mb86a20s.c 51.0 KB
Newer Older
1 2 3
/*
 *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
 *
4
 *   Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License as
 *   published by the Free Software Foundation version 2.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *   General Public License for more details.
 */

#include <linux/kernel.h>
#include <asm/div64.h>

#include "dvb_frontend.h"
#include "mb86a20s.h"

static int debug = 1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");

struct mb86a20s_state {
	struct i2c_adapter *i2c;
	const struct mb86a20s_config *config;
30
	u32 last_frequency;
31 32

	struct dvb_frontend frontend;
33

34 35
	u32 if_freq;

36 37
	u32 estimated_rate[3];

38
	bool need_init;
39 40 41 42 43 44 45
};

struct regdata {
	u8 reg;
	u8 data;
};

46 47
#define BER_SAMPLING_RATE	1	/* Seconds */

48 49 50 51
/*
 * Initialization sequence: Use whatevere default values that PV SBTVD
 * does on its initialisation, obtained via USB snoop
 */
52
static struct regdata mb86a20s_init1[] = {
53 54 55 56
	{ 0x70, 0x0f },
	{ 0x70, 0xff },
	{ 0x08, 0x01 },
	{ 0x09, 0x3e },
57
	{ 0x50, 0xd1 }, { 0x51, 0x22 },
58 59
	{ 0x39, 0x01 },
	{ 0x71, 0x00 },
60
	{ 0x28, 0x2a }, { 0x29, 0x00 }, { 0x2a, 0xff }, { 0x2b, 0x80 },
61 62 63
};

static struct regdata mb86a20s_init2[] = {
64
	{ 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
65 66 67
	{ 0x3b, 0x21 },
	{ 0x3c, 0x3a },
	{ 0x01, 0x0d },
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	{ 0x04, 0x08 }, { 0x05, 0x05 },
	{ 0x04, 0x0e }, { 0x05, 0x00 },
	{ 0x04, 0x0f }, { 0x05, 0x14 },
	{ 0x04, 0x0b }, { 0x05, 0x8c },
	{ 0x04, 0x00 }, { 0x05, 0x00 },
	{ 0x04, 0x01 }, { 0x05, 0x07 },
	{ 0x04, 0x02 }, { 0x05, 0x0f },
	{ 0x04, 0x03 }, { 0x05, 0xa0 },
	{ 0x04, 0x09 }, { 0x05, 0x00 },
	{ 0x04, 0x0a }, { 0x05, 0xff },
	{ 0x04, 0x27 }, { 0x05, 0x64 },
	{ 0x04, 0x28 }, { 0x05, 0x00 },
	{ 0x04, 0x1e }, { 0x05, 0xff },
	{ 0x04, 0x29 }, { 0x05, 0x0a },
	{ 0x04, 0x32 }, { 0x05, 0x0a },
	{ 0x04, 0x14 }, { 0x05, 0x02 },
	{ 0x04, 0x04 }, { 0x05, 0x00 },
	{ 0x04, 0x05 }, { 0x05, 0x22 },
	{ 0x04, 0x06 }, { 0x05, 0x0e },
	{ 0x04, 0x07 }, { 0x05, 0xd8 },
	{ 0x04, 0x12 }, { 0x05, 0x00 },
	{ 0x04, 0x13 }, { 0x05, 0xff },
90 91
	{ 0x04, 0x15 }, { 0x05, 0x4e },
	{ 0x04, 0x16 }, { 0x05, 0x20 },
92 93 94 95 96 97

	/*
	 * On this demod, when the bit count reaches the count below,
	 * it collects the bit error count. The bit counters are initialized
	 * to 65535 here. This warrants that all of them will be quickly
	 * calculated when device gets locked. As TMCC is parsed, the values
98
	 * will be adjusted later in the driver's code.
99 100 101
	 */
	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
	{ 0x50, 0xa7 }, { 0x51, 0x00 },
102 103
	{ 0x50, 0xa8 }, { 0x51, 0xff },
	{ 0x50, 0xa9 }, { 0x51, 0xff },
104
	{ 0x50, 0xaa }, { 0x51, 0x00 },
105 106
	{ 0x50, 0xab }, { 0x51, 0xff },
	{ 0x50, 0xac }, { 0x51, 0xff },
107
	{ 0x50, 0xad }, { 0x51, 0x00 },
108 109
	{ 0x50, 0xae }, { 0x51, 0xff },
	{ 0x50, 0xaf }, { 0x51, 0xff },
110

111 112 113 114 115 116 117 118 119 120 121 122 123 124
	/*
	 * On this demod, post BER counts blocks. When the count reaches the
	 * value below, it collects the block error count. The block counters
	 * are initialized to 127 here. This warrants that all of them will be
	 * quickly calculated when device gets locked. As TMCC is parsed, the
	 * values will be adjusted later in the driver's code.
	 */
	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
	{ 0x50, 0xdc }, { 0x51, 0x00 },
	{ 0x50, 0xdd }, { 0x51, 0x7f },
	{ 0x50, 0xde }, { 0x51, 0x00 },
	{ 0x50, 0xdf }, { 0x51, 0x7f },
	{ 0x50, 0xe0 }, { 0x51, 0x00 },
	{ 0x50, 0xe1 }, { 0x51, 0x7f },
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

	/*
	 * On this demod, when the block count reaches the count below,
	 * it collects the block error count. The block counters are initialized
	 * to 127 here. This warrants that all of them will be quickly
	 * calculated when device gets locked. As TMCC is parsed, the values
	 * will be adjusted later in the driver's code.
	 */
	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
	{ 0x50, 0xb2 }, { 0x51, 0x00 },
	{ 0x50, 0xb3 }, { 0x51, 0x7f },
	{ 0x50, 0xb4 }, { 0x51, 0x00 },
	{ 0x50, 0xb5 }, { 0x51, 0x7f },
	{ 0x50, 0xb6 }, { 0x51, 0x00 },
	{ 0x50, 0xb7 }, { 0x51, 0x7f },
140 141

	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
142 143
	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
	{ 0x45, 0x04 },				/* CN symbol 4 */
144 145
	{ 0x48, 0x04 },				/* CN manual mode */

146 147 148 149
	{ 0x50, 0xd5 }, { 0x51, 0x01 },		/* Serial */
	{ 0x50, 0xd6 }, { 0x51, 0x1f },
	{ 0x50, 0xd2 }, { 0x51, 0x03 },
	{ 0x50, 0xd7 }, { 0x51, 0x3f },
150 151
	{ 0x28, 0x74 }, { 0x29, 0x00 }, { 0x28, 0x74 }, { 0x29, 0x40 },
	{ 0x28, 0x46 }, { 0x29, 0x2c }, { 0x28, 0x46 }, { 0x29, 0x0c },
152 153

	{ 0x04, 0x40 }, { 0x05, 0x00 },
154 155
	{ 0x28, 0x00 }, { 0x29, 0x10 },
	{ 0x28, 0x05 }, { 0x29, 0x02 },
156
	{ 0x1c, 0x01 },
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
	{ 0x50, 0x1e }, { 0x51, 0x5d },
	{ 0x50, 0x22 }, { 0x51, 0x00 },
	{ 0x50, 0x23 }, { 0x51, 0xc8 },
	{ 0x50, 0x24 }, { 0x51, 0x00 },
	{ 0x50, 0x25 }, { 0x51, 0xf0 },
	{ 0x50, 0x26 }, { 0x51, 0x00 },
	{ 0x50, 0x27 }, { 0x51, 0xc3 },
	{ 0x50, 0x39 }, { 0x51, 0x02 },
190
	{ 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
191 192 193 194 195 196 197 198 199 200
	{ 0xd0, 0x00 },
};

static struct regdata mb86a20s_reset_reception[] = {
	{ 0x70, 0xf0 },
	{ 0x70, 0xff },
	{ 0x08, 0x01 },
	{ 0x08, 0x00 },
};

201 202
static struct regdata mb86a20s_per_ber_reset[] = {
	{ 0x53, 0x00 },	/* pre BER Counter reset */
203 204
	{ 0x53, 0x07 },

205 206 207
	{ 0x5f, 0x00 },	/* post BER Counter reset */
	{ 0x5f, 0x07 },

208 209 210 211 212
	{ 0x50, 0xb1 },	/* PER Counter reset */
	{ 0x51, 0x07 },
	{ 0x51, 0x00 },
};

213 214 215 216
/*
 * I2C read/write functions and macros
 */

217
static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
218
			     u8 i2c_addr, u8 reg, u8 data)
219 220 221 222 223 224 225 226 227
{
	u8 buf[] = { reg, data };
	struct i2c_msg msg = {
		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
	};
	int rc;

	rc = i2c_transfer(state->i2c, &msg, 1);
	if (rc != 1) {
228 229 230
		dev_err(&state->i2c->dev,
			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
			__func__, rc, reg, data);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
		return rc;
	}

	return 0;
}

static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
				     u8 i2c_addr, struct regdata *rd, int size)
{
	int i, rc;

	for (i = 0; i < size; i++) {
		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
					   rd[i].data);
		if (rc < 0)
			return rc;
	}
	return 0;
}

static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
				u8 i2c_addr, u8 reg)
{
	u8 val;
	int rc;
	struct i2c_msg msg[] = {
		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
	};

	rc = i2c_transfer(state->i2c, msg, 2);

	if (rc != 2) {
264 265 266
		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
			__func__, reg, rc);
		return (rc < 0) ? rc : -EIO;
267 268 269 270 271 272 273 274 275 276 277 278 279
	}

	return val;
}

#define mb86a20s_readreg(state, reg) \
	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
#define mb86a20s_writereg(state, reg, val) \
	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
#define mb86a20s_writeregdata(state, regdata) \
	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
	regdata, ARRAY_SIZE(regdata))

280 281 282 283 284 285
/*
 * Ancillary internal routines (likely compiled inlined)
 *
 * The functions below assume that gateway lock has already obtained
 */

286
static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
287 288
{
	struct mb86a20s_state *state = fe->demodulator_priv;
289
	int val;
290

291
	*status = 0;
292

293 294 295
	val = mb86a20s_readreg(state, 0x0a) & 0xf;
	if (val < 0)
		return val;
296

297 298
	if (val >= 2)
		*status |= FE_HAS_SIGNAL;
299

300 301
	if (val >= 4)
		*status |= FE_HAS_CARRIER;
302

303 304
	if (val >= 5)
		*status |= FE_HAS_VITERBI;
305

306 307
	if (val >= 7)
		*status |= FE_HAS_SYNC;
308

309 310 311
	if (val >= 8)				/* Maybe 9? */
		*status |= FE_HAS_LOCK;

312 313
	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
		 __func__, *status, val);
314

315
	return val;
316 317
}

318
static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
319 320
{
	struct mb86a20s_state *state = fe->demodulator_priv;
321
	int rc;
322
	unsigned rf_max, rf_min, rf;
323

324 325 326 327 328
	/* Does a binary search to get RF strength */
	rf_max = 0xfff;
	rf_min = 0;
	do {
		rf = (rf_max + rf_min) / 2;
329 330 331 332 333 334 335 336 337 338 339 340
		rc = mb86a20s_writereg(state, 0x04, 0x1f);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x04, 0x20);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x04, rf);
		if (rc < 0)
			return rc;
341

342 343 344 345
		rc = mb86a20s_readreg(state, 0x02);
		if (rc < 0)
			return rc;
		if (rc & 0x08)
346 347 348 349
			rf_min = (rf_max + rf_min) / 2;
		else
			rf_max = (rf_max + rf_min) / 2;
		if (rf_max - rf_min < 4) {
350 351 352 353
			rf = (rf_max + rf_min) / 2;

			/* Rescale it from 2^12 (4096) to 2^16 */
			rf <<= (16 - 12);
354 355 356
			dev_dbg(&state->i2c->dev,
				"%s: signal strength = %d (%d < RF=%d < %d)\n",
				__func__, rf, rf_min, rf >> 4, rf_max);
357
			return rf;
358 359 360 361 362 363
		}
	} while (1);

	return 0;
}

364 365 366 367 368 369 370 371 372 373
static int mb86a20s_get_modulation(struct mb86a20s_state *state,
				   unsigned layer)
{
	int rc;
	static unsigned char reg[] = {
		[0] = 0x86,	/* Layer A */
		[1] = 0x8a,	/* Layer B */
		[2] = 0x8e,	/* Layer C */
	};

374
	if (layer >= ARRAY_SIZE(reg))
375 376 377 378 379 380 381
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
382
	switch ((rc >> 4) & 0x07) {
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	case 0:
		return DQPSK;
	case 1:
		return QPSK;
	case 2:
		return QAM_16;
	case 3:
		return QAM_64;
	default:
		return QAM_AUTO;
	}
}

static int mb86a20s_get_fec(struct mb86a20s_state *state,
			    unsigned layer)
{
	int rc;

	static unsigned char reg[] = {
		[0] = 0x87,	/* Layer A */
		[1] = 0x8b,	/* Layer B */
		[2] = 0x8f,	/* Layer C */
	};

407
	if (layer >= ARRAY_SIZE(reg))
408 409 410 411 412 413 414
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
415
	switch ((rc >> 4) & 0x07) {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	case 0:
		return FEC_1_2;
	case 1:
		return FEC_2_3;
	case 2:
		return FEC_3_4;
	case 3:
		return FEC_5_6;
	case 4:
		return FEC_7_8;
	default:
		return FEC_AUTO;
	}
}

static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
				     unsigned layer)
{
	int rc;

	static unsigned char reg[] = {
		[0] = 0x88,	/* Layer A */
		[1] = 0x8c,	/* Layer B */
		[2] = 0x90,	/* Layer C */
	};

442
	if (layer >= ARRAY_SIZE(reg))
443 444 445 446 447 448 449
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	switch ((rc >> 4) & 0x07) {
	case 1:
		return GUARD_INTERVAL_1_4;
	case 2:
		return GUARD_INTERVAL_1_8;
	case 3:
		return GUARD_INTERVAL_1_16;
	case 4:
		return GUARD_INTERVAL_1_32;

	default:
	case 0:
		return GUARD_INTERVAL_AUTO;
	}
465 466 467 468 469 470 471 472 473 474 475 476
}

static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
				      unsigned layer)
{
	int rc, count;
	static unsigned char reg[] = {
		[0] = 0x89,	/* Layer A */
		[1] = 0x8d,	/* Layer B */
		[2] = 0x91,	/* Layer C */
	};

477 478
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

479
	if (layer >= ARRAY_SIZE(reg))
480
		return -EINVAL;
481

482 483 484 485 486 487 488 489
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
	count = (rc >> 4) & 0x0f;

490 491
	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);

492 493 494
	return count;
}

495 496
static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
{
497
	struct mb86a20s_state *state = fe->demodulator_priv;
498 499
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;

500 501
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

502 503 504 505 506 507 508 509 510 511 512 513
	/* Fixed parameters */
	c->delivery_system = SYS_ISDBT;
	c->bandwidth_hz = 6000000;

	/* Initialize values that will be later autodetected */
	c->isdbt_layer_enabled = 0;
	c->transmission_mode = TRANSMISSION_MODE_AUTO;
	c->guard_interval = GUARD_INTERVAL_AUTO;
	c->isdbt_sb_mode = 0;
	c->isdbt_sb_segment_count = 0;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/*
 * Estimates the bit rate using the per-segment bit rate given by
 * ABNT/NBR 15601 spec (table 4).
 */
static u32 isdbt_rate[3][5][4] = {
	{	/* DQPSK/QPSK */
		{  280850,  312060,  330420,  340430 },	/* 1/2 */
		{  374470,  416080,  440560,  453910 },	/* 2/3 */
		{  421280,  468090,  495630,  510650 },	/* 3/4 */
		{  468090,  520100,  550700,  567390 },	/* 5/6 */
		{  491500,  546110,  578230,  595760 },	/* 7/8 */
	}, {	/* QAM16 */
		{  561710,  624130,  660840,  680870 },	/* 1/2 */
		{  748950,  832170,  881120,  907820 },	/* 2/3 */
		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
	}, {	/* QAM64 */
		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
	}
};

static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
				   u32 modulation, u32 fec, u32 interleaving,
				   u32 segment)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	u32 rate;
	int m, f, i;

	/*
	 * If modulation/fec/interleaving is not detected, the default is
	 * to consider the lowest bit rate, to avoid taking too long time
	 * to get BER.
	 */
	switch (modulation) {
	case DQPSK:
	case QPSK:
	default:
		m = 0;
		break;
	case QAM_16:
		m = 1;
		break;
	case QAM_64:
		m = 2;
		break;
	}

	switch (fec) {
	default:
	case FEC_1_2:
	case FEC_AUTO:
		f = 0;
		break;
	case FEC_2_3:
		f = 1;
		break;
	case FEC_3_4:
		f = 2;
		break;
	case FEC_5_6:
		f = 3;
		break;
	case FEC_7_8:
		f = 4;
		break;
	}

	switch (interleaving) {
	default:
	case GUARD_INTERVAL_1_4:
		i = 0;
		break;
	case GUARD_INTERVAL_1_8:
		i = 1;
		break;
	case GUARD_INTERVAL_1_16:
		i = 2;
		break;
	case GUARD_INTERVAL_1_32:
		i = 3;
		break;
	}

	/* Samples BER at BER_SAMPLING_RATE seconds */
	rate = isdbt_rate[m][f][i] * segment * BER_SAMPLING_RATE;

	/* Avoids sampling too quickly or to overflow the register */
	if (rate < 256)
		rate = 256;
	else if (rate > (1 << 24) - 1)
		rate = (1 << 24) - 1;

	dev_dbg(&state->i2c->dev,
		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
	       __func__, 'A' + layer, segment * isdbt_rate[m][f][i]/1000,
		rate, rate);

	state->estimated_rate[i] = rate;
}


621
static int mb86a20s_get_frontend(struct dvb_frontend *fe)
622
{
623
	struct mb86a20s_state *state = fe->demodulator_priv;
624
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
625
	int i, rc;
626

627 628
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

629 630
	/* Reset frontend cache to default values */
	mb86a20s_reset_frontend_cache(fe);
631 632 633

	/* Check for partial reception */
	rc = mb86a20s_writereg(state, 0x6d, 0x85);
634 635 636 637 638 639
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
640 641

	/* Get per-layer data */
642

643
	for (i = 0; i < 3; i++) {
644 645 646
		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
			__func__, 'A' + i);

647
		rc = mb86a20s_get_segment_count(state, i);
648
		if (rc < 0)
649
			goto noperlayer_error;
650
		if (rc >= 0 && rc < 14) {
651
			c->layer[i].segment_count = rc;
652
		} else {
653
			c->layer[i].segment_count = 0;
654
			state->estimated_rate[i] = 0;
655
			continue;
656 657
		}
		c->isdbt_layer_enabled |= 1 << i;
658
		rc = mb86a20s_get_modulation(state, i);
659
		if (rc < 0)
660 661 662
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
			__func__, rc);
663
		c->layer[i].modulation = rc;
664
		rc = mb86a20s_get_fec(state, i);
665
		if (rc < 0)
666 667 668
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
			__func__, rc);
669
		c->layer[i].fec = rc;
670
		rc = mb86a20s_get_interleaving(state, i);
671
		if (rc < 0)
672 673 674
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
			__func__, rc);
675
		c->layer[i].interleaving = rc;
676 677 678 679
		mb86a20s_layer_bitrate(fe, i, c->layer[i].modulation,
				       c->layer[i].fec,
				       c->layer[i].interleaving,
				       c->layer[i].segment_count);
680 681 682
	}

	rc = mb86a20s_writereg(state, 0x6d, 0x84);
683 684 685 686
	if (rc < 0)
		return rc;
	if ((rc & 0x60) == 0x20) {
		c->isdbt_sb_mode = 1;
687
		/* At least, one segment should exist */
688 689 690
		if (!c->isdbt_sb_segment_count)
			c->isdbt_sb_segment_count = 1;
	}
691 692 693

	/* Get transmission mode and guard interval */
	rc = mb86a20s_readreg(state, 0x07);
694 695 696 697 698 699 700 701 702 703 704 705 706
	if (rc < 0)
		return rc;
	if ((rc & 0x60) == 0x20) {
		switch (rc & 0x0c >> 2) {
		case 0:
			c->transmission_mode = TRANSMISSION_MODE_2K;
			break;
		case 1:
			c->transmission_mode = TRANSMISSION_MODE_4K;
			break;
		case 2:
			c->transmission_mode = TRANSMISSION_MODE_8K;
			break;
707
		}
708 709 710 711 712 713 714 715 716 717 718 719
	}
	if (!(rc & 0x10)) {
		switch (rc & 0x3) {
		case 0:
			c->guard_interval = GUARD_INTERVAL_1_4;
			break;
		case 1:
			c->guard_interval = GUARD_INTERVAL_1_8;
			break;
		case 2:
			c->guard_interval = GUARD_INTERVAL_1_16;
			break;
720 721
		}
	}
722
	return 0;
723

724
noperlayer_error:
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	/* per-layer info is incomplete; discard all per-layer */
	c->isdbt_layer_enabled = 0;

	return rc;
}

static int mb86a20s_reset_counters(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int rc, val;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	/* Reset the counters, if the channel changed */
	if (state->last_frequency != c->frequency) {
		memset(&c->strength, 0, sizeof(c->strength));
		memset(&c->cnr, 0, sizeof(c->cnr));
		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
746 747
		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
748 749 750 751 752 753 754 755
		memset(&c->block_error, 0, sizeof(c->block_error));
		memset(&c->block_count, 0, sizeof(c->block_count));

		state->last_frequency = c->frequency;
	}

	/* Clear status for most stats */

756 757
	/* BER/PER counter reset */
	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	if (rc < 0)
		goto err;

	/* CNR counter reset */
	rc = mb86a20s_readreg(state, 0x45);
	if (rc < 0)
		goto err;
	val = rc;
	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
	if (rc < 0)
		goto err;

	/* MER counter reset */
	rc = mb86a20s_writereg(state, 0x50, 0x50);
	if (rc < 0)
		goto err;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		goto err;
	val = rc;
	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
	if (rc < 0)
		goto err;

788
	goto ok;
789
err:
790 791 792 793
	dev_err(&state->i2c->dev,
		"%s: Can't reset FE statistics (error %d).\n",
		__func__, rc);
ok:
794
	return rc;
795 796
}

797 798 799
static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
				unsigned layer,
				u32 *error, u32 *count)
800 801
{
	struct mb86a20s_state *state = fe->demodulator_priv;
802
	int rc, val;
803 804 805 806 807 808 809 810 811 812 813 814 815 816

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	if (layer >= 3)
		return -EINVAL;

	/* Check if the BER measures are already available */
	rc = mb86a20s_readreg(state, 0x54);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */
	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
817
			"%s: preBER for layer %c is not available yet.\n",
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			__func__, 'A' + layer);
		return -EBUSY;
	}

	/* Read Bit Error Count */
	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
	if (rc < 0)
		return rc;
	*error = rc << 16;
	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc << 8;
	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: bit error before Viterbi for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count = rc << 16;
	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: bit count before Viterbi for layer %c: %d.\n",
		__func__, 'A' + layer, *count);


868 869 870 871 872 873 874 875 876 877
	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (state->estimated_rate[layer]
	    && state->estimated_rate[layer] != *count) {
		dev_dbg(&state->i2c->dev,
878
			"%s: updating layer %c preBER counter to %d.\n",
879
			__func__, 'A' + layer, state->estimated_rate[layer]);
880 881 882 883 884

		/* Turn off BER before Viterbi */
		rc = mb86a20s_writereg(state, 0x52, 0x00);

		/* Update counter for this layer */
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer] >> 16);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer] >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer]);
		if (rc < 0)
			return rc;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

		/* Turn on BER before Viterbi */
		rc = mb86a20s_writereg(state, 0x52, 0x01);

		/* Reset all preBER counters */
		rc = mb86a20s_writereg(state, 0x53, 0x00);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x53, 0x07);
	} else {
		/* Reset counter to collect new data */
		rc = mb86a20s_readreg(state, 0x53);
		if (rc < 0)
			return rc;
		val = rc;
		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
925 926
	}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	return rc;
}

static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
				 unsigned layer,
				  u32 *error, u32 *count)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	u32 counter, collect_rate;
	int rc, val;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	if (layer >= 3)
		return -EINVAL;

	/* Check if the BER measures are already available */
	rc = mb86a20s_readreg(state, 0x60);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */
	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
			"%s: post BER for layer %c is not available yet.\n",
			__func__, 'A' + layer);
		return -EBUSY;
	}
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/* Read Bit Error Count */
	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
	if (rc < 0)
		return rc;
	*error = rc << 16;
	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc << 8;
	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: post bit error for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	counter = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	counter |= rc;
	*count = counter * 204 * 8;

	dev_dbg(&state->i2c->dev,
		"%s: post bit count for layer %c: %d.\n",
		__func__, 'A' + layer, *count);

	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (!state->estimated_rate[layer])
		goto reset_measurement;

	collect_rate = state->estimated_rate[layer] / 204 / 8;
	if (collect_rate < 32)
		collect_rate = 32;
	if (collect_rate > 65535)
		collect_rate = 65535;
	if (collect_rate != counter) {
		dev_dbg(&state->i2c->dev,
			"%s: updating postBER counter on layer %c to %d.\n",
			__func__, 'A' + layer, collect_rate);

		/* Turn off BER after Viterbi */
		rc = mb86a20s_writereg(state, 0x5e, 0x00);

		/* Update counter for this layer */
		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
		if (rc < 0)
			return rc;

		/* Turn on BER after Viterbi */
		rc = mb86a20s_writereg(state, 0x5e, 0x07);

		/* Reset all preBER counters */
		rc = mb86a20s_writereg(state, 0x5f, 0x00);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x5f, 0x07);

		return rc;
	}

reset_measurement:
1045
	/* Reset counter to collect new data */
1046 1047 1048 1049 1050
	rc = mb86a20s_readreg(state, 0x5f);
	if (rc < 0)
		return rc;
	val = rc;
	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1051 1052
	if (rc < 0)
		return rc;
1053
	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1054

1055
	return rc;
1056 1057
}

1058 1059 1060 1061 1062
static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
			    unsigned layer,
			    u32 *error, u32 *count)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
1063
	int rc, val;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	u32 collect_rate;
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	if (layer >= 3)
		return -EINVAL;

	/* Check if the PER measures are already available */
	rc = mb86a20s_writereg(state, 0x50, 0xb8);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */

	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
			"%s: block counts for layer %c aren't available yet.\n",
			__func__, 'A' + layer);
		return -EBUSY;
	}

	/* Read Packet error Count */
	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*error = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*error |= rc;
1102
	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: block count for layer %c: %d.\n",
		__func__, 'A' + layer, *count);

	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (!state->estimated_rate[layer])
		goto reset_measurement;

	collect_rate = state->estimated_rate[layer] / 204 / 8;
	if (collect_rate < 32)
		collect_rate = 32;
	if (collect_rate > 65535)
		collect_rate = 65535;

	if (collect_rate != *count) {
		dev_dbg(&state->i2c->dev,
			"%s: updating PER counter on layer %c to %d.\n",
			__func__, 'A' + layer, collect_rate);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

		/* Stop PER measurement */
		rc = mb86a20s_writereg(state, 0x50, 0xb0);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x00);
		if (rc < 0)
			return rc;

		/* Update this layer's counter */
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
		if (rc < 0)
			return rc;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

		/* start PER measurement */
		rc = mb86a20s_writereg(state, 0x50, 0xb0);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x07);
		if (rc < 0)
			return rc;

		/* Reset all counters to collect new data */
		rc = mb86a20s_writereg(state, 0x50, 0xb1);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x07);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x00);

		return rc;
1186 1187 1188 1189 1190 1191 1192
	}

reset_measurement:
	/* Reset counter to collect new data */
	rc = mb86a20s_writereg(state, 0x50, 0xb1);
	if (rc < 0)
		return rc;
1193
	rc = mb86a20s_readreg(state, 0x51);
1194 1195
	if (rc < 0)
		return rc;
1196 1197
	val = rc;
	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1198 1199
	if (rc < 0)
		return rc;
1200
	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1201

1202
	return rc;
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
struct linear_segments {
	unsigned x, y;
};

/*
 * All tables below return a dB/1000 measurement
 */

static struct linear_segments cnr_to_db_table[] = {
	{ 19648,     0},
	{ 18187,  1000},
	{ 16534,  2000},
	{ 14823,  3000},
	{ 13161,  4000},
	{ 11622,  5000},
	{ 10279,  6000},
	{  9089,  7000},
	{  8042,  8000},
	{  7137,  9000},
	{  6342, 10000},
	{  5641, 11000},
	{  5030, 12000},
	{  4474, 13000},
	{  3988, 14000},
	{  3556, 15000},
	{  3180, 16000},
	{  2841, 17000},
	{  2541, 18000},
	{  2276, 19000},
	{  2038, 20000},
	{  1800, 21000},
	{  1625, 22000},
	{  1462, 23000},
	{  1324, 24000},
	{  1175, 25000},
	{  1063, 26000},
	{   980, 27000},
	{   907, 28000},
	{   840, 29000},
	{   788, 30000},
};

static struct linear_segments cnr_64qam_table[] = {
	{ 3922688,     0},
	{ 3920384,  1000},
	{ 3902720,  2000},
	{ 3894784,  3000},
	{ 3882496,  4000},
	{ 3872768,  5000},
	{ 3858944,  6000},
	{ 3851520,  7000},
	{ 3838976,  8000},
	{ 3829248,  9000},
	{ 3818240, 10000},
	{ 3806976, 11000},
	{ 3791872, 12000},
	{ 3767040, 13000},
	{ 3720960, 14000},
	{ 3637504, 15000},
	{ 3498496, 16000},
	{ 3296000, 17000},
	{ 3031040, 18000},
	{ 2715392, 19000},
	{ 2362624, 20000},
	{ 1963264, 21000},
	{ 1649664, 22000},
	{ 1366784, 23000},
	{ 1120768, 24000},
	{  890880, 25000},
	{  723456, 26000},
	{  612096, 27000},
	{  518912, 28000},
	{  448256, 29000},
	{  388864, 30000},
};

static struct linear_segments cnr_16qam_table[] = {
	{ 5314816,     0},
	{ 5219072,  1000},
	{ 5118720,  2000},
	{ 4998912,  3000},
	{ 4875520,  4000},
	{ 4736000,  5000},
	{ 4604160,  6000},
	{ 4458752,  7000},
	{ 4300288,  8000},
	{ 4092928,  9000},
	{ 3836160, 10000},
	{ 3521024, 11000},
	{ 3155968, 12000},
	{ 2756864, 13000},
	{ 2347008, 14000},
	{ 1955072, 15000},
	{ 1593600, 16000},
	{ 1297920, 17000},
	{ 1043968, 18000},
	{  839680, 19000},
	{  672256, 20000},
	{  523008, 21000},
	{  424704, 22000},
	{  345088, 23000},
	{  280064, 24000},
	{  221440, 25000},
	{  179712, 26000},
	{  151040, 27000},
	{  128512, 28000},
	{  110080, 29000},
	{   95744, 30000},
};

struct linear_segments cnr_qpsk_table[] = {
	{ 2834176,     0},
	{ 2683648,  1000},
	{ 2536960,  2000},
	{ 2391808,  3000},
	{ 2133248,  4000},
	{ 1906176,  5000},
	{ 1666560,  6000},
	{ 1422080,  7000},
	{ 1189632,  8000},
	{  976384,  9000},
	{  790272, 10000},
	{  633344, 11000},
	{  505600, 12000},
	{  402944, 13000},
	{  320768, 14000},
	{  255488, 15000},
	{  204032, 16000},
	{  163072, 17000},
	{  130304, 18000},
	{  105216, 19000},
	{   83456, 20000},
	{   65024, 21000},
	{   52480, 22000},
	{   42752, 23000},
	{   34560, 24000},
	{   27136, 25000},
	{   22016, 26000},
	{   18432, 27000},
	{   15616, 28000},
	{   13312, 29000},
	{   11520, 30000},
};

static u32 interpolate_value(u32 value, struct linear_segments *segments,
			     unsigned len)
{
	u64 tmp64;
	u32 dx, dy;
	int i, ret;

	if (value >= segments[0].x)
		return segments[0].y;
	if (value < segments[len-1].x)
		return segments[len-1].y;

	for (i = 1; i < len - 1; i++) {
		/* If value is identical, no need to interpolate */
		if (value == segments[i].x)
			return segments[i].y;
		if (value > segments[i].x)
			break;
	}

	/* Linear interpolation between the two (x,y) points */
	dy = segments[i].y - segments[i - 1].y;
	dx = segments[i - 1].x - segments[i].x;
	tmp64 = value - segments[i].x;
	tmp64 *= dy;
	do_div(tmp64, dx);
	ret = segments[i].y - tmp64;

	return ret;
}

static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 cnr_linear, cnr;
	int rc, val;

	/* Check if CNR is available */
	rc = mb86a20s_readreg(state, 0x45);
	if (rc < 0)
		return rc;

	if (!(rc & 0x40)) {
1393
		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
			 __func__);
		return -EBUSY;
	}
	val = rc;

	rc = mb86a20s_readreg(state, 0x46);
	if (rc < 0)
		return rc;
	cnr_linear = rc << 8;

	rc = mb86a20s_readreg(state, 0x46);
	if (rc < 0)
		return rc;
	cnr_linear |= rc;

	cnr = interpolate_value(cnr_linear,
				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));

	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
	c->cnr.stat[0].svalue = cnr;

	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
		__func__, cnr / 1000, cnr % 1000, cnr_linear);

	/* CNR counter reset */
	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
	if (rc < 0)
		return rc;
	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);

	return rc;
}

1427
static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 mer, cnr;
	int rc, val, i;
	struct linear_segments *segs;
	unsigned segs_len;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	/* Check if the measures are already available */
	rc = mb86a20s_writereg(state, 0x50, 0x5b);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;

	/* Check if data is available */
	if (!(rc & 0x01)) {
1448
		dev_dbg(&state->i2c->dev,
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
			"%s: MER measures aren't available yet.\n", __func__);
		return -EBUSY;
	}

	/* Read all layers */
	for (i = 0; i < 3; i++) {
		if (!(c->isdbt_layer_enabled & (1 << i))) {
			c->cnr.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
			continue;
		}

		rc = mb86a20s_writereg(state, 0x50, 0x52 + i * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer = rc << 16;
		rc = mb86a20s_writereg(state, 0x50, 0x53 + i * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer |= rc << 8;
		rc = mb86a20s_writereg(state, 0x50, 0x54 + i * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer |= rc;

		switch (c->layer[i].modulation) {
		case DQPSK:
		case QPSK:
			segs = cnr_qpsk_table;
			segs_len = ARRAY_SIZE(cnr_qpsk_table);
			break;
		case QAM_16:
			segs = cnr_16qam_table;
			segs_len = ARRAY_SIZE(cnr_16qam_table);
			break;
		default:
		case QAM_64:
			segs = cnr_64qam_table;
			segs_len = ARRAY_SIZE(cnr_64qam_table);
			break;
		}
		cnr = interpolate_value(mer, segs, segs_len);

		c->cnr.stat[1 + i].scale = FE_SCALE_DECIBEL;
		c->cnr.stat[1 + i].svalue = cnr;

		dev_dbg(&state->i2c->dev,
			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
			__func__, 'A' + i, cnr / 1000, cnr % 1000, mer);

	}

	/* Start a new MER measurement */
	/* MER counter reset */
	rc = mb86a20s_writereg(state, 0x50, 0x50);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	val = rc;

	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
	if (rc < 0)
		return rc;
	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
	if (rc < 0)
		return rc;

	return 0;
}

1529 1530 1531 1532 1533 1534 1535
static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int i;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545
	/* Fill the length of each status counter */

	/* Only global stats */
	c->strength.len = 1;

	/* Per-layer stats - 3 layers + global */
	c->cnr.len = 4;
	c->pre_bit_error.len = 4;
	c->pre_bit_count.len = 4;
1546 1547
	c->post_bit_error.len = 4;
	c->post_bit_count.len = 4;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	c->block_error.len = 4;
	c->block_count.len = 4;

	/* Signal is always available */
	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
	c->strength.stat[0].uvalue = 0;

	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
	for (i = 0; i < 4; i++) {
		c->cnr.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
1560 1561
		c->post_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
1562 1563 1564
		c->block_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
	}
1565 1566
}

1567
static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1568 1569 1570 1571 1572 1573
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int rc = 0, i;
	u32 bit_error = 0, bit_count = 0;
	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1574
	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1575 1576
	u32 block_error = 0, block_count = 0;
	u32 t_block_error = 0, t_block_count = 0;
1577 1578
	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
	int per_layers = 0;
1579

1580 1581 1582 1583
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	mb86a20s_get_main_CNR(fe);

1584
	/* Get per-layer stats */
1585
	mb86a20s_get_blk_error_layer_CNR(fe);
1586

1587 1588 1589 1590 1591 1592 1593 1594
	/*
	 * At state 7, only CNR is available
	 * For BER measures, state=9 is required
	 * FIXME: we may get MER measures with state=8
	 */
	if (status_nr < 9)
		return 0;

1595 1596 1597 1598 1599 1600
	for (i = 0; i < 3; i++) {
		if (c->isdbt_layer_enabled & (1 << i)) {
			/* Layer is active and has rc segments */
			active_layers++;

			/* Handle BER before vterbi */
1601 1602
			rc = mb86a20s_get_pre_ber(fe, i,
						  &bit_error, &bit_count);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			if (rc >= 0) {
				c->pre_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->pre_bit_error.stat[1 + i].uvalue += bit_error;
				c->pre_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->pre_bit_count.stat[1 + i].uvalue += bit_count;
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
				c->pre_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				c->pre_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				dev_err(&state->i2c->dev,
					"%s: Can't get BER for layer %c (error %d).\n",
					__func__, 'A' + i, rc);
			}
			if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
				pre_ber_layers++;

			/* Handle BER post vterbi */
			rc = mb86a20s_get_post_ber(fe, i,
						   &bit_error, &bit_count);
			if (rc >= 0) {
				c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->post_bit_error.stat[1 + i].uvalue += bit_error;
				c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->post_bit_count.stat[1 + i].uvalue += bit_count;
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
				c->post_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				c->post_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				dev_err(&state->i2c->dev,
					"%s: Can't get BER for layer %c (error %d).\n",
					__func__, 'A' + i, rc);
			}
			if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
				post_ber_layers++;
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
			/* Handle Block errors for PER/UCB reports */
			rc = mb86a20s_get_blk_error(fe, i,
						&block_error,
						&block_count);
			if (rc >= 0) {
				c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->block_error.stat[1 + i].uvalue += block_error;
				c->block_count.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->block_count.stat[1 + i].uvalue += block_count;
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
				c->block_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				c->block_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				dev_err(&state->i2c->dev,
					"%s: Can't get PER for layer %c (error %d).\n",
					__func__, 'A' + i, rc);

			}
			if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
				per_layers++;

1668
			/* Update total preBER */
1669 1670
			t_pre_bit_error += c->pre_bit_error.stat[1 + i].uvalue;
			t_pre_bit_count += c->pre_bit_count.stat[1 + i].uvalue;
1671

1672 1673 1674 1675
			/* Update total postBER */
			t_post_bit_error += c->post_bit_error.stat[1 + i].uvalue;
			t_post_bit_count += c->post_bit_count.stat[1 + i].uvalue;

1676 1677 1678
			/* Update total PER */
			t_block_error += c->block_error.stat[1 + i].uvalue;
			t_block_count += c->block_count.stat[1 + i].uvalue;
1679 1680 1681 1682 1683 1684 1685
		}
	}

	/*
	 * Start showing global count if at least one error count is
	 * available.
	 */
1686
	if (pre_ber_layers) {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		/*
		 * At least one per-layer BER measure was read. We can now
		 * calculate the total BER
		 *
		 * Total Bit Error/Count is calculated as the sum of the
		 * bit errors on all active layers.
		 */
		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1698 1699 1700
	} else {
		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1701 1702
	}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	/*
	 * Start showing global count if at least one error count is
	 * available.
	 */
	if (post_ber_layers) {
		/*
		 * At least one per-layer BER measure was read. We can now
		 * calculate the total BER
		 *
		 * Total Bit Error/Count is calculated as the sum of the
		 * bit errors on all active layers.
		 */
		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1719 1720 1721
	} else {
		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1722 1723
	}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (per_layers) {
		/*
		 * At least one per-layer UCB measure was read. We can now
		 * calculate the total UCB
		 *
		 * Total block Error/Count is calculated as the sum of the
		 * block errors on all active layers.
		 */
		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
		c->block_error.stat[0].uvalue = t_block_error;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
		c->block_count.stat[0].uvalue = t_block_count;
1736 1737 1738
	} else {
		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1739 1740
	}

1741 1742
	return rc;
}
1743 1744 1745 1746 1747 1748

/*
 * The functions below are called via DVB callbacks, so they need to
 * properly use the I2C gate control
 */

1749 1750 1751
static int mb86a20s_initfe(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
1752
	u64 pll;
1753 1754 1755
	int rc;
	u8  regD5 = 1;

1756
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1757 1758 1759 1760 1761

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

	/* Initialize the frontend */
1762
	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1763 1764 1765
	if (rc < 0)
		goto err;

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	/* Adjust IF frequency to match tuner */
	if (fe->ops.tuner_ops.get_if_frequency)
		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);

	if (!state->if_freq)
		state->if_freq = 3300000;

	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
	pll = state->if_freq * 1677721600L;
	do_div(pll, 1628571429L);
	rc = mb86a20s_writereg(state, 0x28, 0x20);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
	if (rc < 0)
		goto err;
	dev_dbg(&state->i2c->dev, "%s: IF=%d, PLL=0x%06llx\n",
		__func__, state->if_freq, (long long)pll);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (!state->config->is_serial) {
		regD5 &= ~1;

		rc = mb86a20s_writereg(state, 0x50, 0xd5);
		if (rc < 0)
			goto err;
		rc = mb86a20s_writereg(state, 0x51, regD5);
		if (rc < 0)
			goto err;
	}

1802 1803 1804 1805 1806
	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
	if (rc < 0)
		goto err;


1807 1808 1809 1810 1811 1812
err:
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);

	if (rc < 0) {
		state->need_init = true;
1813 1814
		dev_info(&state->i2c->dev,
			 "mb86a20s: Init failed. Will try again later\n");
1815 1816
	} else {
		state->need_init = false;
1817
		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1818 1819 1820 1821 1822 1823 1824
	}
	return rc;
}

static int mb86a20s_set_frontend(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
1825
	int rc, if_freq;
1826 1827 1828 1829 1830 1831
#if 0
	/*
	 * FIXME: Properly implement the set frontend properties
	 */
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
#endif
1832
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1833 1834 1835 1836 1837 1838 1839 1840 1841

	/*
	 * Gate should already be opened, but it doesn't hurt to
	 * double-check
	 */
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
	fe->ops.tuner_ops.set_params(fe);

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	if (fe->ops.tuner_ops.get_if_frequency) {
		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);

		/*
		 * If the IF frequency changed, re-initialize the
		 * frontend. This is needed by some drivers like tda18271,
		 * that only sets the IF after receiving a set_params() call
		 */
		if (if_freq != state->if_freq)
			state->need_init = true;
	}

1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * Make it more reliable: if, for some reason, the initial
	 * device initialization doesn't happen, initialize it when
	 * a SBTVD parameters are adjusted.
	 *
	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
	 * the agc callback logic is not called during DVB attach time,
	 * causing mb86a20s to not be initialized with Kworld SBTVD.
	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1863 1864
	 *
	 * It is also needed to change the IF after the initial init.
1865 1866 1867 1868 1869 1870
	 */
	if (state->need_init)
		mb86a20s_initfe(fe);

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
1871

1872
	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1873
	mb86a20s_reset_counters(fe);
1874

1875 1876 1877 1878 1879 1880
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);

	return rc;
}

1881 1882
static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
					  fe_status_t *status)
1883
{
1884 1885
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1886
	int rc, status_nr;
1887

1888
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1889 1890 1891 1892

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

1893
	/* Get lock */
1894 1895
	status_nr = mb86a20s_read_status(fe, status);
	if (status_nr < 7) {
1896 1897 1898
		mb86a20s_stats_not_ready(fe);
		mb86a20s_reset_frontend_cache(fe);
	}
1899
	if (status_nr < 0) {
1900 1901
		dev_err(&state->i2c->dev,
			"%s: Can't read frontend lock status\n", __func__);
1902
		goto error;
1903
	}
1904 1905 1906 1907

	/* Get signal strength */
	rc = mb86a20s_read_signal_strength(fe);
	if (rc < 0) {
1908 1909
		dev_err(&state->i2c->dev,
			"%s: Can't reset VBER registers.\n", __func__);
1910 1911
		mb86a20s_stats_not_ready(fe);
		mb86a20s_reset_frontend_cache(fe);
1912 1913

		rc = 0;		/* Status is OK */
1914 1915 1916 1917 1918
		goto error;
	}
	/* Fill signal strength */
	c->strength.stat[0].uvalue = rc;

1919
	if (status_nr >= 7) {
1920 1921
		/* Get TMCC info*/
		rc = mb86a20s_get_frontend(fe);
1922 1923 1924 1925 1926 1927 1928 1929
		if (rc < 0) {
			dev_err(&state->i2c->dev,
				"%s: Can't get FE TMCC data.\n", __func__);
			rc = 0;		/* Status is OK */
			goto error;
		}

		/* Get statistics */
1930
		rc = mb86a20s_get_stats(fe, status_nr);
1931 1932 1933 1934
		if (rc < 0 && rc != -EBUSY) {
			dev_err(&state->i2c->dev,
				"%s: Can't get FE statistics.\n", __func__);
			rc = 0;
1935
			goto error;
1936 1937
		}
		rc = 0;	/* Don't return EBUSY to userspace */
1938
	}
1939
	goto ok;
1940

1941
error:
1942
	mb86a20s_stats_not_ready(fe);
1943

1944
ok:
1945 1946
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	return rc;
}

static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
						    u16 *strength)
{
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;


	*strength = c->strength.stat[0].uvalue;
1958

1959
	return 0;
1960 1961
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
{
	/*
	 * get_frontend is now handled together with other stats
	 * retrival, when read_status() is called, as some statistics
	 * will depend on the layers detection.
	 */
	return 0;
};

1972
static int mb86a20s_tune(struct dvb_frontend *fe,
1973
			bool re_tune,
1974 1975 1976 1977
			unsigned int mode_flags,
			unsigned int *delay,
			fe_status_t *status)
{
1978
	struct mb86a20s_state *state = fe->demodulator_priv;
1979 1980
	int rc = 0;

1981
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1982

1983
	if (re_tune)
1984
		rc = mb86a20s_set_frontend(fe);
1985 1986

	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
1987
		mb86a20s_read_status_and_stats(fe, status);
1988 1989 1990 1991 1992 1993 1994 1995

	return rc;
}

static void mb86a20s_release(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;

1996
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1997 1998 1999 2000 2001 2002 2003 2004 2005

	kfree(state);
}

static struct dvb_frontend_ops mb86a20s_ops;

struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
				    struct i2c_adapter *i2c)
{
2006
	struct mb86a20s_state *state;
2007 2008
	u8	rev;

2009 2010
	dev_dbg(&i2c->dev, "%s called.\n", __func__);

2011
	/* allocate memory for the internal state */
2012
	state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2013
	if (state == NULL) {
2014
		dev_err(&i2c->dev,
2015
			"%s: unable to allocate memory for state\n", __func__);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		goto error;
	}

	/* setup the state */
	state->config = config;
	state->i2c = i2c;

	/* create dvb_frontend */
	memcpy(&state->frontend.ops, &mb86a20s_ops,
		sizeof(struct dvb_frontend_ops));
	state->frontend.demodulator_priv = state;

	/* Check if it is a mb86a20s frontend */
	rev = mb86a20s_readreg(state, 0);

	if (rev == 0x13) {
2032
		dev_info(&i2c->dev,
2033
			 "Detected a Fujitsu mb86a20s frontend\n");
2034
	} else {
2035
		dev_dbg(&i2c->dev,
2036
			"Frontend revision %d is unknown - aborting.\n",
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		       rev);
		goto error;
	}

	return &state->frontend;

error:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(mb86a20s_attach);

static struct dvb_frontend_ops mb86a20s_ops = {
2050
	.delsys = { SYS_ISDBT },
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	/* Use dib8000 values per default */
	.info = {
		.name = "Fujitsu mb86A20s",
		.caps = FE_CAN_INVERSION_AUTO | FE_CAN_RECOVER |
			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
		/* Actually, those values depend on the used tuner */
		.frequency_min = 45000000,
		.frequency_max = 864000000,
		.frequency_stepsize = 62500,
	},

	.release = mb86a20s_release,

	.init = mb86a20s_initfe,
2069
	.set_frontend = mb86a20s_set_frontend,
2070 2071 2072
	.get_frontend = mb86a20s_get_frontend_dummy,
	.read_status = mb86a20s_read_status_and_stats,
	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2073 2074 2075 2076 2077 2078
	.tune = mb86a20s_tune,
};

MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");