dma-mapping.c 55.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
12
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
13 14
#include <linux/module.h>
#include <linux/mm.h>
15
#include <linux/genalloc.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
22
#include <linux/dma-contiguous.h>
23
#include <linux/highmem.h>
24
#include <linux/memblock.h>
25
#include <linux/slab.h>
26
#include <linux/iommu.h>
27
#include <linux/io.h>
28
#include <linux/vmalloc.h>
29
#include <linux/sizes.h>
30
#include <linux/cma.h>
L
Linus Torvalds 已提交
31

32
#include <asm/memory.h>
33
#include <asm/highmem.h>
L
Linus Torvalds 已提交
34 35
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
36
#include <asm/mach/arch.h>
37
#include <asm/dma-iommu.h>
38 39 40
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
41

42 43
#include "mm.h"

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
56
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57
		size_t, enum dma_data_direction);
58
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 60
		size_t, enum dma_data_direction);

61 62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
75
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 77 78
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
79
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 81
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 83
}

R
Rob Herring 已提交
84 85 86 87 88 89 90
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
105
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 107 108
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
109
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 111
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
112 113
}

114
static void arm_dma_sync_single_for_cpu(struct device *dev,
115 116 117 118
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
119
	__dma_page_dev_to_cpu(page, offset, size, dir);
120 121
}

122
static void arm_dma_sync_single_for_device(struct device *dev,
123 124 125 126
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
127
	__dma_page_cpu_to_dev(page, offset, size, dir);
128 129 130
}

struct dma_map_ops arm_dma_ops = {
131 132 133
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
134
	.get_sgtable		= arm_dma_get_sgtable,
135 136 137 138 139 140 141 142 143 144 145 146
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
147 148 149 150
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);
151 152 153
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs);
R
Rob Herring 已提交
154 155 156 157

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
158
	.mmap			= arm_coherent_dma_mmap,
R
Rob Herring 已提交
159 160 161 162 163 164 165
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

166 167 168 169 170 171 172 173 174 175 176
static int __dma_supported(struct device *dev, u64 mask, bool warn)
{
	unsigned long max_dma_pfn;

	/*
	 * If the mask allows for more memory than we can address,
	 * and we actually have that much memory, then we must
	 * indicate that DMA to this device is not supported.
	 */
	if (sizeof(mask) != sizeof(dma_addr_t) &&
	    mask > (dma_addr_t)~0 &&
177
	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		if (warn) {
			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
				 mask);
			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
		}
		return 0;
	}

	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);

	/*
	 * Translate the device's DMA mask to a PFN limit.  This
	 * PFN number includes the page which we can DMA to.
	 */
	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
		if (warn)
			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
				 mask,
				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
				 max_dma_pfn + 1);
		return 0;
	}

	return 1;
}

204 205
static u64 get_coherent_dma_mask(struct device *dev)
{
206
	u64 mask = (u64)DMA_BIT_MASK(32);
207 208 209 210 211 212 213 214 215 216 217 218 219

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

220
		if (!__dma_supported(dev, mask, true))
221 222
			return 0;
	}
L
Linus Torvalds 已提交
223

224 225 226
	return mask;
}

227 228 229 230 231 232
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
233 234 235 236 237 238 239 240 241 242 243 244 245 246
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
247 248 249 250
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
251 252
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

273
	__dma_clear_buffer(page, size);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

291
#ifdef CONFIG_MMU
292

293
static void *__alloc_from_contiguous(struct device *dev, size_t size,
294
				     pgprot_t prot, struct page **ret_page,
295
				     const void *caller, bool want_vaddr);
296

297 298
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
299
				 const void *caller, bool want_vaddr);
300

301 302 303
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
304
{
305 306 307 308
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
309 310 311
	return dma_common_contiguous_remap(page, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
			prot, caller);
312
}
L
Linus Torvalds 已提交
313

314
static void __dma_free_remap(void *cpu_addr, size_t size)
315
{
316 317
	dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
318 319
}

320
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
321
static struct gen_pool *atomic_pool;
322

323
static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
324 325 326

static int __init early_coherent_pool(char *p)
{
327
	atomic_pool_size = memparse(p, &p);
328 329 330 331
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

332 333 334 335 336
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
337
	BUG_ON(atomic_pool);
338 339 340 341 342

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
343 344
	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool_size = size;
345 346
}

347 348 349
/*
 * Initialise the coherent pool for atomic allocations.
 */
350
static int __init atomic_pool_init(void)
351
{
352
	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
353
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
354 355 356
	struct page *page;
	void *ptr;

357 358 359
	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
	if (!atomic_pool)
		goto out;
360

361
	if (dev_get_cma_area(NULL))
362
		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
363
					      &page, atomic_pool_init, true);
364
	else
365
		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
366
					   &page, atomic_pool_init, true);
367
	if (ptr) {
368 369 370 371 372 373 374 375 376 377 378 379 380
		int ret;

		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
					page_to_phys(page),
					atomic_pool_size, -1);
		if (ret)
			goto destroy_genpool;

		gen_pool_set_algo(atomic_pool,
				gen_pool_first_fit_order_align,
				(void *)PAGE_SHIFT);
		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
		       atomic_pool_size / 1024);
381 382
		return 0;
	}
383

384 385 386 387 388 389
destroy_genpool:
	gen_pool_destroy(atomic_pool);
	atomic_pool = NULL;
out:
	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
	       atomic_pool_size / 1024);
390 391 392 393 394
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
395
postcore_initcall(atomic_pool_init);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
425
			continue;
426 427 428 429 430 431 432

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
433 434 435 436 437 438 439
		 * Clear previous low-memory mapping to ensure that the
		 * TLB does not see any conflicting entries, then flush
		 * the TLB of the old entries before creating new mappings.
		 *
		 * This ensures that any speculatively loaded TLB entries
		 * (even though they may be rare) can not cause any problems,
		 * and ensures that this code is architecturally compliant.
440 441
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
442
		     addr += PMD_SIZE)
443 444
			pmd_clear(pmd_off_k(addr));

445 446 447
		flush_tlb_kernel_range(__phys_to_virt(start),
				       __phys_to_virt(end));

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
473
				 const void *caller, bool want_vaddr)
474 475
{
	struct page *page;
476
	void *ptr = NULL;
477 478 479
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
480 481
	if (!want_vaddr)
		goto out;
482 483 484 485 486 487 488

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

489
 out:
490 491 492 493
	*ret_page = page;
	return ptr;
}

494
static void *__alloc_from_pool(size_t size, struct page **ret_page)
495
{
496
	unsigned long val;
497
	void *ptr = NULL;
498

499
	if (!atomic_pool) {
500
		WARN(1, "coherent pool not initialised!\n");
501 502 503
		return NULL;
	}

504 505 506 507 508 509
	val = gen_pool_alloc(atomic_pool, size);
	if (val) {
		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);

		*ret_page = phys_to_page(phys);
		ptr = (void *)val;
510
	}
511 512

	return ptr;
513 514
}

515 516
static bool __in_atomic_pool(void *start, size_t size)
{
517
	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
518 519
}

520
static int __free_from_pool(void *start, size_t size)
521
{
522
	if (!__in_atomic_pool(start, size))
523 524
		return 0;

525
	gen_pool_free(atomic_pool, (unsigned long)start, size);
526

527 528 529 530
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
531
				     pgprot_t prot, struct page **ret_page,
532
				     const void *caller, bool want_vaddr)
533 534 535 536
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
537
	void *ptr = NULL;
538 539 540 541 542 543 544

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

545 546 547
	if (!want_vaddr)
		goto out;

548 549 550 551 552 553 554 555 556 557
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
558 559

 out:
560
	*ret_page = page;
561
	return ptr;
562 563 564
}

static void __free_from_contiguous(struct device *dev, struct page *page,
565
				   void *cpu_addr, size_t size, bool want_vaddr)
566
{
567 568 569 570 571 572
	if (want_vaddr) {
		if (PageHighMem(page))
			__dma_free_remap(cpu_addr, size);
		else
			__dma_remap(page, size, PAGE_KERNEL);
	}
573 574 575
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

576 577 578 579 580 581 582 583
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

584 585
#define nommu() 0

586
#else	/* !CONFIG_MMU */
587

588 589
#define nommu() 1

590 591
#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
592
#define __alloc_from_pool(size, ret_page)			NULL
593
#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
594
#define __free_from_pool(cpu_addr, size)			0
595
#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
596
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
597 598 599

#endif	/* CONFIG_MMU */

600 601
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
602
{
603 604 605 606 607 608 609 610 611 612 613 614
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
615 616
			 gfp_t gfp, pgprot_t prot, bool is_coherent,
			 struct dma_attrs *attrs, const void *caller)
617 618
{
	u64 mask = get_coherent_dma_mask(dev);
619
	struct page *page = NULL;
620
	void *addr;
621
	bool want_vaddr;
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

638 639 640 641 642 643 644 645 646
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

647
	*handle = DMA_ERROR_CODE;
648
	size = PAGE_ALIGN(size);
649
	want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
650

R
Rob Herring 已提交
651
	if (is_coherent || nommu())
652
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
653
	else if (!(gfp & __GFP_WAIT))
654
		addr = __alloc_from_pool(size, &page);
655
	else if (!dev_get_cma_area(dev))
656
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
657
	else
658
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
659

660
	if (page)
661
		*handle = pfn_to_dma(dev, page_to_pfn(page));
662

663
	return want_vaddr ? addr : page;
664
}
L
Linus Torvalds 已提交
665 666 667 668 669

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
670 671
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
672
{
673
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
674 675 676 677 678
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
679
	return __dma_alloc(dev, size, handle, gfp, prot, false,
680
			   attrs, __builtin_return_address(0));
R
Rob Herring 已提交
681 682 683 684 685
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
686
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
R
Rob Herring 已提交
687 688 689 690 691 692
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
693
			   attrs, __builtin_return_address(0));
L
Linus Torvalds 已提交
694 695
}

696
static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 698
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
699
{
700 701
	int ret = -ENXIO;
#ifdef CONFIG_MMU
702 703
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
705 706
	unsigned long off = vma->vm_pgoff;

707 708 709
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

710 711 712 713 714 715
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
716
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
717 718 719 720

	return ret;
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/*
 * Create userspace mapping for the DMA-coherent memory.
 */
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
{
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
{
#ifdef CONFIG_MMU
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
#endif	/* CONFIG_MMU */
	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}

L
Linus Torvalds 已提交
741
/*
742
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
743
 */
R
Rob Herring 已提交
744 745 746
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
747
{
748
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
749
	bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
750

751 752 753
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

754 755
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
756
	if (is_coherent || nommu()) {
757
		__dma_free_buffer(page, size);
758 759
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
760
	} else if (!dev_get_cma_area(dev)) {
761 762
		if (want_vaddr)
			__dma_free_remap(cpu_addr, size);
763 764 765 766 767 768
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
769
		__free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
770
	}
L
Linus Torvalds 已提交
771
}
772

R
Rob Herring 已提交
773 774 775 776 777 778 779 780 781 782 783 784
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

800
static void dma_cache_maint_page(struct page *page, unsigned long offset,
801 802
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
803
{
804 805 806 807 808 809
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

810 811 812 813 814 815 816 817
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
818 819
		void *vaddr;

820 821
		page = pfn_to_page(pfn);

822
		if (PageHighMem(page)) {
823
			if (len + offset > PAGE_SIZE)
824
				len = PAGE_SIZE - offset;
825 826

			if (cache_is_vipt_nonaliasing()) {
827
				vaddr = kmap_atomic(page);
828
				op(vaddr + offset, len, dir);
829
				kunmap_atomic(vaddr);
830 831 832 833 834 835
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
836
			}
837 838
		} else {
			vaddr = page_address(page) + offset;
839
			op(vaddr, len, dir);
840 841
		}
		offset = 0;
842
		pfn++;
843 844 845
		left -= len;
	} while (left);
}
846

847 848 849 850 851 852 853
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
854 855
	size_t size, enum dma_data_direction dir)
{
856
	phys_addr_t paddr;
857

858
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
859 860

	paddr = page_to_phys(page) + off;
861 862 863 864 865 866
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
867 868
}

869
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
870 871
	size_t size, enum dma_data_direction dir)
{
872
	phys_addr_t paddr = page_to_phys(page) + off;
873 874

	/* FIXME: non-speculating: not required */
875 876
	/* in any case, don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
877 878
		outer_inv_range(paddr, paddr + size);

879 880
		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
	}
881 882

	/*
883
	 * Mark the D-cache clean for these pages to avoid extra flushing.
884
	 */
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
901
}
902

903
/**
904
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905 906 907 908 909 910 911 912 913 914 915 916 917 918
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
919 920
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
921
{
922
	struct dma_map_ops *ops = get_dma_ops(dev);
923
	struct scatterlist *s;
924
	int i, j;
925 926

	for_each_sg(sg, s, nents, i) {
927 928 929
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
930 931
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
932 933
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
934 935
	}
	return nents;
936 937 938

 bad_mapping:
	for_each_sg(sg, s, i, j)
939
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
940
	return 0;
941 942 943
}

/**
944
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945 946
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
947
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948 949 950 951 952
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
953 954
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
955
{
956
	struct dma_map_ops *ops = get_dma_ops(dev);
957 958 959
	struct scatterlist *s;

	int i;
960

961
	for_each_sg(sg, s, nents, i)
962
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
963 964 965
}

/**
966
 * arm_dma_sync_sg_for_cpu
967 968 969 970 971
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
972
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
973 974
			int nents, enum dma_data_direction dir)
{
975
	struct dma_map_ops *ops = get_dma_ops(dev);
976 977 978
	struct scatterlist *s;
	int i;

979 980 981
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
982 983 984
}

/**
985
 * arm_dma_sync_sg_for_device
986 987 988 989 990
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
991
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
992 993
			int nents, enum dma_data_direction dir)
{
994
	struct dma_map_ops *ops = get_dma_ops(dev);
995 996 997
	struct scatterlist *s;
	int i;

998 999 1000
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1001
}
1002

1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
1011
	return __dma_supported(dev, mask, false);
1012 1013 1014
}
EXPORT_SYMBOL(dma_supported);

1015
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

1025 1026 1027 1028 1029 1030 1031 1032
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1033 1034 1035 1036 1037

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

1038 1039
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);

1040 1041 1042 1043 1044 1045
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
1046
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1047
	unsigned long flags;
1048 1049
	dma_addr_t iova;
	int i;
1050

1051 1052 1053
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1054 1055
	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	align = (1 << order) - 1;
1056 1057

	spin_lock_irqsave(&mapping->lock, flags);
1058 1059 1060 1061 1062 1063 1064 1065 1066
	for (i = 0; i < mapping->nr_bitmaps; i++) {
		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits)
			continue;

		bitmap_set(mapping->bitmaps[i], start, count);
		break;
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	/*
	 * No unused range found. Try to extend the existing mapping
	 * and perform a second attempt to reserve an IO virtual
	 * address range of size bytes.
	 */
	if (i == mapping->nr_bitmaps) {
		if (extend_iommu_mapping(mapping)) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
				mapping->bits, 0, count, align);

		if (start > mapping->bits) {
			spin_unlock_irqrestore(&mapping->lock, flags);
			return DMA_ERROR_CODE;
		}

		bitmap_set(mapping->bitmaps[i], start, count);
	}
1090 1091
	spin_unlock_irqrestore(&mapping->lock, flags);

1092
	iova = mapping->base + (mapping_size * i);
1093
	iova += start << PAGE_SHIFT;
1094 1095

	return iova;
1096 1097 1098 1099 1100
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
1101
	unsigned int start, count;
1102
	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1103
	unsigned long flags;
1104 1105 1106 1107 1108 1109
	dma_addr_t bitmap_base;
	u32 bitmap_index;

	if (!size)
		return;

1110
	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1111 1112
	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);

1113
	bitmap_base = mapping->base + mapping_size * bitmap_index;
1114

1115
	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1116

1117
	if (addr + size > bitmap_base + mapping_size) {
1118 1119 1120 1121 1122 1123 1124 1125
		/*
		 * The address range to be freed reaches into the iova
		 * range of the next bitmap. This should not happen as
		 * we don't allow this in __alloc_iova (at the
		 * moment).
		 */
		BUG();
	} else
1126
		count = size >> PAGE_SHIFT;
1127 1128

	spin_lock_irqsave(&mapping->lock, flags);
1129
	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1130 1131 1132
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1133 1134
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1135 1136 1137 1138 1139 1140 1141
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
1142
		pages = kzalloc(array_size, GFP_KERNEL);
1143 1144 1145 1146 1147
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1165 1166 1167 1168 1169
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1170
	while (count) {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		int j, order;

		for (order = __fls(count); order > 0; --order) {
			/*
			 * We do not want OOM killer to be invoked as long
			 * as we can fall back to single pages, so we force
			 * __GFP_NORETRY for orders higher than zero.
			 */
			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
			if (pages[i])
				break;
		}
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192
		if (!pages[i]) {
			/*
			 * Fall back to single page allocation.
			 * Might invoke OOM killer as last resort.
			 */
			pages[i] = alloc_pages(gfp, 0);
			if (!pages[i])
				goto error;
		}
1193

1194
		if (order) {
1195
			split_page(pages[i], order);
1196 1197 1198 1199
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1200 1201 1202 1203 1204 1205 1206 1207

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1208
	while (i--)
1209 1210
		if (pages[i])
			__free_pages(pages[i], 0);
1211
	if (array_size <= PAGE_SIZE)
1212 1213 1214 1215 1216 1217
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1218 1219
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1220 1221 1222 1223
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1224 1225 1226 1227 1228 1229 1230 1231 1232

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1233
	if (array_size <= PAGE_SIZE)
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1244 1245
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1246
{
1247 1248
	return dma_common_pages_remap(pages, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1249 1250 1251 1252 1253 1254 1255 1256
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
1257
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
1277 1278
		ret = iommu_map(mapping->domain, iova, phys, len,
				IOMMU_READ|IOMMU_WRITE);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
1293
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1307 1308
static struct page **__atomic_get_pages(void *addr)
{
1309 1310 1311 1312 1313
	struct page *page;
	phys_addr_t phys;

	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
	page = phys_to_page(phys);
1314

1315
	return (struct page **)page;
1316 1317
}

1318
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1319 1320 1321
{
	struct vm_struct *area;

1322 1323 1324
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1325 1326 1327
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1328 1329 1330 1331 1332 1333
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1355
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1356 1357 1358
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1359
	__free_from_pool(cpu_addr, size);
1360 1361
}

1362 1363 1364
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
1365
	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1366 1367 1368 1369 1370 1371
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1372
	if (!(gfp & __GFP_WAIT))
1373 1374
		return __iommu_alloc_atomic(dev, size, handle);

1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

1384
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1385 1386 1387 1388 1389 1390 1391
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1392 1393 1394
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1395 1396
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1397 1398 1399 1400 1401 1402 1403 1404
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1405
	__iommu_free_buffer(dev, pages, size, attrs);
1406 1407 1408 1409 1410 1411 1412
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1413 1414
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1415
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1416 1417 1418

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1419 1420
	if (!pages)
		return -ENXIO;
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1442
	struct page **pages;
1443 1444
	size = PAGE_ALIGN(size);

1445 1446
	if (__in_atomic_pool(cpu_addr, size)) {
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1447
		return;
1448
	}
1449

1450 1451 1452
	pages = __iommu_get_pages(cpu_addr, attrs);
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1453 1454 1455
		return;
	}

1456
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1457 1458
		dma_common_free_remap(cpu_addr, size,
			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1459
	}
1460 1461

	__iommu_remove_mapping(dev, handle, size);
1462
	__iommu_free_buffer(dev, pages, size, attrs);
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
	int prot;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		prot = IOMMU_READ | IOMMU_WRITE;
		break;
	case DMA_TO_DEVICE:
		prot = IOMMU_READ;
		break;
	case DMA_FROM_DEVICE:
		prot = IOMMU_WRITE;
		break;
	default:
		prot = 0;
	}

	return prot;
}

1500 1501 1502 1503 1504
/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1505 1506
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1507
{
1508
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1509 1510 1511 1512
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;
1513
	int prot;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1526 1527
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1528 1529
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

1530 1531 1532
		prot = __dma_direction_to_prot(dir);

		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1547 1548 1549
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1565
			    dir, attrs, is_coherent) < 0)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1578 1579
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1594
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1595 1596
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1597 1598
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1599
 *
R
Rob Herring 已提交
1600 1601 1602 1603
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1604
 */
R
Rob Herring 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1632 1633 1634 1635 1636 1637 1638 1639
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1640
		if (!is_coherent &&
1641
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1642 1643 1644 1645 1646
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1693
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1711
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1712 1713 1714 1715
}


/**
R
Rob Herring 已提交
1716
 * arm_coherent_iommu_map_page
1717 1718 1719 1720 1721 1722
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1723
 * Coherent IOMMU aware version of arm_dma_map_page()
1724
 */
R
Rob Herring 已提交
1725
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1726 1727 1728
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
1729
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1730
	dma_addr_t dma_addr;
1731
	int ret, prot, len = PAGE_ALIGN(size + offset);
1732 1733 1734 1735 1736

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

1737
	prot = __dma_direction_to_prot(dir);
1738 1739

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
1782
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
R
Rob Herring 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
1807
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1808 1809 1810 1811 1812 1813 1814 1815
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1816
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1817 1818 1819 1820 1821 1822 1823 1824 1825
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
1826
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1827 1828 1829 1830 1831 1832 1833
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1834
	__dma_page_dev_to_cpu(page, offset, size, dir);
1835 1836 1837 1838 1839
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
1840
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1855
	.get_sgtable	= arm_iommu_get_sgtable,
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1866 1867

	.set_dma_mask		= arm_dma_set_mask,
1868 1869
};

R
Rob Herring 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1881 1882

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1883 1884
};

1885 1886 1887 1888
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
1889
 * @size: maximum size of the valid IO address space
1890 1891 1892 1893 1894 1895 1896 1897 1898
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
1899
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1900
{
1901 1902
	unsigned int bits = size >> PAGE_SHIFT;
	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1903
	struct dma_iommu_mapping *mapping;
1904
	int extensions = 1;
1905 1906
	int err = -ENOMEM;

1907 1908 1909 1910
	/* currently only 32-bit DMA address space is supported */
	if (size > DMA_BIT_MASK(32) + 1)
		return ERR_PTR(-ERANGE);

1911
	if (!bitmap_size)
1912 1913
		return ERR_PTR(-EINVAL);

1914 1915 1916 1917 1918
	if (bitmap_size > PAGE_SIZE) {
		extensions = bitmap_size / PAGE_SIZE;
		bitmap_size = PAGE_SIZE;
	}

1919 1920 1921 1922
	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

1923 1924
	mapping->bitmap_size = bitmap_size;
	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1925 1926
				GFP_KERNEL);
	if (!mapping->bitmaps)
1927 1928
		goto err2;

1929
	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1930 1931 1932 1933 1934
	if (!mapping->bitmaps[0])
		goto err3;

	mapping->nr_bitmaps = 1;
	mapping->extensions = extensions;
1935
	mapping->base = base;
1936
	mapping->bits = BITS_PER_BYTE * bitmap_size;
1937

1938 1939 1940 1941
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
1942
		goto err4;
1943 1944 1945

	kref_init(&mapping->kref);
	return mapping;
1946 1947
err4:
	kfree(mapping->bitmaps[0]);
1948
err3:
1949
	kfree(mapping->bitmaps);
1950 1951 1952 1953 1954
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1955
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1956 1957 1958

static void release_iommu_mapping(struct kref *kref)
{
1959
	int i;
1960 1961 1962 1963
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
1964 1965 1966
	for (i = 0; i < mapping->nr_bitmaps; i++)
		kfree(mapping->bitmaps[i]);
	kfree(mapping->bitmaps);
1967 1968 1969
	kfree(mapping);
}

1970 1971 1972 1973
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
{
	int next_bitmap;

1974
	if (mapping->nr_bitmaps >= mapping->extensions)
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		return -EINVAL;

	next_bitmap = mapping->nr_bitmaps;
	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
						GFP_ATOMIC);
	if (!mapping->bitmaps[next_bitmap])
		return -ENOMEM;

	mapping->nr_bitmaps++;

	return 0;
}

1988 1989 1990 1991 1992
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
1993
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static int __arm_iommu_attach_device(struct device *dev,
				     struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
2005
	to_dma_iommu_mapping(dev) = mapping;
2006 2007 2008 2009 2010

	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
	return 0;
}

2011 2012 2013 2014 2015 2016
/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
2017 2018 2019 2020
 * Attaches specified io address space mapping to the provided device.
 * This replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version.
 *
2021 2022
 * More than one client might be attached to the same io address space
 * mapping.
2023 2024 2025 2026 2027 2028
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

2029
	err = __arm_iommu_attach_device(dev, mapping);
2030 2031 2032
	if (err)
		return err;

2033
	set_dma_ops(dev, &iommu_ops);
2034 2035
	return 0;
}
2036
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2037

2038
static void __arm_iommu_detach_device(struct device *dev)
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
2050
	to_dma_iommu_mapping(dev) = NULL;
2051 2052 2053

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	__arm_iommu_detach_device(dev);
	set_dma_ops(dev, NULL);
}
2067
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
{
	return coherent ? &iommu_coherent_ops : &iommu_ops;
}

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
				    struct iommu_ops *iommu)
{
	struct dma_iommu_mapping *mapping;

	if (!iommu)
		return false;

	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
	if (IS_ERR(mapping)) {
		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
				size, dev_name(dev));
		return false;
	}

2089
	if (__arm_iommu_attach_device(dev, mapping)) {
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
				dev_name(dev));
		arm_iommu_release_mapping(mapping);
		return false;
	}

	return true;
}

static void arm_teardown_iommu_dma_ops(struct device *dev)
{
2101
	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2102

2103 2104 2105
	if (!mapping)
		return;

2106
	__arm_iommu_detach_device(dev);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	arm_iommu_release_mapping(mapping);
}

#else

static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
				    struct iommu_ops *iommu)
{
	return false;
}

static void arm_teardown_iommu_dma_ops(struct device *dev) { }

#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops

#endif	/* CONFIG_ARM_DMA_USE_IOMMU */

static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
{
	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
}

void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
			struct iommu_ops *iommu, bool coherent)
{
	struct dma_map_ops *dma_ops;

2134
	dev->archdata.dma_coherent = coherent;
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
		dma_ops = arm_get_iommu_dma_map_ops(coherent);
	else
		dma_ops = arm_get_dma_map_ops(coherent);

	set_dma_ops(dev, dma_ops);
}

void arch_teardown_dma_ops(struct device *dev)
{
	arm_teardown_iommu_dma_ops(dev);
}