dma-mapping.c 63.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/genalloc.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
22
#include <linux/dma-contiguous.h>
23
#include <linux/highmem.h>
24
#include <linux/memblock.h>
25
#include <linux/slab.h>
26
#include <linux/iommu.h>
27
#include <linux/io.h>
28
#include <linux/vmalloc.h>
29
#include <linux/sizes.h>
30
#include <linux/cma.h>
L
Linus Torvalds 已提交
31

32
#include <asm/memory.h>
33
#include <asm/highmem.h>
L
Linus Torvalds 已提交
34 35
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
36
#include <asm/mach/arch.h>
37
#include <asm/dma-iommu.h>
38 39 40
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
41

42
#include "dma.h"
43 44
#include "mm.h"

45 46 47 48 49 50 51
struct arm_dma_alloc_args {
	struct device *dev;
	size_t size;
	gfp_t gfp;
	pgprot_t prot;
	const void *caller;
	bool want_vaddr;
52
	int coherent_flag;
53 54 55 56 57 58 59 60 61 62
};

struct arm_dma_free_args {
	struct device *dev;
	size_t size;
	void *cpu_addr;
	struct page *page;
	bool want_vaddr;
};

63 64 65
#define NORMAL	    0
#define COHERENT    1

66 67 68 69 70 71
struct arm_dma_allocator {
	void *(*alloc)(struct arm_dma_alloc_args *args,
		       struct page **ret_page);
	void (*free)(struct arm_dma_free_args *args);
};

72 73 74
struct arm_dma_buffer {
	struct list_head list;
	void *virt;
75
	struct arm_dma_allocator *allocator;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
};

static LIST_HEAD(arm_dma_bufs);
static DEFINE_SPINLOCK(arm_dma_bufs_lock);

static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
{
	struct arm_dma_buffer *buf, *found = NULL;
	unsigned long flags;

	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
	list_for_each_entry(buf, &arm_dma_bufs, list) {
		if (buf->virt == virt) {
			list_del(&buf->list);
			found = buf;
			break;
		}
	}
	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	return found;
}

98 99 100 101 102 103 104 105 106 107 108 109
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
110
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111
		size_t, enum dma_data_direction);
112
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 114
		size_t, enum dma_data_direction);

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
129
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130
	     unsigned long offset, size_t size, enum dma_data_direction dir,
131
	     unsigned long attrs)
132
{
133
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 135
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 137
}

R
Rob Herring 已提交
138 139
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
140
	     unsigned long attrs)
R
Rob Herring 已提交
141 142 143 144
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
159
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160
		size_t size, enum dma_data_direction dir, unsigned long attrs)
161
{
162
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 164
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
165 166
}

167
static void arm_dma_sync_single_for_cpu(struct device *dev,
168 169 170 171
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
172
	__dma_page_dev_to_cpu(page, offset, size, dir);
173 174
}

175
static void arm_dma_sync_single_for_device(struct device *dev,
176 177 178 179
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
180
	__dma_page_cpu_to_dev(page, offset, size, dir);
181 182
}

183 184 185 186 187
static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == ARM_MAPPING_ERROR;
}

188
const struct dma_map_ops arm_dma_ops = {
189 190 191
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
192
	.get_sgtable		= arm_dma_get_sgtable,
193 194 195 196 197 198 199 200
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
201
	.mapping_error		= arm_dma_mapping_error,
202
	.dma_supported		= arm_dma_supported,
203 204 205
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
206
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207
	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
R
Rob Herring 已提交
208
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209
				  dma_addr_t handle, unsigned long attrs);
210 211
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212
		 unsigned long attrs);
R
Rob Herring 已提交
213

214
const struct dma_map_ops arm_coherent_dma_ops = {
R
Rob Herring 已提交
215 216
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
217
	.mmap			= arm_coherent_dma_mmap,
R
Rob Herring 已提交
218 219 220
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
221
	.mapping_error		= arm_dma_mapping_error,
222
	.dma_supported		= arm_dma_supported,
R
Rob Herring 已提交
223 224 225
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

226 227 228 229 230 231 232 233 234 235 236
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
237
	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

264 265
static u64 get_coherent_dma_mask(struct device *dev)
{
266
	u64 mask = (u64)DMA_BIT_MASK(32);
267 268 269 270 271 272 273 274 275 276 277 278 279

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

280
		if (!__dma_supported(dev, mask, true))
281 282
			return 0;
	}
L
Linus Torvalds 已提交
283

284 285 286
	return mask;
}

287
static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288 289 290 291 292
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
293 294 295 296 297 298
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
299 300
			if (coherent_flag != COHERENT)
				dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 302 303 304
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
305 306
		if (coherent_flag != COHERENT)
			outer_flush_range(base, end);
307 308
	} else {
		void *ptr = page_address(page);
309
		memset(ptr, 0, size);
310 311 312 313
		if (coherent_flag != COHERENT) {
			dmac_flush_range(ptr, ptr + size);
			outer_flush_range(__pa(ptr), __pa(ptr) + size);
		}
314
	}
315 316
}

317 318 319 320
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
321 322
static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
				       gfp_t gfp, int coherent_flag)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

338
	__dma_clear_buffer(page, size, coherent_flag);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

356
static void *__alloc_from_contiguous(struct device *dev, size_t size,
357
				     pgprot_t prot, struct page **ret_page,
358
				     const void *caller, bool want_vaddr,
359
				     int coherent_flag, gfp_t gfp);
360

361 362
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
363
				 const void *caller, bool want_vaddr);
364

365 366 367
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
368
{
369 370 371 372
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
373 374 375
	return dma_common_contiguous_remap(page, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
			prot, caller);
376
}
L
Linus Torvalds 已提交
377

378
static void __dma_free_remap(void *cpu_addr, size_t size)
379
{
380 381
	dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382 383
}

384
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
385
static struct gen_pool *atomic_pool __ro_after_init;
386

387
static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
388 389 390

static int __init early_coherent_pool(char *p)
{
391
	atomic_pool_size = memparse(p, &p);
392 393 394 395 396 397 398
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

/*
 * Initialise the coherent pool for atomic allocations.
 */
399
static int __init atomic_pool_init(void)
400
{
401
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
402
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
403 404 405
	struct page *page;
	void *ptr;

406 407 408
	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
409 410 411 412
	/*
	 * The atomic pool is only used for non-coherent allocations
	 * so we must pass NORMAL for coherent_flag.
	 */
413
	if (dev_get_cma_area(NULL))
414
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
415 416
				      &page, atomic_pool_init, true, NORMAL,
				      GFP_KERNEL);
417
	else
418
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
419
					   &page, atomic_pool_init, true);
420
	if (ptr) {
421 422 423 424 425 426 427 428 429 430
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
431
				NULL);
432
		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
433
		       atomic_pool_size / 1024);
434 435
		return 0;
	}
436

437 438 439 440
destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
441
	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
442
	       atomic_pool_size / 1024);
443 444 445 446 447
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
448
postcore_initcall(atomic_pool_init);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
469 470 471 472 473 474

	if (!dma_mmu_remap_num)
		return;

	/* call flush_cache_all() since CMA area would be large enough */
	flush_cache_all();
475 476 477 478 479 480 481 482 483
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
484
			continue;
485 486 487 488 489 490 491

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
492 493 494 495 496 497 498
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
499 500
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
501
		     addr += PMD_SIZE)
502 503
			pmd_clear(pmd_off_k(addr));

504 505 506
		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

507 508 509 510 511 512 513 514 515
		/*
		 * All the memory in CMA region will be on ZONE_MOVABLE.
		 * If that zone is considered as highmem, the memory in CMA
		 * region is also considered as highmem even if it's
		 * physical address belong to lowmem. In this case,
		 * re-mapping isn't required.
		 */
		if (!is_highmem_idx(ZONE_MOVABLE))
			iotable_init(&map, 1);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
540
				 const void *caller, bool want_vaddr)
541 542
{
	struct page *page;
543
	void *ptr = NULL;
544 545 546 547 548
	/*
	 * __alloc_remap_buffer is only called when the device is
	 * non-coherent
	 */
	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
549 550
	if (!page)
		return NULL;
551 552
	if (!want_vaddr)
		goto out;
553 554 555 556 557 558 559

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

560
 out:
561 562 563 564
	*ret_page = page;
	return ptr;
}

565
static void *__alloc_from_pool(size_t size, struct page **ret_page)
566
{
567
	unsigned long val;
568
	void *ptr = NULL;
569

570
	if (!atomic_pool) {
571
		WARN(1, "coherent pool not initialised!\n");
572 573 574
		return NULL;
	}

575 576 577 578 579 580
	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
581
	}
582 583

	return ptr;
584 585
}

586 587
static bool __in_atomic_pool(void *start, size_t size)
{
588
	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
589 590
}

591
static int __free_from_pool(void *start, size_t size)
592
{
593
	if (!__in_atomic_pool(start, size))
594 595
		return 0;

596
	gen_pool_free(atomic_pool, (unsigned long)start, size);
597

598 599 600 601
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
602
				     pgprot_t prot, struct page **ret_page,
603
				     const void *caller, bool want_vaddr,
604
				     int coherent_flag, gfp_t gfp)
605 606 607 608
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
609
	void *ptr = NULL;
610

611
	page = dma_alloc_from_contiguous(dev, count, order, gfp);
612 613 614
	if (!page)
		return NULL;

615
	__dma_clear_buffer(page, size, coherent_flag);
616

617 618 619
	if (!want_vaddr)
		goto out;

620 621 622 623 624 625 626 627 628 629
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
630 631

 out:
632
	*ret_page = page;
633
	return ptr;
634 635 636
}

static void __free_from_contiguous(struct device *dev, struct page *page,
637
				   void *cpu_addr, size_t size, bool want_vaddr)
638
{
639 640 641 642 643 644
	if (want_vaddr) {
		if (PageHighMem(page))
			__dma_free_remap(cpu_addr, size);
		else
			__dma_remap(page, size, PAGE_KERNEL);
	}
645 646 647
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

648
static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
649
{
650 651 652
	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
			pgprot_writecombine(prot) :
			pgprot_dmacoherent(prot);
653 654 655
	return prot;
}

656 657
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
658
{
659
	struct page *page;
660 661
	/* __alloc_simple_buffer is only called when the device is coherent */
	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
662 663 664 665 666 667 668
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}

669 670 671 672 673 674
static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
				    struct page **ret_page)
{
	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
				     ret_page);
}
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static void simple_allocator_free(struct arm_dma_free_args *args)
{
	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator simple_allocator = {
	.alloc = simple_allocator_alloc,
	.free = simple_allocator_free,
};

static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
				 struct page **ret_page)
{
	return __alloc_from_contiguous(args->dev, args->size, args->prot,
				       ret_page, args->caller,
691 692
				       args->want_vaddr, args->coherent_flag,
				       args->gfp);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
}

static void cma_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
			       args->size, args->want_vaddr);
}

static struct arm_dma_allocator cma_allocator = {
	.alloc = cma_allocator_alloc,
	.free = cma_allocator_free,
};

static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
				  struct page **ret_page)
{
	return __alloc_from_pool(args->size, ret_page);
}

static void pool_allocator_free(struct arm_dma_free_args *args)
{
	__free_from_pool(args->cpu_addr, args->size);
}

static struct arm_dma_allocator pool_allocator = {
	.alloc = pool_allocator_alloc,
	.free = pool_allocator_free,
};

static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
				   struct page **ret_page)
{
	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
				    args->prot, ret_page, args->caller,
				    args->want_vaddr);
}

static void remap_allocator_free(struct arm_dma_free_args *args)
{
	if (args->want_vaddr)
		__dma_free_remap(args->cpu_addr, args->size);

	__dma_free_buffer(args->page, args->size);
}

static struct arm_dma_allocator remap_allocator = {
	.alloc = remap_allocator_alloc,
	.free = remap_allocator_free,
};
742 743

static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
744
			 gfp_t gfp, pgprot_t prot, bool is_coherent,
745
			 unsigned long attrs, const void *caller)
746 747
{
	u64 mask = get_coherent_dma_mask(dev);
748
	struct page *page = NULL;
749
	void *addr;
750
	bool allowblock, cma;
751
	struct arm_dma_buffer *buf;
752 753 754 755 756 757
	struct arm_dma_alloc_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.gfp = gfp,
		.prot = prot,
		.caller = caller,
758
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
759
		.coherent_flag = is_coherent ? COHERENT : NORMAL,
760
	};
761

762 763 764 765 766 767 768 769 770 771 772 773
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

774 775
	buf = kzalloc(sizeof(*buf),
		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
776 777 778
	if (!buf)
		return NULL;

779 780 781
	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

782 783 784 785 786 787 788 789
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);
790
	args.gfp = gfp;
791

792
	*handle = ARM_MAPPING_ERROR;
793 794 795 796 797
	allowblock = gfpflags_allow_blocking(gfp);
	cma = allowblock ? dev_get_cma_area(dev) : false;

	if (cma)
		buf->allocator = &cma_allocator;
798
	else if (is_coherent)
799 800 801
		buf->allocator = &simple_allocator;
	else if (allowblock)
		buf->allocator = &remap_allocator;
802
	else
803 804 805
		buf->allocator = &pool_allocator;

	addr = buf->allocator->alloc(&args, &page);
806

807 808 809
	if (page) {
		unsigned long flags;

810
		*handle = pfn_to_dma(dev, page_to_pfn(page));
811
		buf->virt = args.want_vaddr ? addr : page;
812 813 814 815 816 817 818

		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
		list_add(&buf->list, &arm_dma_bufs);
		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
	} else {
		kfree(buf);
	}
819

820
	return args.want_vaddr ? addr : page;
821
}
L
Linus Torvalds 已提交
822 823 824 825 826

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
827
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
828
		    gfp_t gfp, unsigned long attrs)
L
Linus Torvalds 已提交
829
{
830
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
831

R
Rob Herring 已提交
832
	return __dma_alloc(dev, size, handle, gfp, prot, false,
833
			   attrs, __builtin_return_address(0));
R
Rob Herring 已提交
834 835 836
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
837
	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
R
Rob Herring 已提交
838
{
839
	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
840
			   attrs, __builtin_return_address(0));
L
Linus Torvalds 已提交
841 842
}

843
static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
844
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
845
		 unsigned long attrs)
L
Linus Torvalds 已提交
846
{
847
	int ret;
848 849
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
850
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
851 852
	unsigned long off = vma->vm_pgoff;

853
	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
854 855
		return ret;

856 857 858 859 860 861
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
L
Linus Torvalds 已提交
862 863 864 865

	return ret;
}

866 867 868 869 870
/*
 * Create userspace mapping for the DMA-coherent memory.
 */
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
871
		 unsigned long attrs)
872 873 874 875 876 877
{
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
878
		 unsigned long attrs)
879 880 881 882 883
{
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

L
Linus Torvalds 已提交
884
/*
885
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
886
 */
R
Rob Herring 已提交
887
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
888
			   dma_addr_t handle, unsigned long attrs,
R
Rob Herring 已提交
889
			   bool is_coherent)
L
Linus Torvalds 已提交
890
{
891
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
892
	struct arm_dma_buffer *buf;
893 894 895 896 897
	struct arm_dma_free_args args = {
		.dev = dev,
		.size = PAGE_ALIGN(size),
		.cpu_addr = cpu_addr,
		.page = page,
898
		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
899
	};
900 901 902 903

	buf = arm_dma_buffer_find(cpu_addr);
	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
		return;
904

905
	buf->allocator->free(&args);
906
	kfree(buf);
L
Linus Torvalds 已提交
907
}
908

R
Rob Herring 已提交
909
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
910
		  dma_addr_t handle, unsigned long attrs)
R
Rob Herring 已提交
911 912 913 914 915
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
916
				  dma_addr_t handle, unsigned long attrs)
R
Rob Herring 已提交
917 918 919 920
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

921 922 923 924 925 926 927 928 929 930 931
/*
 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 * that the intention is to allow exporting memory allocated via the
 * coherent DMA APIs through the dma_buf API, which only accepts a
 * scattertable.  This presents a couple of problems:
 * 1. Not all memory allocated via the coherent DMA APIs is backed by
 *    a struct page
 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 *    as we will try to flush the memory through a different alias to that
 *    actually being used (and the flushes are redundant.)
 */
932 933
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
934
		 unsigned long attrs)
935
{
936 937
	unsigned long pfn = dma_to_pfn(dev, handle);
	struct page *page;
938 939
	int ret;

940 941 942 943 944 945
	/* If the PFN is not valid, we do not have a struct page */
	if (!pfn_valid(pfn))
		return -ENXIO;

	page = pfn_to_page(pfn);

946 947 948 949 950 951 952 953
	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

954
static void dma_cache_maint_page(struct page *page, unsigned long offset,
955 956
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
957
{
958 959 960 961 962 963
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

964 965 966 967 968 969 970 971
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
972 973
		void *vaddr;

974 975
		page = pfn_to_page(pfn);

976
		if (PageHighMem(page)) {
977
			if (len + offset > PAGE_SIZE)
978
				len = PAGE_SIZE - offset;
979 980

			if (cache_is_vipt_nonaliasing()) {
981
				vaddr = kmap_atomic(page);
982
				op(vaddr + offset, len, dir);
983
				kunmap_atomic(vaddr);
984 985 986 987 988 989
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
990
			}
991 992
		} else {
			vaddr = page_address(page) + offset;
993
			op(vaddr, len, dir);
994 995
		}
		offset = 0;
996
		pfn++;
997 998 999
		left -= len;
	} while (left);
}
1000

1001 1002 1003 1004 1005 1006 1007
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1008 1009
	size_t size, enum dma_data_direction dir)
{
1010
	phys_addr_t paddr;
1011

1012
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1013 1014

	paddr = page_to_phys(page) + off;
1015 1016 1017 1018 1019 1020
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
1021 1022
}

1023
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1024 1025
	size_t size, enum dma_data_direction dir)
{
1026
	phys_addr_t paddr = page_to_phys(page) + off;
1027 1028

	/* FIXME: non-speculating: not required */
1029 1030
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
1031 1032
		outer_inv_range(paddr, paddr + size);

1033 1034
		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}
1035 1036

	/*
1037
	 * Mark the D-cache clean for these pages to avoid extra flushing.
1038
	 */
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
1055
}
1056

1057
/**
1058
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
1073
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1074
		enum dma_data_direction dir, unsigned long attrs)
1075
{
1076
	const struct dma_map_ops *ops = get_dma_ops(dev);
1077
	struct scatterlist *s;
1078
	int i, j;
1079 1080

	for_each_sg(sg, s, nents, i) {
1081 1082 1083
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
1084 1085
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
1086 1087
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
1088 1089
	}
	return nents;
1090 1091 1092

 bad_mapping:
	for_each_sg(sg, s, i, j)
1093
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1094
	return 0;
1095 1096 1097
}

/**
1098
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1099 1100
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
1101
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1102 1103 1104 1105 1106
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
1107
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1108
		enum dma_data_direction dir, unsigned long attrs)
1109
{
1110
	const struct dma_map_ops *ops = get_dma_ops(dev);
1111 1112 1113
	struct scatterlist *s;

	int i;
1114

1115
	for_each_sg(sg, s, nents, i)
1116
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1117 1118 1119
}

/**
1120
 * arm_dma_sync_sg_for_cpu
1121 1122 1123 1124 1125
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1126
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1127 1128
			int nents, enum dma_data_direction dir)
{
1129
	const struct dma_map_ops *ops = get_dma_ops(dev);
1130 1131 1132
	struct scatterlist *s;
	int i;

1133 1134 1135
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
1136 1137 1138
}

/**
1139
 * arm_dma_sync_sg_for_device
1140 1141 1142 1143 1144
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
1145
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1146 1147
			int nents, enum dma_data_direction dir)
{
1148
	const struct dma_map_ops *ops = get_dma_ops(dev);
1149 1150 1151
	struct scatterlist *s;
	int i;

1152 1153 1154
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1155
}
1156

1157 1158 1159 1160 1161 1162
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
1163
int arm_dma_supported(struct device *dev, u64 mask)
1164
{
1165
	return __dma_supported(dev, mask, false);
1166 1167
}

1168 1169
#ifdef CONFIG_ARM_DMA_USE_IOMMU

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
{
	int prot = 0;

	if (attrs & DMA_ATTR_PRIVILEGED)
		prot |= IOMMU_PRIV;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return prot;
	}
}

1189 1190
/* IOMMU */

1191 1192
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1193 1194 1195 1196 1197 1198
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
1199
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1200
	unsigned long flags;
1201 1202
	dma_addr_t iova;
	int i;
1203

1204 1205 1206
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1207 1208
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1209 1210

	spin_lock_irqsave(&mapping->lock, flags);
1211 1212 1213 1214 1215 1216 1217 1218 1219
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1220 1221
	}

1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
1230
			return ARM_MAPPING_ERROR;
1231 1232 1233 1234 1235 1236 1237
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
1238
			return ARM_MAPPING_ERROR;
1239 1240 1241 1242
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1243 1244
	spin_unlock_irqrestore(&mapping->lock, flags);

1245
	iova = mapping->base + (mapping_size * i);
1246
	iova += start << PAGE_SHIFT;
1247 1248

	return iova;
1249 1250 1251 1252 1253
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1254
	unsigned int start, count;
1255
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1256
	unsigned long flags;
1257 1258 1259 1260 1261 1262
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

1263
	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1264 1265
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

1266
	bitmap_base = mapping->base + mapping_size * bitmap_index;
1267

1268
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1269

1270
	if (addr + size > bitmap_base + mapping_size) {
1271 1272 1273 1274 1275 1276 1277 1278
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1279
		count = size >> PAGE_SHIFT;
1280 1281

	spin_lock_irqsave(&mapping->lock, flags);
1282
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1283 1284 1285
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1286 1287 1288
/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
static const int iommu_order_array[] = { 9, 8, 4, 0 };

1289
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1290
					  gfp_t gfp, unsigned long attrs,
1291
					  int coherent_flag)
1292 1293 1294 1295 1296
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;
1297
	int order_idx = 0;
1298 1299

	if (array_size <= PAGE_SIZE)
1300
		pages = kzalloc(array_size, GFP_KERNEL);
1301 1302 1303 1304 1305
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1306
	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1307 1308 1309 1310
	{
		unsigned long order = get_order(size);
		struct page *page;

1311
		page = dma_alloc_from_contiguous(dev, count, order, gfp);
1312 1313 1314
		if (!page)
			goto error;

1315
		__dma_clear_buffer(page, size, coherent_flag);
1316 1317 1318 1319 1320 1321 1322

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1323
	/* Go straight to 4K chunks if caller says it's OK. */
1324
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1325 1326
		order_idx = ARRAY_SIZE(iommu_order_array) - 1;

1327 1328 1329 1330 1331
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1332
	while (count) {
1333 1334
		int j, order;

1335 1336 1337 1338 1339 1340
		order = iommu_order_array[order_idx];

		/* Drop down when we get small */
		if (__fls(count) < order) {
			order_idx++;
			continue;
1341
		}
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		if (order) {
			/* See if it's easy to allocate a high-order chunk */
			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);

			/* Go down a notch at first sign of pressure */
			if (!pages[i]) {
				order_idx++;
				continue;
			}
		} else {
1353 1354 1355 1356
			pages[i] = alloc_pages(gfp, 0);
			if (!pages[i])
				goto error;
		}
1357

1358
		if (order) {
1359
			split_page(pages[i], order);
1360 1361 1362 1363
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1364

1365
		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1366 1367 1368 1369 1370 1371
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1372
	while (i--)
1373 1374
		if (pages[i])
			__free_pages(pages[i], 0);
1375
	kvfree(pages);
1376 1377 1378
	return NULL;
}

1379
static int __iommu_free_buffer(struct device *dev, struct page **pages,
1380
			       size_t size, unsigned long attrs)
1381 1382 1383
{
	int count = size >> PAGE_SHIFT;
	int i;
1384

1385
	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1386 1387 1388 1389 1390 1391 1392
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1393
	kvfree(pages);
1394 1395 1396 1397 1398 1399 1400
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1401 1402
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1403
{
1404 1405
	return dma_common_pages_remap(pages, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1406 1407 1408 1409 1410 1411
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
1412 1413
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
		       unsigned long attrs)
1414
{
1415
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1416 1417
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
1418
	int i;
1419 1420

	dma_addr = __alloc_iova(mapping, size);
1421
	if (dma_addr == ARM_MAPPING_ERROR)
1422 1423 1424 1425
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
1426 1427
		int ret;

1428 1429 1430 1431 1432 1433 1434 1435 1436
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1437
		ret = iommu_map(mapping->domain, iova, phys, len,
1438
				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1439 1440 1441 1442 1443 1444 1445 1446 1447
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
1448
	return ARM_MAPPING_ERROR;
1449 1450 1451 1452
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
1453
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1467 1468
static struct page **__atomic_get_pages(void *addr)
{
1469 1470 1471 1472 1473
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);
1474

1475
	return (struct page **)page;
1476 1477
}

1478
static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1479 1480 1481
{
	struct vm_struct *area;

1482 1483 1484
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1485
	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1486 1487
		return cpu_addr;

1488 1489 1490 1491 1492 1493
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1494
static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1495 1496
				  dma_addr_t *handle, int coherent_flag,
				  unsigned long attrs)
1497 1498 1499 1500
{
	struct page *page;
	void *addr;

1501 1502 1503 1504
	if (coherent_flag  == COHERENT)
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
	else
		addr = __alloc_from_pool(size, &page);
1505 1506 1507
	if (!addr)
		return NULL;

1508
	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1509
	if (*handle == ARM_MAPPING_ERROR)
1510 1511 1512 1513 1514 1515 1516 1517 1518
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1519
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1520
			dma_addr_t handle, size_t size, int coherent_flag)
1521 1522
{
	__iommu_remove_mapping(dev, handle, size);
1523 1524 1525 1526
	if (coherent_flag == COHERENT)
		__dma_free_buffer(virt_to_page(cpu_addr), size);
	else
		__free_from_pool(cpu_addr, size);
1527 1528
}

1529
static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1530
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1531
	    int coherent_flag)
1532
{
1533
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1534 1535 1536
	struct page **pages;
	void *addr = NULL;

1537
	*handle = ARM_MAPPING_ERROR;
1538 1539
	size = PAGE_ALIGN(size);

1540 1541
	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
		return __iommu_alloc_simple(dev, size, gfp, handle,
1542
					    coherent_flag, attrs);
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1553
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1554 1555 1556
	if (!pages)
		return NULL;

1557
	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1558
	if (*handle == ARM_MAPPING_ERROR)
1559 1560
		goto err_buffer;

1561
	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1562 1563
		return pages;

1564 1565
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1566 1567 1568 1569 1570 1571 1572 1573
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1574
	__iommu_free_buffer(dev, pages, size, attrs);
1575 1576 1577
	return NULL;
}

1578
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1579
	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1580 1581 1582 1583 1584
{
	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
}

static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1585
		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1586 1587 1588 1589 1590
{
	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
}

static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1591
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1592
		    unsigned long attrs)
1593
{
1594 1595
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1596
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1597 1598
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long off = vma->vm_pgoff;
1599

1600 1601
	if (!pages)
		return -ENXIO;
1602

1603 1604 1605
	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
		return -ENXIO;

1606 1607
	pages += off;

1608 1609 1610 1611 1612 1613 1614 1615 1616
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1617 1618 1619

	return 0;
}
1620 1621
static int arm_iommu_mmap_attrs(struct device *dev,
		struct vm_area_struct *vma, void *cpu_addr,
1622
		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1623 1624 1625 1626 1627 1628 1629 1630
{
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
}

static int arm_coherent_iommu_mmap_attrs(struct device *dev,
		struct vm_area_struct *vma, void *cpu_addr,
1631
		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1632 1633 1634
{
	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
}
1635 1636 1637 1638 1639

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
1640
void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1641
	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1642
{
1643
	struct page **pages;
1644 1645
	size = PAGE_ALIGN(size);

1646 1647
	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1648
		return;
1649
	}
1650

1651 1652 1653
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1654 1655 1656
		return;
	}

1657
	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1658 1659
		dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1660
	}
1661 1662

	__iommu_remove_mapping(dev, handle, size);
1663
	__iommu_free_buffer(dev, pages, size, attrs);
1664 1665
}

1666
void arm_iommu_free_attrs(struct device *dev, size_t size,
1667
		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1668 1669 1670 1671 1672
{
	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
}

void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1673
		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1674 1675 1676 1677
{
	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
}

1678 1679
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
1680
				 size_t size, unsigned long attrs)
1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1690 1691 1692 1693 1694 1695 1696
}

/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
1697
			  enum dma_data_direction dir, unsigned long attrs,
R
Rob Herring 已提交
1698
			  bool is_coherent)
1699
{
1700
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1701 1702 1703 1704
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1705
	int prot;
1706 1707

	size = PAGE_ALIGN(size);
1708
	*handle = ARM_MAPPING_ERROR;
1709 1710

	iova_base = iova = __alloc_iova(mapping, size);
1711
	if (iova == ARM_MAPPING_ERROR)
1712 1713 1714
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
D
Dan Williams 已提交
1715
		phys_addr_t phys = page_to_phys(sg_page(s));
1716 1717
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

1718
		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1719 1720
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1721
		prot = __dma_info_to_prot(dir, attrs);
1722 1723

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1738
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1739
		     enum dma_data_direction dir, unsigned long attrs,
R
Rob Herring 已提交
1740
		     bool is_coherent)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

1751
		s->dma_address = ARM_MAPPING_ERROR;
1752 1753 1754 1755
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1756
			    dir, attrs, is_coherent) < 0)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1769 1770
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1785
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1786 1787
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1788 1789
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1790
 *
R
Rob Herring 已提交
1791 1792 1793 1794
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1795
 */
R
Rob Herring 已提交
1796
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1797
		int nents, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1815
		int nents, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1816 1817 1818 1819 1820
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1821 1822
		int nents, enum dma_data_direction dir,
		unsigned long attrs, bool is_coherent)
1823 1824 1825 1826 1827 1828 1829 1830
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
1831
		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1832 1833 1834 1835 1836
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1848 1849
		int nents, enum dma_data_direction dir,
		unsigned long attrs)
R
Rob Herring 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1865 1866
			enum dma_data_direction dir,
			unsigned long attrs)
R
Rob Herring 已提交
1867 1868 1869 1870
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1885
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1903
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1904 1905 1906 1907
}


/**
R
Rob Herring 已提交
1908
 * arm_coherent_iommu_map_page
1909 1910 1911 1912 1913 1914
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1915
 * Coherent IOMMU aware version of arm_dma_map_page()
1916
 */
R
Rob Herring 已提交
1917
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1918
	     unsigned long offset, size_t size, enum dma_data_direction dir,
1919
	     unsigned long attrs)
1920
{
1921
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1922
	dma_addr_t dma_addr;
1923
	int ret, prot, len = PAGE_ALIGN(size + offset);
1924 1925

	dma_addr = __alloc_iova(mapping, len);
1926
	if (dma_addr == ARM_MAPPING_ERROR)
1927 1928
		return dma_addr;

1929
	prot = __dma_info_to_prot(dir, attrs);
1930 1931

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1932 1933 1934 1935 1936 1937
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
1938
	return ARM_MAPPING_ERROR;
1939 1940
}

R
Rob Herring 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
1953
	     unsigned long attrs)
R
Rob Herring 已提交
1954
{
1955
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
R
Rob Herring 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1971
		size_t size, enum dma_data_direction dir, unsigned long attrs)
R
Rob Herring 已提交
1972
{
1973
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
R
Rob Herring 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1995
		size_t size, enum dma_data_direction dir, unsigned long attrs)
1996
{
1997
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1998 1999 2000 2001 2002 2003 2004 2005
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

2006
	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2007 2008 2009 2010 2011 2012
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/**
 * arm_iommu_map_resource - map a device resource for DMA
 * @dev: valid struct device pointer
 * @phys_addr: physical address of resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static dma_addr_t arm_iommu_map_resource(struct device *dev,
		phys_addr_t phys_addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t dma_addr;
	int ret, prot;
	phys_addr_t addr = phys_addr & PAGE_MASK;
	unsigned int offset = phys_addr & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	dma_addr = __alloc_iova(mapping, len);
2032
	if (dma_addr == ARM_MAPPING_ERROR)
2033 2034
		return dma_addr;

2035
	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2036 2037 2038 2039 2040 2041 2042 2043

	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
2044
	return ARM_MAPPING_ERROR;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
}

/**
 * arm_iommu_unmap_resource - unmap a device DMA resource
 * @dev: valid struct device pointer
 * @dma_handle: DMA address to resource
 * @size: size of resource to map
 * @dir: DMA transfer direction
 */
static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
		size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
	dma_addr_t iova = dma_handle & PAGE_MASK;
	unsigned int offset = dma_handle & ~PAGE_MASK;
	size_t len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

2070 2071 2072
static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
2073
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2074 2075 2076 2077 2078 2079 2080
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
2081
	__dma_page_dev_to_cpu(page, offset, size, dir);
2082 2083 2084 2085 2086
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
2087
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

2098
const struct dma_map_ops iommu_ops = {
2099 2100 2101
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
2102
	.get_sgtable	= arm_iommu_get_sgtable,
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2113 2114 2115

	.map_resource		= arm_iommu_map_resource,
	.unmap_resource		= arm_iommu_unmap_resource,
2116 2117

	.mapping_error		= arm_dma_mapping_error,
2118
	.dma_supported		= arm_dma_supported,
2119 2120
};

2121
const struct dma_map_ops iommu_coherent_ops = {
2122 2123 2124
	.alloc		= arm_coherent_iommu_alloc_attrs,
	.free		= arm_coherent_iommu_free_attrs,
	.mmap		= arm_coherent_iommu_mmap_attrs,
R
Rob Herring 已提交
2125 2126 2127 2128 2129 2130 2131
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2132 2133 2134

	.map_resource	= arm_iommu_map_resource,
	.unmap_resource	= arm_iommu_unmap_resource,
2135 2136

	.mapping_error		= arm_dma_mapping_error,
2137
	.dma_supported		= arm_dma_supported,
R
Rob Herring 已提交
2138 2139
};

2140 2141 2142 2143
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
2144
 * @size: maximum size of the valid IO address space
2145 2146 2147 2148 2149 2150 2151 2152 2153
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
2154
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2155
{
2156 2157
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2158
	struct dma_iommu_mapping *mapping;
2159
	int extensions = 1;
2160 2161
	int err = -ENOMEM;

2162 2163 2164 2165
	/* currently only 32-bit DMA address space is supported */
	if (size > DMA_BIT_MASK(32) + 1)
		return ERR_PTR(-ERANGE);

2166
	if (!bitmap_size)
2167 2168
		return ERR_PTR(-EINVAL);

2169 2170 2171 2172 2173
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

2174 2175 2176 2177
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

2178 2179
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2180 2181
				GFP_KERNEL);
	if (!mapping->bitmaps)
2182 2183
		goto err2;

2184
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2185 2186 2187 2188 2189
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
2190
	mapping->base = base;
2191
	mapping->bits = BITS_PER_BYTE * bitmap_size;
2192

2193 2194 2195 2196
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
2197
		goto err4;
2198 2199 2200

	kref_init(&mapping->kref);
	return mapping;
2201 2202
err4:
	kfree(mapping->bitmaps[0]);
2203
err3:
2204
	kfree(mapping->bitmaps);
2205 2206 2207 2208 2209
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
2210
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2211 2212 2213

static void release_iommu_mapping(struct kref *kref)
{
2214
	int i;
2215 2216 2217 2218
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
2219 2220 2221
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
2222 2223 2224
	kfree(mapping);
}

2225 2226 2227 2228
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

2229
	if (mapping->nr_bitmaps >= mapping->extensions)
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

2243 2244 2245 2246 2247
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
2248
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static int __arm_iommu_attach_device(struct device *dev,
				     struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
2260
	to_dma_iommu_mapping(dev) = mapping;
2261 2262 2263 2264 2265

	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

2266 2267 2268 2269 2270 2271
/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
2272 2273 2274 2275
 * Attaches specified io address space mapping to the provided device.
 * This replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version.
 *
2276 2277
 * More than one client might be attached to the same io address space
 * mapping.
2278 2279 2280 2281 2282 2283
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

2284
	err = __arm_iommu_attach_device(dev, mapping);
2285 2286 2287
	if (err)
		return err;

2288
	set_dma_ops(dev, &iommu_ops);
2289 2290
	return 0;
}
2291
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2292

2293 2294 2295 2296 2297 2298 2299 2300
/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2312
	to_dma_iommu_mapping(dev) = NULL;
2313
	set_dma_ops(dev, NULL);
2314 2315 2316

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2317
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2318

2319
static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2320 2321 2322 2323 2324
{
	return coherent ? &iommu_coherent_ops : &iommu_ops;
}

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2325
				    const struct iommu_ops *iommu)
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
{
	struct dma_iommu_mapping *mapping;

	if (!iommu)
		return false;

	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
	if (IS_ERR(mapping)) {
		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
				size, dev_name(dev));
		return false;
	}

2339
	if (__arm_iommu_attach_device(dev, mapping)) {
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
				dev_name(dev));
		arm_iommu_release_mapping(mapping);
		return false;
	}

	return true;
}

static void arm_teardown_iommu_dma_ops(struct device *dev)
{
2351
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2352

2353 2354 2355
	if (!mapping)
		return;

2356
	arm_iommu_detach_device(dev);
2357 2358 2359 2360 2361 2362
	arm_iommu_release_mapping(mapping);
}

#else

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2363
				    const struct iommu_ops *iommu)
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
{
	return false;
}

static void arm_teardown_iommu_dma_ops(struct device *dev) { }

#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops

#endif	/* CONFIG_ARM_DMA_USE_IOMMU */

2374
static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2375 2376 2377 2378 2379
{
	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
}

void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2380
			const struct iommu_ops *iommu, bool coherent)
2381
{
2382
	const struct dma_map_ops *dma_ops;
2383

2384
	dev->archdata.dma_coherent = coherent;
2385 2386 2387 2388 2389 2390 2391 2392 2393

	/*
	 * Don't override the dma_ops if they have already been set. Ideally
	 * this should be the only location where dma_ops are set, remove this
	 * check when all other callers of set_dma_ops will have disappeared.
	 */
	if (dev->dma_ops)
		return;

2394 2395 2396 2397 2398 2399
	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
		dma_ops = arm_get_iommu_dma_map_ops(coherent);
	else
		dma_ops = arm_get_dma_map_ops(coherent);

	set_dma_ops(dev, dma_ops);
2400 2401 2402 2403 2404 2405 2406

#ifdef CONFIG_XEN
	if (xen_initial_domain()) {
		dev->archdata.dev_dma_ops = dev->dma_ops;
		dev->dma_ops = xen_dma_ops;
	}
#endif
2407
	dev->archdata.dma_ops_setup = true;
2408 2409 2410 2411
}

void arch_teardown_dma_ops(struct device *dev)
{
2412 2413 2414
	if (!dev->archdata.dma_ops_setup)
		return;

2415 2416
	arm_teardown_iommu_dma_ops(dev);
}