intel_gt.c 14.9 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

6
#include "debugfs_gt.h"
7
#include "i915_drv.h"
8
#include "intel_context.h"
9
#include "intel_gt.h"
10
#include "intel_gt_buffer_pool.h"
11
#include "intel_gt_clock_utils.h"
12
#include "intel_gt_pm.h"
13
#include "intel_gt_requests.h"
14
#include "intel_mocs.h"
15
#include "intel_rc6.h"
16
#include "intel_renderstate.h"
17
#include "intel_rps.h"
18
#include "intel_uncore.h"
19
#include "intel_pm.h"
20
#include "shmem_utils.h"
21

22
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
23
{
24 25 26
	gt->i915 = i915;
	gt->uncore = &i915->uncore;

27 28 29
	spin_lock_init(&gt->irq_lock);

	INIT_LIST_HEAD(&gt->closed_vma);
30
	spin_lock_init(&gt->closed_lock);
31

32
	intel_gt_init_buffer_pool(gt);
33
	intel_gt_init_reset(gt);
34
	intel_gt_init_requests(gt);
35
	intel_gt_init_timelines(gt);
36
	intel_gt_pm_init_early(gt);
37 38

	intel_rps_init_early(&gt->rps);
39
	intel_uc_init_early(&gt->uc);
40
}
41

42
void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
43
{
44
	gt->ggtt = ggtt;
45 46
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
}

static void init_unused_rings(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
	}
}

int intel_gt_init_hw(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	int ret;

	gt->last_init_time = ktime_get();

	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));

	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);

	/* Apply the GT workarounds... */
	intel_gt_apply_workarounds(gt);
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(gt, "init");

	intel_gt_init_swizzling(gt);

	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(gt);

	ret = i915_ppgtt_init_hw(gt);
	if (ret) {
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
		goto out;
	}

	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(&gt->uc);
	if (ret) {
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
		goto out;
	}

	intel_mocs_init(gt);

out:
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	return ret;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
	intel_uncore_rmw(uncore, reg, 0, set);
}

static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
	intel_uncore_rmw(uncore, reg, clr, 0);
}

static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
	intel_uncore_rmw(uncore, reg, 0, 0);
}

static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
{
	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
	GEN6_RING_FAULT_REG_POSTING_READ(engine);
}

void
intel_gt_clear_error_registers(struct intel_gt *gt,
			       intel_engine_mask_t engine_mask)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	u32 eir;

	if (!IS_GEN(i915, 2))
		clear_register(uncore, PGTBL_ER);

	if (INTEL_GEN(i915) < 4)
		clear_register(uncore, IPEIR(RENDER_RING_BASE));
	else
		clear_register(uncore, IPEIR_I965);

	clear_register(uncore, EIR);
	eir = intel_uncore_read(uncore, EIR);
	if (eir) {
		/*
		 * some errors might have become stuck,
		 * mask them.
		 */
		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
		rmw_set(uncore, EMR, eir);
		intel_uncore_write(uncore, GEN2_IIR,
				   I915_MASTER_ERROR_INTERRUPT);
	}

181 182 183 184
	if (INTEL_GEN(i915) >= 12) {
		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
	} else if (INTEL_GEN(i915) >= 8) {
185 186 187 188 189 190
		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
	} else if (INTEL_GEN(i915) >= 6) {
		struct intel_engine_cs *engine;
		enum intel_engine_id id;

191
		for_each_engine_masked(engine, gt, engine_mask, id)
192 193 194 195 196 197 198 199 200 201
			gen8_clear_engine_error_register(engine);
	}
}

static void gen6_check_faults(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 fault;

202
	for_each_engine(engine, gt, id) {
203 204
		fault = GEN6_RING_FAULT_REG_READ(engine);
		if (fault & RING_FAULT_VALID) {
205 206 207 208 209 210 211 212 213 214
			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
				"\tAddr: 0x%08lx\n"
				"\tAddress space: %s\n"
				"\tSource ID: %d\n"
				"\tType: %d\n",
				fault & PAGE_MASK,
				fault & RING_FAULT_GTTSEL_MASK ?
				"GGTT" : "PPGTT",
				RING_FAULT_SRCID(fault),
				RING_FAULT_FAULT_TYPE(fault));
215 216 217 218 219 220 221
		}
	}
}

static void gen8_check_faults(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
222 223 224 225 226 227 228 229 230 231 232 233
	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
	u32 fault;

	if (INTEL_GEN(gt->i915) >= 12) {
		fault_reg = GEN12_RING_FAULT_REG;
		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
	} else {
		fault_reg = GEN8_RING_FAULT_REG;
		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
	}
234

235
	fault = intel_uncore_read(uncore, fault_reg);
236 237 238 239
	if (fault & RING_FAULT_VALID) {
		u32 fault_data0, fault_data1;
		u64 fault_addr;

240 241 242
		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);

243 244 245
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

246 247 248 249 250 251 252 253 254 255 256
		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
			"\tAddr: 0x%08x_%08x\n"
			"\tAddress space: %s\n"
			"\tEngine ID: %d\n"
			"\tSource ID: %d\n"
			"\tType: %d\n",
			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
			GEN8_RING_FAULT_ENGINE_ID(fault),
			RING_FAULT_SRCID(fault),
			RING_FAULT_FAULT_TYPE(fault));
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	}
}

void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(i915) >= 8)
		gen8_check_faults(gt);
	else if (INTEL_GEN(i915) >= 6)
		gen6_check_faults(gt);
	else
		return;

	intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
274 275 276

void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
277
	struct intel_uncore *uncore = gt->uncore;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	intel_wakeref_t wakeref;

	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
	 */

	wmb();

301
	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
302 303
		return;

304
	intel_gt_chipset_flush(gt);
305

306
	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
307
		unsigned long flags;
308

309
		spin_lock_irqsave(&uncore->lock, flags);
310 311
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
312
		spin_unlock_irqrestore(&uncore->lock, flags);
313 314
	}
}
315 316 317 318 319 320 321

void intel_gt_chipset_flush(struct intel_gt *gt)
{
	wmb();
	if (INTEL_GEN(gt->i915) < 6)
		intel_gtt_chipset_flush();
}
322

323 324
void intel_gt_driver_register(struct intel_gt *gt)
{
325
	intel_rps_driver_register(&gt->rps);
326 327

	debugfs_gt_register(gt);
328 329 330
}

static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
331 332 333 334 335 336 337
{
	struct drm_i915_private *i915 = gt->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
338
	if (IS_ERR(obj))
339 340 341 342 343 344 345 346 347 348 349 350
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

351
	ret = i915_ggtt_pin(vma, 0, PIN_HIGH);
352 353 354
	if (ret)
		goto err_unref;

355 356
	gt->scratch = i915_vma_make_unshrinkable(vma);

357 358 359 360 361 362 363
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

364
static void intel_gt_fini_scratch(struct intel_gt *gt)
365 366 367
{
	i915_vma_unpin_and_release(&gt->scratch, 0);
}
368

369 370 371
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
372
		return &i915_ppgtt_create(gt)->vm;
373 374 375 376
	else
		return i915_vm_get(&gt->ggtt->vm);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static int __engines_record_defaults(struct intel_gt *gt)
{
	struct i915_request *requests[I915_NUM_ENGINES] = {};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, gt, id) {
		struct intel_renderstate so;
		struct intel_context *ce;
		struct i915_request *rq;

398 399 400
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
		err = intel_renderstate_init(&so, engine);
		if (err)
			goto out;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

		rq = intel_context_create_request(ce);
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			intel_context_put(ce);
			goto out;
		}

		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		err = intel_renderstate_emit(&so, rq);
		if (err)
			goto err_rq;

err_rq:
		requests[id] = i915_request_get(rq);
		i915_request_add(rq);
		intel_renderstate_fini(&so);
		if (err)
			goto out;
	}

	/* Flush the default context image to memory, and enable powersaving. */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
		err = -EIO;
		goto out;
	}

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
442
		struct file *state;
443 444 445 446 447

		rq = requests[id];
		if (!rq)
			continue;

448 449 450 451 452
		if (rq->fence.error) {
			err = -EIO;
			goto out;
		}

453
		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
454
		if (!rq->context->state)
455 456
			continue;

457 458 459 460
		/* Keep a copy of the state's backing pages; free the obj */
		state = shmem_create_from_object(rq->context->state->obj);
		if (IS_ERR(state)) {
			err = PTR_ERR(state);
461 462
			goto out;
		}
463
		rq->engine->default_state = state;
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	}

out:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
	 */
	if (err)
		intel_gt_set_wedged(gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
}

static int __engines_verify_workarounds(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, gt, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

504 505 506 507
	/* Flush and restore the kernel context for safety */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
		err = -EIO;

508 509 510 511 512 513 514 515 516 517 518 519 520
	return err;
}

static void __intel_gt_disable(struct intel_gt *gt)
{
	intel_gt_set_wedged_on_init(gt);

	intel_gt_suspend_prepare(gt);
	intel_gt_suspend_late(gt);

	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}

521 522 523 524
int intel_gt_init(struct intel_gt *gt)
{
	int err;

525
	err = i915_inject_probe_error(gt->i915, -ENODEV);
526 527 528
	if (err)
		return err;

529 530 531 532 533 534 535 536 537
	/*
	 * This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);

538 539
	intel_gt_init_clock_frequency(gt);

540 541 542 543
	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
	if (err)
		goto out_fw;

544 545
	intel_gt_pm_init(gt);

546 547 548
	gt->vm = kernel_vm(gt);
	if (!gt->vm) {
		err = -ENOMEM;
549
		goto err_pm;
550 551
	}

552 553 554 555
	err = intel_engines_init(gt);
	if (err)
		goto err_engines;

556 557 558
	err = intel_uc_init(&gt->uc);
	if (err)
		goto err_engines;
559 560 561

	err = intel_gt_resume(gt);
	if (err)
562
		goto err_uc_init;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	err = __engines_record_defaults(gt);
	if (err)
		goto err_gt;

	err = __engines_verify_workarounds(gt);
	if (err)
		goto err_gt;

	err = i915_inject_probe_error(gt->i915, -EIO);
	if (err)
		goto err_gt;

	goto out_fw;
err_gt:
	__intel_gt_disable(gt);
	intel_uc_fini_hw(&gt->uc);
err_uc_init:
	intel_uc_fini(&gt->uc);
err_engines:
	intel_engines_release(gt);
	i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
	intel_gt_pm_fini(gt);
587
	intel_gt_fini_scratch(gt);
588 589 590 591
out_fw:
	if (err)
		intel_gt_set_wedged_on_init(gt);
	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
592
	return err;
593 594 595 596
}

void intel_gt_driver_remove(struct intel_gt *gt)
{
597 598
	__intel_gt_disable(gt);

599
	intel_uc_driver_remove(&gt->uc);
600 601

	intel_engines_release(gt);
602 603 604 605
}

void intel_gt_driver_unregister(struct intel_gt *gt)
{
606
	intel_rps_driver_unregister(&gt->rps);
607 608 609 610 611 612 613

	/*
	 * Upon unregistering the device to prevent any new users, cancel
	 * all in-flight requests so that we can quickly unbind the active
	 * resources.
	 */
	intel_gt_set_wedged(gt);
614 615 616 617
}

void intel_gt_driver_release(struct intel_gt *gt)
{
618 619 620 621 622 623
	struct i915_address_space *vm;

	vm = fetch_and_zero(&gt->vm);
	if (vm) /* FIXME being called twice on error paths :( */
		i915_vm_put(vm);

624
	intel_gt_pm_fini(gt);
625
	intel_gt_fini_scratch(gt);
626
	intel_gt_fini_buffer_pool(gt);
627 628
}

629
void intel_gt_driver_late_release(struct intel_gt *gt)
630
{
631 632 633
	/* We need to wait for inflight RCU frees to release their grip */
	rcu_barrier();

634
	intel_uc_driver_late_release(&gt->uc);
635
	intel_gt_fini_requests(gt);
636
	intel_gt_fini_reset(gt);
637
	intel_gt_fini_timelines(gt);
638
	intel_engines_free(gt);
639
}