bool seen_free = false;
563
	int *p;
564

A
Al Viro 已提交
565
	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
566
		int head, tail;
567 568 569 570 571
		int this_size;

		off = *p;
		if (off & 1)
			continue;
572

573
		this_size = (p[1] & ~1) - off;
574 575 576 577

		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
					pop_only);
		if (head < 0) {
A
Al Viro 已提交
578 579 580 581
			if (!seen_free) {
				chunk->first_free = i;
				seen_free = true;
			}
582
			max_contig = max(this_size, max_contig);
583 584 585 586 587 588 589 590 591
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
592
		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
593
			*p = off += head;
594
			if (p[-1] & 1)
595
				chunk->free_size -= head;
596 597
			else
				max_contig = max(*p - p[-1], max_contig);
598
			this_size -= head;
599 600 601 602
			head = 0;
		}

		/* if tail is small, just keep it around */
603 604
		tail = this_size - head - size;
		if (tail < sizeof(int)) {
605
			tail = 0;
606 607
			size = this_size - head;
		}
608 609 610

		/* split if warranted */
		if (head || tail) {
611 612 613
			int nr_extra = !!head + !!tail;

			/* insert new subblocks */
614
			memmove(p + nr_extra + 1, p + 1,
615 616 617
				sizeof(chunk->map[0]) * (chunk->map_used - i));
			chunk->map_used += nr_extra;

618
			if (head) {
A
Al Viro 已提交
619 620 621 622
				if (!seen_free) {
					chunk->first_free = i;
					seen_free = true;
				}
623 624
				*++p = off += head;
				++i;
625 626 627
				max_contig = max(head, max_contig);
			}
			if (tail) {
628
				p[1] = off + size;
629
				max_contig = max(tail, max_contig);
630 631 632
			}
		}

A
Al Viro 已提交
633 634 635
		if (!seen_free)
			chunk->first_free = i + 1;

636
		/* update hint and mark allocated */
637
		if (i + 1 == chunk->map_used)
638 639 640 641 642
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

643 644
		chunk->free_size -= size;
		*p |= 1;
645

646
		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
647 648 649 650 651 652 653
		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

654 655
	/* tell the upper layer that this chunk has no matching area */
	return -1;
656 657 658 659 660 661
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
662
 * @occ_pages_p: out param for the number of pages the area occupies
663 664 665 666
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
667 668 669
 *
 * CONTEXT:
 * pcpu_lock.
670
 */
671 672
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
			   int *occ_pages_p)
673 674
{
	int oslot = pcpu_chunk_slot(chunk);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	int off = 0;
	unsigned i, j;
	int to_free = 0;
	int *p;

	freeme |= 1;	/* we are searching for <given offset, in use> pair */

	i = 0;
	j = chunk->map_used;
	while (i != j) {
		unsigned k = (i + j) / 2;
		off = chunk->map[k];
		if (off < freeme)
			i = k + 1;
		else if (off > freeme)
			j = k;
		else
			i = j = k;
	}
694 695
	BUG_ON(off != freeme);

A
Al Viro 已提交
696 697 698
	if (i < chunk->first_free)
		chunk->first_free = i;

699 700 701
	p = chunk->map + i;
	*p = off &= ~1;
	chunk->free_size += (p[1] & ~1) - off;
702

703 704
	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);

705 706 707
	/* merge with next? */
	if (!(p[1] & 1))
		to_free++;
708
	/* merge with previous? */
709 710
	if (i > 0 && !(p[-1] & 1)) {
		to_free++;
711
		i--;
712
		p--;
713
	}
714 715 716 717
	if (to_free) {
		chunk->map_used -= to_free;
		memmove(p + 1, p + 1 + to_free,
			(chunk->map_used - i) * sizeof(chunk->map[0]));
718 719
	}

720
	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
721 722 723
	pcpu_chunk_relocate(chunk, oslot);
}

724 725 726 727
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

728
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
729 730 731
	if (!chunk)
		return NULL;

732 733
	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
						sizeof(chunk->map[0]));
734
	if (!chunk->map) {
735
		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
736 737 738 739
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
740 741 742
	chunk->map[0] = 0;
	chunk->map[1] = pcpu_unit_size | 1;
	chunk->map_used = 1;
743 744

	INIT_LIST_HEAD(&chunk->list);
745
	INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
746 747 748 749 750 751 752 753 754 755 756
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
757
	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
758 759
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
 */
static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
	pcpu_nr_empty_pop_pages += nr;
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
	pcpu_nr_empty_pop_pages -= nr;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
818
 */
819 820 821 822 823 824
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
825

826 827 828
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
829
#include "percpu-vm.c"
830
#endif
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
857
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
858 859
}

860
/**
861
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
862
 * @size: size of area to allocate in bytes
863
 * @align: alignment of area (max PAGE_SIZE)
864
 * @reserved: allocate from the reserved chunk if available
865
 * @gfp: allocation flags
866
 *
867 868
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 * contain %GFP_KERNEL, the allocation is atomic.
869 870 871 872
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
873 874
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
875
{
876
	static int warn_limit = 10;
877
	struct pcpu_chunk *chunk;
878
	const char *err;
879
	bool is_atomic = !(gfp & GFP_KERNEL);
880
	int occ_pages = 0;
T
Tejun Heo 已提交
881
	int slot, off, new_alloc, cpu, ret;
882
	unsigned long flags;
883
	void __percpu *ptr;
884

885 886
	/*
	 * We want the lowest bit of offset available for in-use/free
V
Viro 已提交
887
	 * indicator, so force >= 16bit alignment and make size even.
888 889 890 891
	 */
	if (unlikely(align < 2))
		align = 2;

892
	size = ALIGN(size, 2);
V
Viro 已提交
893

894
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
895 896 897 898 899
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

900
	spin_lock_irqsave(&pcpu_lock, flags);
901

902 903 904
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
905 906 907

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
908
			goto fail_unlock;
909
		}
910

911
		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
912
			spin_unlock_irqrestore(&pcpu_lock, flags);
913 914
			if (is_atomic ||
			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
915
				err = "failed to extend area map of reserved chunk";
T
Tejun Heo 已提交
916
				goto fail;
917 918 919 920
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

921 922
		off = pcpu_alloc_area(chunk, size, align, is_atomic,
				      &occ_pages);
923 924
		if (off >= 0)
			goto area_found;
925

926
		err = "alloc from reserved chunk failed";
927
		goto fail_unlock;
928 929
	}

930
restart:
931
	/* search through normal chunks */
932 933 934 935
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
936

937
			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
938
			if (new_alloc) {
939 940
				if (is_atomic)
					continue;
941 942 943 944
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
T
Tejun Heo 已提交
945
					goto fail;
946 947 948 949 950 951 952
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
953 954
			}

955 956
			off = pcpu_alloc_area(chunk, size, align, is_atomic,
					      &occ_pages);
957 958 959 960 961
			if (off >= 0)
				goto area_found;
		}
	}

962
	spin_unlock_irqrestore(&pcpu_lock, flags);
963

T
Tejun Heo 已提交
964 965 966 967 968
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
969 970 971
	if (is_atomic)
		goto fail;

T
Tejun Heo 已提交
972 973 974 975 976
	mutex_lock(&pcpu_alloc_mutex);

	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
977
			mutex_unlock(&pcpu_alloc_mutex);
T
Tejun Heo 已提交
978 979 980 981 982 983 984 985
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
986
	}
987

T
Tejun Heo 已提交
988
	mutex_unlock(&pcpu_alloc_mutex);
989
	goto restart;
990 991

area_found:
992
	spin_unlock_irqrestore(&pcpu_lock, flags);
993

994
	/* populate if not all pages are already there */
995
	if (!is_atomic) {
996
		int page_start, page_end, rs, re;
997

998
		mutex_lock(&pcpu_alloc_mutex);
999

1000 1001
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
1002

1003 1004 1005 1006 1007 1008 1009 1010
		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
				mutex_unlock(&pcpu_alloc_mutex);
1011
				pcpu_free_area(chunk, off, &occ_pages);
1012 1013 1014
				err = "failed to populate";
				goto fail_unlock;
			}
1015
			pcpu_chunk_populated(chunk, rs, re);
1016
			spin_unlock_irqrestore(&pcpu_lock, flags);
1017
		}
1018

1019 1020
		mutex_unlock(&pcpu_alloc_mutex);
	}
1021

1022 1023 1024
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages -= occ_pages;

1025 1026 1027
	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

1028 1029 1030 1031
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1032 1033 1034
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
	kmemleak_alloc_percpu(ptr, size);
	return ptr;
1035 1036

fail_unlock:
1037
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1038
fail:
1039 1040 1041
	if (!is_atomic && warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
			   size, align, is_atomic, err);
1042 1043 1044 1045
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
1046 1047 1048 1049 1050
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
	}
1051
	return NULL;
1052
}
1053 1054

/**
1055
 * __alloc_percpu_gfp - allocate dynamic percpu area
1056 1057
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1058
 * @gfp: allocation flags
1059
 *
1060 1061 1062
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
 * be called from any context but is a lot more likely to fail.
1063
 *
1064 1065 1066
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1080
void __percpu *__alloc_percpu(size_t size, size_t align)
1081
{
1082
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1083
}
1084 1085
EXPORT_SYMBOL_GPL(__alloc_percpu);

1086 1087 1088 1089 1090
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1091 1092 1093 1094
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1095
 *
1096 1097 1098
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1099 1100 1101
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1102
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1103
{
1104
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1105 1106
}

1107
/**
1108
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1109 1110 1111 1112
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
 */
1113
static void pcpu_balance_workfn(struct work_struct *work)
1114
{
1115 1116
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1117
	struct pcpu_chunk *chunk, *next;
1118
	int slot, nr_to_pop, ret;
1119

1120 1121 1122 1123
	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
1124 1125
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1126

1127
	list_for_each_entry_safe(chunk, next, free_head, list) {
1128 1129 1130
		WARN_ON(chunk->immutable);

		/* spare the first one */
1131
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1132 1133
			continue;

1134
		list_move(&chunk->list, &to_free);
1135 1136
	}

1137
	spin_unlock_irq(&pcpu_lock);
1138

1139
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1140
		int rs, re;
1141

1142 1143
		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			pcpu_depopulate_chunk(chunk, rs, re);
1144 1145 1146
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1147
		}
1148
		pcpu_destroy_chunk(chunk);
1149
	}
T
Tejun Heo 已提交
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			int nr = min(re - rs, nr_to_pop);

			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
				pcpu_chunk_populated(chunk, rs, rs + nr);
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
		chunk = pcpu_create_chunk();
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

T
Tejun Heo 已提交
1219
	mutex_unlock(&pcpu_alloc_mutex);
1220 1221 1222 1223 1224 1225
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1226 1227 1228 1229
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1230
 */
1231
void free_percpu(void __percpu *ptr)
1232
{
1233
	void *addr;
1234
	struct pcpu_chunk *chunk;
1235
	unsigned long flags;
1236
	int off, occ_pages;
1237 1238 1239 1240

	if (!ptr)
		return;

1241 1242
	kmemleak_free_percpu(ptr);

1243 1244
	addr = __pcpu_ptr_to_addr(ptr);

1245
	spin_lock_irqsave(&pcpu_lock, flags);
1246 1247

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1248
	off = addr - chunk->base_addr;
1249

1250 1251 1252 1253
	pcpu_free_area(chunk, off, &occ_pages);

	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages += occ_pages;
1254

1255
	/* if there are more than one fully free chunks, wake up grim reaper */
1256 1257 1258
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1259
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1260
			if (pos != chunk) {
1261
				pcpu_schedule_balance_work();
1262 1263 1264 1265
				break;
			}
	}

1266
	spin_unlock_irqrestore(&pcpu_lock, flags);
1267 1268 1269
}
EXPORT_SYMBOL_GPL(free_percpu);

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
1283
#ifdef CONFIG_SMP
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
1294 1295
#endif
	/* on UP, can't distinguish from other static vars, always false */
1296 1297 1298
	return false;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
 * The addr can be tranlated simply without checking if it falls into the
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1319 1320 1321 1322 1323
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1324 1325
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1326
	unsigned long first_low, first_high;
1327 1328 1329
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1330
	 * The following test on unit_low/high isn't strictly
1331 1332 1333
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
T
Tejun Heo 已提交
1334 1335 1336 1337 1338
	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
				     pcpu_unit_pages);
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1350
		if (!is_vmalloc_addr(addr))
1351 1352
			return __pa(addr);
		else
1353 1354
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1355
	} else
1356 1357
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1358 1359
}

1360
/**
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1387
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1412
	memblock_free_early(__pa(ai), ai->__ai_size);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1424
{
1425
	int group_width = 1, cpu_width = 1, width;
1426
	char empty_str[] = "--------";
1427 1428 1429 1430 1431 1432 1433
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1434

1435
	v = num_possible_cpus();
1436
	while (v /= 10)
1437 1438
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1439

1440 1441 1442
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1443

1444 1445 1446
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1447

1448 1449 1450 1451 1452 1453 1454 1455
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1456
				printk(KERN_CONT "\n");
1457 1458
				printk("%spcpu-alloc: ", lvl);
			}
1459
			printk(KERN_CONT "[%0*d] ", group_width, group);
1460 1461 1462

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1463
					printk(KERN_CONT "%0*d ", cpu_width,
1464 1465
					       gi->cpu_map[unit]);
				else
1466
					printk(KERN_CONT "%s ", empty_str);
1467 1468
		}
	}
1469
	printk(KERN_CONT "\n");
1470 1471
}

1472
/**
1473
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1474
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1475
 * @base_addr: mapped address
1476 1477 1478
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1479
 * setup path.
1480
 *
1481 1482 1483 1484 1485 1486
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1487 1488 1489 1490 1491 1492 1493
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1494 1495 1496
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1497
 *
1498 1499 1500
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1501
 *
1502 1503
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1504
 *
1505 1506 1507 1508 1509 1510 1511 1512 1513
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1514
 *
1515 1516
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1517
 *
1518 1519 1520 1521 1522 1523 1524
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1525
 * RETURNS:
T
Tejun Heo 已提交
1526
 * 0 on success, -errno on failure.
1527
 */
T
Tejun Heo 已提交
1528 1529
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1530
{
1531
	static char cpus_buf[4096] __initdata;
1532 1533
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1534 1535
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1536
	struct pcpu_chunk *schunk, *dchunk = NULL;
1537 1538
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1539
	unsigned long *unit_off;
1540
	unsigned int cpu;
1541 1542
	int *unit_map;
	int group, unit, i;
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1555
	/* sanity checks */
1556
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1557
#ifdef CONFIG_SMP
1558
	PCPU_SETUP_BUG_ON(!ai->static_size);
1559
	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1560
#endif
1561
	PCPU_SETUP_BUG_ON(!base_addr);
1562
	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1563 1564 1565
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1566
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1567
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1568

1569
	/* process group information and build config tables accordingly */
1570 1571 1572 1573 1574 1575
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1576

1577
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1578
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
1579 1580 1581

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
1582

1583 1584
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1585

1586 1587 1588
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1589 1590 1591 1592
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1593

1594 1595 1596
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1597

1598
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1599 1600
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
1601 1602 1603 1604 1605 1606 1607
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
1608
		}
1609
	}
1610 1611 1612
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1613 1614 1615 1616
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
1617
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1618

1619 1620 1621
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1622
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1623
	pcpu_unit_offsets = unit_off;
1624 1625

	/* determine basic parameters */
1626
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1627
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1628
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1629 1630
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1631

1632 1633 1634 1635 1636
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1637 1638
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1639 1640 1641
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1642 1643 1644 1645 1646 1647 1648
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1649
	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1650
	INIT_LIST_HEAD(&schunk->list);
1651
	INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
T
Tejun Heo 已提交
1652
	schunk->base_addr = base_addr;
1653 1654
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1655
	schunk->immutable = true;
T
Tejun Heo 已提交
1656
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1657
	schunk->nr_populated = pcpu_unit_pages;
1658

1659 1660
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1661
		pcpu_reserved_chunk = schunk;
1662
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1663 1664 1665 1666
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1667
	schunk->contig_hint = schunk->free_size;
1668

1669 1670 1671
	schunk->map[0] = 1;
	schunk->map[1] = ai->static_size;
	schunk->map_used = 1;
1672
	if (schunk->free_size)
1673 1674 1675
		schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
	else
		schunk->map[1] |= 1;
1676

1677 1678
	/* init dynamic chunk if necessary */
	if (dyn_size) {
1679
		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1680
		INIT_LIST_HEAD(&dchunk->list);
1681
		INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
T
Tejun Heo 已提交
1682
		dchunk->base_addr = base_addr;
1683 1684
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1685
		dchunk->immutable = true;
T
Tejun Heo 已提交
1686
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1687
		dchunk->nr_populated = pcpu_unit_pages;
1688 1689

		dchunk->contig_hint = dchunk->free_size = dyn_size;
1690 1691 1692 1693
		dchunk->map[0] = 1;
		dchunk->map[1] = pcpu_reserved_chunk_limit;
		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
		dchunk->map_used = 2;
1694 1695
	}

1696
	/* link the first chunk in */
1697
	pcpu_first_chunk = dchunk ?: schunk;
1698 1699
	pcpu_nr_empty_pop_pages +=
		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1700
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1701 1702

	/* we're done */
T
Tejun Heo 已提交
1703
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1704
	return 0;
1705
}
1706

1707 1708
#ifdef CONFIG_SMP

1709
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1710 1711 1712 1713
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1714

1715
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1716

1717 1718
static int __init percpu_alloc_setup(char *str)
{
1719 1720 1721
	if (!str)
		return -EINVAL;

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1734

1735
	return 0;
1736
}
1737
early_param("percpu_alloc", percpu_alloc_setup);
1738

1739 1740 1741 1742 1743
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1744 1745
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
1805
	 * which can accommodate 4k aligned segments which are equal to
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1913 1914 1915
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1916
 * @dyn_size: minimum free size for dynamic allocation in bytes
1917 1918 1919
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
1920
 * @free_fn: function to free percpu page
1921 1922 1923 1924 1925
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1936
 *
1937
 * @dyn_size specifies the minimum dynamic area size.
1938 1939
 *
 * If the needed size is smaller than the minimum or specified unit
1940
 * size, the leftover is returned using @free_fn.
1941 1942
 *
 * RETURNS:
T
Tejun Heo 已提交
1943
 * 0 on success, -errno on failure.
1944
 */
1945
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1946 1947 1948 1949
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1950
{
1951 1952
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1953
	struct pcpu_alloc_info *ai;
1954
	size_t size_sum, areas_size, max_distance;
1955
	int group, i, rc;
1956

1957 1958
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1959 1960
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1961

1962
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1963
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1964

1965
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1966
	if (!areas) {
T
Tejun Heo 已提交
1967
		rc = -ENOMEM;
1968
		goto out_free;
1969
	}
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
1987 1988
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
1989
		areas[group] = ptr;
1990

1991
		base = min(ptr, base);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
2013
	}
2014

2015
	/* base address is now known, determine group base offsets */
2016 2017
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
2018
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
2019 2020
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
2021 2022 2023 2024
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
2025
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
T
Tejun Heo 已提交
2026
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2027
			   "space 0x%lx\n", max_distance,
2028
			   VMALLOC_TOTAL);
2029 2030 2031 2032 2033 2034
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
2035

T
Tejun Heo 已提交
2036
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2037 2038
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2039

T
Tejun Heo 已提交
2040
	rc = pcpu_setup_first_chunk(ai, base);
2041 2042 2043 2044
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
2045 2046 2047
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
2048
out_free:
2049
	pcpu_free_alloc_info(ai);
2050
	if (areas)
2051
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
2052
	return rc;
2053
}
2054
#endif /* BUILD_EMBED_FIRST_CHUNK */
2055

2056
#ifdef BUILD_PAGE_FIRST_CHUNK
2057
/**
2058
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2059 2060
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
2061
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2062 2063
 * @populate_pte_fn: function to populate pte
 *
2064 2065
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2066 2067 2068 2069 2070
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2071
 * 0 on success, -errno on failure.
2072
 */
T
Tejun Heo 已提交
2073 2074 2075 2076
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2077
{
2078
	static struct vm_struct vm;
2079
	struct pcpu_alloc_info *ai;
2080
	char psize_str[16];
T
Tejun Heo 已提交
2081
	int unit_pages;
2082
	size_t pages_size;
T
Tejun Heo 已提交
2083
	struct page **pages;
T
Tejun Heo 已提交
2084
	int unit, i, j, rc;
2085

2086 2087
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2088
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2089 2090 2091 2092 2093 2094
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2095 2096

	/* unaligned allocations can't be freed, round up to page size */
2097 2098
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2099
	pages = memblock_virt_alloc(pages_size, 0);
2100

2101
	/* allocate pages */
2102
	j = 0;
2103
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
2104
		for (i = 0; i < unit_pages; i++) {
2105
			unsigned int cpu = ai->groups[0].cpu_map[unit];
2106 2107
			void *ptr;

2108
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2109
			if (!ptr) {
2110 2111
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
2112 2113
				goto enomem;
			}
2114 2115
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2116
			pages[j++] = virt_to_page(ptr);
2117 2118
		}

2119 2120
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2121
	vm.size = num_possible_cpus() * ai->unit_size;
2122 2123
	vm_area_register_early(&vm, PAGE_SIZE);

2124
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2125
		unsigned long unit_addr =
2126
			(unsigned long)vm.addr + unit * ai->unit_size;
2127

T
Tejun Heo 已提交
2128
		for (i = 0; i < unit_pages; i++)
2129 2130 2131
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2132 2133 2134 2135
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2146
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2147 2148 2149
	}

	/* we're ready, commit */
2150
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2151 2152
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2153

T
Tejun Heo 已提交
2154
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2155 2156 2157 2158
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2159
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2160
	rc = -ENOMEM;
2161
out_free_ar:
2162
	memblock_free_early(__pa(pages), pages_size);
2163
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2164
	return rc;
2165
}
2166
#endif /* BUILD_PAGE_FIRST_CHUNK */
2167

2168
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2169
/*
2170
 * Generic SMP percpu area setup.
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2184 2185 2186
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2187 2188
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
2189
}
2190

2191 2192
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2193
	memblock_free_early(__pa(ptr), size);
2194 2195
}

2196 2197 2198 2199
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2200
	int rc;
2201 2202 2203 2204 2205

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2206
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2207 2208
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2209
	if (rc < 0)
2210
		panic("Failed to initialize percpu areas.");
2211 2212 2213

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2214
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2215
}
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2236 2237 2238
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
2239 2240
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2241 2242
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
}

#endif	/* CONFIG_SMP */
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

2277
		map = pcpu_mem_zalloc(size);
2278 2279 2280 2281 2282 2283 2284 2285
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);