percpu.c 53.7 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33 34 35 36 37 38 39 40 41 42
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70 71

#include <asm/cacheflush.h>
72
#include <asm/sections.h>
73
#include <asm/tlbflush.h>
74
#include <asm/io.h>
75 76 77 78

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

79 80 81
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
82 83 84
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
85 86 87
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
88 89 90
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
91 92
#endif

93 94 95 96
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
97
	void			*base_addr;	/* base address of this chunk */
98 99 100
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
101
	void			*data;		/* chunk data */
102
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
103
	unsigned long		populated[];	/* populated bitmap */
104 105
};

106 107
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
108
static int pcpu_nr_units __read_mostly;
109
static int pcpu_atom_size __read_mostly;
110 111
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
112

113 114 115 116
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

117
/* the address of the first chunk which starts with the kernel static area */
118
void *pcpu_base_addr __read_mostly;
119 120
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
121 122
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123

124 125 126 127 128
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

129 130 131 132 133 134 135 136 137 138 139 140 141 142
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
143 144 145
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

146
/*
147 148 149
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
150 151 152
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
153 154 155
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
156 157 158 159
 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 * general, percpu memory can't be allocated with irq off but
 * irqsave/restore are still used in alloc path so that it can be used
 * from early init path - sched_init() specifically.
160 161 162 163 164 165 166 167 168
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
169
 */
170 171
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
172

173
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
174

175 176 177 178
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

194
static int __pcpu_size_to_slot(int size)
195
{
T
Tejun Heo 已提交
196
	int highbit = fls(size);	/* size is in bytes */
197 198 199
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

200 201 202 203 204 205 206
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

207 208 209 210 211 212 213 214
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

215 216 217 218 219 220 221 222 223 224 225 226 227
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
228
{
229
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
230 231
}

232 233
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
234
{
T
Tejun Heo 已提交
235
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
236
		(page_idx << PAGE_SHIFT);
237 238
}

239 240
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
241 242 243 244 245
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

246 247
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

269
/**
270 271
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
272
 *
273 274 275
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
276
 *
277 278 279
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
280
 * RETURNS:
281
 * Pointer to the allocated area on success, NULL on failure.
282
 */
283
static void *pcpu_mem_alloc(size_t size)
284
{
285 286 287
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

288 289 290 291 292 293 294 295 296
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
297

298 299 300 301 302 303 304 305 306
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
307
	if (size <= PAGE_SIZE)
308
		kfree(ptr);
309
	else
310
		vfree(ptr);
311 312 313 314 315 316 317 318 319
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
320 321
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
322 323 324
 *
 * CONTEXT:
 * pcpu_lock.
325 326 327 328 329
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

330
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
331 332 333 334 335 336 337
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

338
/**
339 340
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
341
 *
342 343
 * Determine whether area map of @chunk needs to be extended to
 * accomodate a new allocation.
344
 *
345
 * CONTEXT:
346
 * pcpu_lock.
347
 *
348
 * RETURNS:
349 350
 * New target map allocation length if extension is necessary, 0
 * otherwise.
351
 */
352
static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
353 354 355 356 357 358 359 360 361 362
{
	int new_alloc;

	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

	new = pcpu_mem_alloc(new_size);
	if (!new)
387
		return -ENOMEM;
388

389 390 391 392 393
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
394

395 396
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, old_size);
397 398 399

	chunk->map_alloc = new_alloc;
	chunk->map = new;
400 401 402 403 404 405 406 407 408 409 410 411
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

412 413 414
	return 0;
}

415 416 417 418
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
419 420
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
421 422 423 424 425 426 427 428 429
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
430
 * @chunk->map must have enough free slots to accomodate the split.
431 432 433
 *
 * CONTEXT:
 * pcpu_lock.
434
 */
435 436
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
437 438
{
	int nr_extra = !!head + !!tail;
439

440
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
441

442
	/* insert new subblocks */
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
460
 * @size: wanted size in bytes
461 462 463 464 465 466
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
467 468
 * @chunk->map must have at least two free slots.
 *
469 470 471
 * CONTEXT:
 * pcpu_lock.
 *
472
 * RETURNS:
473 474
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
522
			pcpu_split_block(chunk, i, head, tail);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

549 550
	/* tell the upper layer that this chunk has no matching area */
	return -1;
551 552 553 554 555 556 557 558 559 560
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
561 562 563
 *
 * CONTEXT:
 * pcpu_lock.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

599 600 601 602
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

603
	chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	if (!chunk)
		return NULL;

	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
	if (!chunk->map) {
		kfree(chunk);
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
	kfree(chunk);
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
645
 */
646 647 648 649 650 651
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
652

653 654 655
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
656
#include "percpu-vm.c"
657
#endif
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
684
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
685 686
}

687
/**
688
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
689
 * @size: size of area to allocate in bytes
690
 * @align: alignment of area (max PAGE_SIZE)
691
 * @reserved: allocate from the reserved chunk if available
692
 *
693 694 695 696
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
697 698 699 700
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
701
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
702
{
703
	static int warn_limit = 10;
704
	struct pcpu_chunk *chunk;
705
	const char *err;
706
	int slot, off, new_alloc;
707
	unsigned long flags;
708

709
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
710 711 712 713 714
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

715
	mutex_lock(&pcpu_alloc_mutex);
716
	spin_lock_irqsave(&pcpu_lock, flags);
717

718 719 720
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
721 722 723

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
724
			goto fail_unlock;
725
		}
726 727 728 729 730 731 732 733 734 735

		while ((new_alloc = pcpu_need_to_extend(chunk))) {
			spin_unlock_irqrestore(&pcpu_lock, flags);
			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
				err = "failed to extend area map of reserved chunk";
				goto fail_unlock_mutex;
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

736 737 738
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
739

740
		err = "alloc from reserved chunk failed";
741
		goto fail_unlock;
742 743
	}

744
restart:
745
	/* search through normal chunks */
746 747 748 749
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764
			new_alloc = pcpu_need_to_extend(chunk);
			if (new_alloc) {
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
					goto fail_unlock_mutex;
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
765 766
			}

767 768 769 770 771 772 773
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
774
	spin_unlock_irqrestore(&pcpu_lock, flags);
775

776
	chunk = pcpu_create_chunk();
777 778
	if (!chunk) {
		err = "failed to allocate new chunk";
779
		goto fail_unlock_mutex;
780
	}
781

782
	spin_lock_irqsave(&pcpu_lock, flags);
783
	pcpu_chunk_relocate(chunk, -1);
784
	goto restart;
785 786

area_found:
787
	spin_unlock_irqrestore(&pcpu_lock, flags);
788

789 790
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
791
		spin_lock_irqsave(&pcpu_lock, flags);
792
		pcpu_free_area(chunk, off);
793
		err = "failed to populate";
794
		goto fail_unlock;
795 796
	}

797 798
	mutex_unlock(&pcpu_alloc_mutex);

T
Tejun Heo 已提交
799 800
	/* return address relative to base address */
	return __addr_to_pcpu_ptr(chunk->base_addr + off);
801 802

fail_unlock:
803
	spin_unlock_irqrestore(&pcpu_lock, flags);
804 805
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
806 807 808 809 810 811 812
	if (warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
			   "%s\n", size, align, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
813
	return NULL;
814
}
815 816 817 818 819 820 821 822 823

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
824 825 826
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
827 828 829
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
830
void __percpu *__alloc_percpu(size_t size, size_t align)
831 832 833
{
	return pcpu_alloc(size, align, false);
}
834 835
EXPORT_SYMBOL_GPL(__alloc_percpu);

836 837 838 839 840 841 842 843 844
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
845 846 847
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
848 849 850
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
851
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
852 853 854 855
{
	return pcpu_alloc(size, align, true);
}

856 857 858 859 860
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
861 862 863
 *
 * CONTEXT:
 * workqueue context.
864 865
 */
static void pcpu_reclaim(struct work_struct *work)
866
{
867 868 869 870
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

871 872
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
873 874 875 876 877 878 879 880 881 882 883

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

884
	spin_unlock_irq(&pcpu_lock);
885 886

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
887
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
888
		pcpu_destroy_chunk(chunk);
889
	}
T
Tejun Heo 已提交
890 891

	mutex_unlock(&pcpu_alloc_mutex);
892 893 894 895 896 897
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
898 899 900 901
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
902
 */
903
void free_percpu(void __percpu *ptr)
904
{
905
	void *addr;
906
	struct pcpu_chunk *chunk;
907
	unsigned long flags;
908 909 910 911 912
	int off;

	if (!ptr)
		return;

913 914
	addr = __pcpu_ptr_to_addr(ptr);

915
	spin_lock_irqsave(&pcpu_lock, flags);
916 917

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
918
	off = addr - chunk->base_addr;
919 920 921

	pcpu_free_area(chunk, off);

922
	/* if there are more than one fully free chunks, wake up grim reaper */
923 924 925
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

926
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
927
			if (pos != chunk) {
928
				schedule_work(&pcpu_reclaim_work);
929 930 931 932
				break;
			}
	}

933
	spin_unlock_irqrestore(&pcpu_lock, flags);
934 935 936
}
EXPORT_SYMBOL_GPL(free_percpu);

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
	return false;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
	unsigned long first_start, first_end;
	unsigned int cpu;

	/*
	 * The following test on first_start/end isn't strictly
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
				    pcpu_unit_pages);
	if ((unsigned long)addr >= first_start &&
	    (unsigned long)addr < first_end) {
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1003 1004 1005 1006 1007 1008
		if ((unsigned long)addr < VMALLOC_START ||
		    (unsigned long)addr >= VMALLOC_END)
			return __pa(addr);
		else
			return page_to_phys(vmalloc_to_page(addr));
	} else
1009
		return page_to_phys(pcpu_addr_to_page(addr));
1010 1011
}

1012
/**
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	free_bootmem(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1069
 * @reserved_size: the size of reserved percpu area in bytes
1070
 * @dyn_size: minimum free size for dynamic allocation in bytes
1071 1072
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
1073
 *
1074 1075 1076
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
1077
 *
1078 1079 1080 1081 1082
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
1083 1084
 *
 * RETURNS:
1085 1086
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
1087
 */
1088 1089
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
1090 1091
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1092 1093 1094 1095
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
1096
	int nr_groups = 1, nr_units = 0;
1097 1098
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1099
	int last_allocs, group, unit;
1100
	unsigned int cpu, tcpu;
1101 1102
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;
1103

1104 1105
	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
1106
	memset(group_cnt, 0, sizeof(group_cnt));
1107

1108 1109 1110
	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1111 1112
	dyn_size = size_sum - static_size - reserved_size;

1113 1114
	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
1115
	 * alloc_size is multiple of atom_size and is the smallest
1116 1117 1118 1119 1120
	 * which can accomodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

1121
	alloc_size = roundup(min_unit_size, atom_size);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
1134
			if (group_map[tcpu] == group && cpu_distance_fn &&
1135 1136 1137
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
1138
				nr_groups = max(nr_groups, group + 1);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

1158
		for (group = 0; group < nr_groups; group++) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 25%.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;
1210 1211 1212

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
1213 1214 1215
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
1216
	}
1217
	BUG_ON(unit != nr_units);
1218

1219
	return ai;
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229 1230
/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1231
{
1232
	int group_width = 1, cpu_width = 1, width;
1233
	char empty_str[] = "--------";
1234 1235 1236 1237 1238 1239 1240
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1241

1242
	v = num_possible_cpus();
1243
	while (v /= 10)
1244 1245
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1246

1247 1248 1249
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1250

1251 1252 1253
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1254

1255 1256 1257 1258 1259 1260 1261 1262
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1263
				printk("\n");
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
				printk("%spcpu-alloc: ", lvl);
			}
			printk("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					printk("%0*d ", cpu_width,
					       gi->cpu_map[unit]);
				else
					printk("%s ", empty_str);
1274 1275 1276 1277 1278
		}
	}
	printk("\n");
}

1279
/**
1280
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1281
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1282
 * @base_addr: mapped address
1283 1284 1285
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1286
 * setup path.
1287
 *
1288 1289 1290 1291 1292 1293
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1294 1295 1296 1297 1298 1299 1300
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1301 1302 1303
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1304
 *
1305 1306 1307
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1308
 *
1309 1310
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1311
 *
1312 1313 1314 1315 1316 1317 1318 1319 1320
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1321
 *
1322 1323
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1324
 *
1325 1326 1327 1328 1329 1330 1331
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1332
 * RETURNS:
T
Tejun Heo 已提交
1333
 * 0 on success, -errno on failure.
1334
 */
T
Tejun Heo 已提交
1335 1336
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1337
{
1338
	static char cpus_buf[4096] __initdata;
1339 1340
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1341 1342
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1343
	struct pcpu_chunk *schunk, *dchunk = NULL;
1344 1345
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1346
	unsigned long *unit_off;
1347
	unsigned int cpu;
1348 1349
	int *unit_map;
	int group, unit, i;
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1362
	/* sanity checks */
1363 1364 1365 1366 1367 1368
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
	PCPU_SETUP_BUG_ON(!ai->static_size);
	PCPU_SETUP_BUG_ON(!base_addr);
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1369
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1370
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1371

1372 1373 1374
	/* process group information and build config tables accordingly */
	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1375
	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
T
Tejun Heo 已提交
1376
	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1377

1378
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1379
		unit_map[cpu] = UINT_MAX;
1380
	pcpu_first_unit_cpu = NR_CPUS;
1381

1382 1383
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1384

1385 1386 1387
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1388 1389 1390 1391
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1392

1393 1394 1395
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1396

1397
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1398 1399
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

1400 1401 1402
			if (pcpu_first_unit_cpu == NR_CPUS)
				pcpu_first_unit_cpu = cpu;
		}
1403
	}
1404 1405 1406 1407
	pcpu_last_unit_cpu = cpu;
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1408 1409 1410 1411 1412
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
	pcpu_dump_alloc_info(KERN_INFO, ai);
1413

1414 1415 1416
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1417
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1418
	pcpu_unit_offsets = unit_off;
1419 1420

	/* determine basic parameters */
1421
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1422
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1423
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1424 1425
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1426

1427 1428 1429 1430 1431
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1432 1433 1434 1435
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1436 1437 1438 1439 1440 1441 1442
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1443 1444
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1445
	schunk->base_addr = base_addr;
1446 1447
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1448
	schunk->immutable = true;
T
Tejun Heo 已提交
1449
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1450

1451 1452
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1453
		pcpu_reserved_chunk = schunk;
1454
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1455 1456 1457 1458
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1459
	schunk->contig_hint = schunk->free_size;
1460

1461
	schunk->map[schunk->map_used++] = -ai->static_size;
1462 1463 1464
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1465 1466
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1467
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1468
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1469
		dchunk->base_addr = base_addr;
1470 1471
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1472
		dchunk->immutable = true;
T
Tejun Heo 已提交
1473
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1474 1475 1476 1477 1478 1479

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1480
	/* link the first chunk in */
1481 1482
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1483 1484

	/* we're done */
T
Tejun Heo 已提交
1485
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1486
	return 0;
1487
}
1488

1489 1490 1491 1492 1493
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1494

1495
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static int __init percpu_alloc_setup(char *str)
{
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1511

1512
	return 0;
1513
}
1514
early_param("percpu_alloc", percpu_alloc_setup);
1515

1516 1517
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1518 1519 1520
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1521
 * @dyn_size: minimum free size for dynamic allocation in bytes
1522 1523 1524 1525
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
 * @free_fn: funtion to free percpu page
1526 1527 1528 1529 1530
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1541
 *
1542
 * @dyn_size specifies the minimum dynamic area size.
1543 1544
 *
 * If the needed size is smaller than the minimum or specified unit
1545
 * size, the leftover is returned using @free_fn.
1546 1547
 *
 * RETURNS:
T
Tejun Heo 已提交
1548
 * 0 on success, -errno on failure.
1549
 */
1550
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1551 1552 1553 1554
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1555
{
1556 1557
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1558
	struct pcpu_alloc_info *ai;
1559
	size_t size_sum, areas_size, max_distance;
1560
	int group, i, rc;
1561

1562 1563
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1564 1565
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1566

1567
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1568
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1569

1570 1571
	areas = alloc_bootmem_nopanic(areas_size);
	if (!areas) {
T
Tejun Heo 已提交
1572
		rc = -ENOMEM;
1573
		goto out_free;
1574
	}
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
		areas[group] = ptr;
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		base = min(ptr, base);

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1606
	}
1607

1608
	/* base address is now known, determine group base offsets */
1609 1610
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1611
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
1612 1613
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
1614 1615 1616 1617 1618
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
T
Tejun Heo 已提交
1619
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1620 1621 1622 1623 1624 1625 1626 1627
			   "space 0x%lx\n",
			   max_distance, VMALLOC_END - VMALLOC_START);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1628

T
Tejun Heo 已提交
1629
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1630 1631
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1632

T
Tejun Heo 已提交
1633
	rc = pcpu_setup_first_chunk(ai, base);
1634 1635 1636 1637 1638 1639 1640
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
		free_fn(areas[group],
			ai->groups[group].nr_units * ai->unit_size);
out_free:
1641
	pcpu_free_alloc_info(ai);
1642 1643
	if (areas)
		free_bootmem(__pa(areas), areas_size);
T
Tejun Heo 已提交
1644
	return rc;
1645
}
1646 1647
#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1648

1649
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1650
/**
1651
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1652 1653 1654 1655 1656
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
1657 1658
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1659 1660 1661 1662 1663
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1664
 * 0 on success, -errno on failure.
1665
 */
T
Tejun Heo 已提交
1666 1667 1668 1669
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1670
{
1671
	static struct vm_struct vm;
1672
	struct pcpu_alloc_info *ai;
1673
	char psize_str[16];
T
Tejun Heo 已提交
1674
	int unit_pages;
1675
	size_t pages_size;
T
Tejun Heo 已提交
1676
	struct page **pages;
T
Tejun Heo 已提交
1677
	int unit, i, j, rc;
1678

1679 1680
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1681
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1682 1683 1684 1685 1686 1687
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1688 1689

	/* unaligned allocations can't be freed, round up to page size */
1690 1691
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
T
Tejun Heo 已提交
1692
	pages = alloc_bootmem(pages_size);
1693

1694
	/* allocate pages */
1695
	j = 0;
1696
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
1697
		for (i = 0; i < unit_pages; i++) {
1698
			unsigned int cpu = ai->groups[0].cpu_map[unit];
1699 1700
			void *ptr;

1701
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1702
			if (!ptr) {
1703 1704
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1705 1706
				goto enomem;
			}
T
Tejun Heo 已提交
1707
			pages[j++] = virt_to_page(ptr);
1708 1709
		}

1710 1711
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1712
	vm.size = num_possible_cpus() * ai->unit_size;
1713 1714
	vm_area_register_early(&vm, PAGE_SIZE);

1715
	for (unit = 0; unit < num_possible_cpus(); unit++) {
1716
		unsigned long unit_addr =
1717
			(unsigned long)vm.addr + unit * ai->unit_size;
1718

T
Tejun Heo 已提交
1719
		for (i = 0; i < unit_pages; i++)
1720 1721 1722
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1723 1724 1725 1726
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
1737
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1738 1739 1740
	}

	/* we're ready, commit */
1741
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1742 1743
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
1744

T
Tejun Heo 已提交
1745
	rc = pcpu_setup_first_chunk(ai, vm.addr);
1746 1747 1748 1749
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1750
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
1751
	rc = -ENOMEM;
1752
out_free_ar:
T
Tejun Heo 已提交
1753
	free_bootmem(__pa(pages), pages_size);
1754
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
1755
	return rc;
1756
}
1757
#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

1775 1776 1777 1778 1779
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
}
1780

1781 1782 1783 1784 1785
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}

1786 1787 1788 1789
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
1790
	int rc;
1791 1792 1793 1794 1795

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
1796
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1797 1798
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
1799
	if (rc < 0)
1800 1801 1802 1803
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
1804
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1805
}
1806
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

		map = pcpu_mem_alloc(size);
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}