mb86a20s.c 49.6 KB
Newer Older
1 2 3
/*
 *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
 *
4
 *   Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License as
 *   published by the Free Software Foundation version 2.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *   General Public License for more details.
 */

#include <linux/kernel.h>
#include <asm/div64.h>

#include "dvb_frontend.h"
#include "mb86a20s.h"

static int debug = 1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");

struct mb86a20s_state {
	struct i2c_adapter *i2c;
	const struct mb86a20s_config *config;
30
	u32 last_frequency;
31 32

	struct dvb_frontend frontend;
33

34 35
	u32 estimated_rate[3];

36
	bool need_init;
37 38 39 40 41 42 43
};

struct regdata {
	u8 reg;
	u8 data;
};

44 45
#define BER_SAMPLING_RATE	1	/* Seconds */

46 47 48 49 50 51 52 53 54
/*
 * Initialization sequence: Use whatevere default values that PV SBTVD
 * does on its initialisation, obtained via USB snoop
 */
static struct regdata mb86a20s_init[] = {
	{ 0x70, 0x0f },
	{ 0x70, 0xff },
	{ 0x08, 0x01 },
	{ 0x09, 0x3e },
55
	{ 0x50, 0xd1 }, { 0x51, 0x22 },
56 57
	{ 0x39, 0x01 },
	{ 0x71, 0x00 },
58 59
	{ 0x28, 0x2a }, { 0x29, 0x00 }, { 0x2a, 0xff }, { 0x2b, 0x80 },
	{ 0x28, 0x20 }, { 0x29, 0x33 }, { 0x2a, 0xdf }, { 0x2b, 0xa9 },
60
	{ 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
61 62 63
	{ 0x3b, 0x21 },
	{ 0x3c, 0x3a },
	{ 0x01, 0x0d },
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	{ 0x04, 0x08 }, { 0x05, 0x05 },
	{ 0x04, 0x0e }, { 0x05, 0x00 },
	{ 0x04, 0x0f }, { 0x05, 0x14 },
	{ 0x04, 0x0b }, { 0x05, 0x8c },
	{ 0x04, 0x00 }, { 0x05, 0x00 },
	{ 0x04, 0x01 }, { 0x05, 0x07 },
	{ 0x04, 0x02 }, { 0x05, 0x0f },
	{ 0x04, 0x03 }, { 0x05, 0xa0 },
	{ 0x04, 0x09 }, { 0x05, 0x00 },
	{ 0x04, 0x0a }, { 0x05, 0xff },
	{ 0x04, 0x27 }, { 0x05, 0x64 },
	{ 0x04, 0x28 }, { 0x05, 0x00 },
	{ 0x04, 0x1e }, { 0x05, 0xff },
	{ 0x04, 0x29 }, { 0x05, 0x0a },
	{ 0x04, 0x32 }, { 0x05, 0x0a },
	{ 0x04, 0x14 }, { 0x05, 0x02 },
	{ 0x04, 0x04 }, { 0x05, 0x00 },
	{ 0x04, 0x05 }, { 0x05, 0x22 },
	{ 0x04, 0x06 }, { 0x05, 0x0e },
	{ 0x04, 0x07 }, { 0x05, 0xd8 },
	{ 0x04, 0x12 }, { 0x05, 0x00 },
	{ 0x04, 0x13 }, { 0x05, 0xff },
86 87
	{ 0x04, 0x15 }, { 0x05, 0x4e },
	{ 0x04, 0x16 }, { 0x05, 0x20 },
88 89 90 91 92 93

	/*
	 * On this demod, when the bit count reaches the count below,
	 * it collects the bit error count. The bit counters are initialized
	 * to 65535 here. This warrants that all of them will be quickly
	 * calculated when device gets locked. As TMCC is parsed, the values
94
	 * will be adjusted later in the driver's code.
95 96 97
	 */
	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
	{ 0x50, 0xa7 }, { 0x51, 0x00 },
98 99
	{ 0x50, 0xa8 }, { 0x51, 0xff },
	{ 0x50, 0xa9 }, { 0x51, 0xff },
100
	{ 0x50, 0xaa }, { 0x51, 0x00 },
101 102
	{ 0x50, 0xab }, { 0x51, 0xff },
	{ 0x50, 0xac }, { 0x51, 0xff },
103
	{ 0x50, 0xad }, { 0x51, 0x00 },
104 105
	{ 0x50, 0xae }, { 0x51, 0xff },
	{ 0x50, 0xaf }, { 0x51, 0xff },
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120
	/*
	 * On this demod, post BER counts blocks. When the count reaches the
	 * value below, it collects the block error count. The block counters
	 * are initialized to 127 here. This warrants that all of them will be
	 * quickly calculated when device gets locked. As TMCC is parsed, the
	 * values will be adjusted later in the driver's code.
	 */
	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
	{ 0x50, 0xdc }, { 0x51, 0x00 },
	{ 0x50, 0xdd }, { 0x51, 0x7f },
	{ 0x50, 0xde }, { 0x51, 0x00 },
	{ 0x50, 0xdf }, { 0x51, 0x7f },
	{ 0x50, 0xe0 }, { 0x51, 0x00 },
	{ 0x50, 0xe1 }, { 0x51, 0x7f },
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

	/*
	 * On this demod, when the block count reaches the count below,
	 * it collects the block error count. The block counters are initialized
	 * to 127 here. This warrants that all of them will be quickly
	 * calculated when device gets locked. As TMCC is parsed, the values
	 * will be adjusted later in the driver's code.
	 */
	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
	{ 0x50, 0xb2 }, { 0x51, 0x00 },
	{ 0x50, 0xb3 }, { 0x51, 0x7f },
	{ 0x50, 0xb4 }, { 0x51, 0x00 },
	{ 0x50, 0xb5 }, { 0x51, 0x7f },
	{ 0x50, 0xb6 }, { 0x51, 0x00 },
	{ 0x50, 0xb7 }, { 0x51, 0x7f },
136 137

	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
138 139
	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
	{ 0x45, 0x04 },				/* CN symbol 4 */
140 141
	{ 0x48, 0x04 },				/* CN manual mode */

142 143 144 145
	{ 0x50, 0xd5 }, { 0x51, 0x01 },		/* Serial */
	{ 0x50, 0xd6 }, { 0x51, 0x1f },
	{ 0x50, 0xd2 }, { 0x51, 0x03 },
	{ 0x50, 0xd7 }, { 0x51, 0x3f },
146 147
	{ 0x28, 0x74 }, { 0x29, 0x00 }, { 0x28, 0x74 }, { 0x29, 0x40 },
	{ 0x28, 0x46 }, { 0x29, 0x2c }, { 0x28, 0x46 }, { 0x29, 0x0c },
148 149

	{ 0x04, 0x40 }, { 0x05, 0x00 },
150 151
	{ 0x28, 0x00 }, { 0x29, 0x10 },
	{ 0x28, 0x05 }, { 0x29, 0x02 },
152
	{ 0x1c, 0x01 },
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
	{ 0x50, 0x1e }, { 0x51, 0x5d },
	{ 0x50, 0x22 }, { 0x51, 0x00 },
	{ 0x50, 0x23 }, { 0x51, 0xc8 },
	{ 0x50, 0x24 }, { 0x51, 0x00 },
	{ 0x50, 0x25 }, { 0x51, 0xf0 },
	{ 0x50, 0x26 }, { 0x51, 0x00 },
	{ 0x50, 0x27 }, { 0x51, 0xc3 },
	{ 0x50, 0x39 }, { 0x51, 0x02 },
186
	{ 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
187 188 189 190 191 192 193 194 195 196
	{ 0xd0, 0x00 },
};

static struct regdata mb86a20s_reset_reception[] = {
	{ 0x70, 0xf0 },
	{ 0x70, 0xff },
	{ 0x08, 0x01 },
	{ 0x08, 0x00 },
};

197 198
static struct regdata mb86a20s_per_ber_reset[] = {
	{ 0x53, 0x00 },	/* pre BER Counter reset */
199 200
	{ 0x53, 0x07 },

201 202 203
	{ 0x5f, 0x00 },	/* post BER Counter reset */
	{ 0x5f, 0x07 },

204 205 206 207 208
	{ 0x50, 0xb1 },	/* PER Counter reset */
	{ 0x51, 0x07 },
	{ 0x51, 0x00 },
};

209 210 211 212
/*
 * I2C read/write functions and macros
 */

213
static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
214
			     u8 i2c_addr, u8 reg, u8 data)
215 216 217 218 219 220 221 222 223
{
	u8 buf[] = { reg, data };
	struct i2c_msg msg = {
		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
	};
	int rc;

	rc = i2c_transfer(state->i2c, &msg, 1);
	if (rc != 1) {
224 225 226
		dev_err(&state->i2c->dev,
			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
			__func__, rc, reg, data);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		return rc;
	}

	return 0;
}

static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
				     u8 i2c_addr, struct regdata *rd, int size)
{
	int i, rc;

	for (i = 0; i < size; i++) {
		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
					   rd[i].data);
		if (rc < 0)
			return rc;
	}
	return 0;
}

static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
				u8 i2c_addr, u8 reg)
{
	u8 val;
	int rc;
	struct i2c_msg msg[] = {
		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
	};

	rc = i2c_transfer(state->i2c, msg, 2);

	if (rc != 2) {
260 261 262
		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
			__func__, reg, rc);
		return (rc < 0) ? rc : -EIO;
263 264 265 266 267 268 269 270 271 272 273 274 275
	}

	return val;
}

#define mb86a20s_readreg(state, reg) \
	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
#define mb86a20s_writereg(state, reg, val) \
	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
#define mb86a20s_writeregdata(state, regdata) \
	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
	regdata, ARRAY_SIZE(regdata))

276 277 278 279 280 281
/*
 * Ancillary internal routines (likely compiled inlined)
 *
 * The functions below assume that gateway lock has already obtained
 */

282
static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
283 284
{
	struct mb86a20s_state *state = fe->demodulator_priv;
285
	int val;
286

287
	*status = 0;
288

289 290 291
	val = mb86a20s_readreg(state, 0x0a) & 0xf;
	if (val < 0)
		return val;
292

293 294
	if (val >= 2)
		*status |= FE_HAS_SIGNAL;
295

296 297
	if (val >= 4)
		*status |= FE_HAS_CARRIER;
298

299 300
	if (val >= 5)
		*status |= FE_HAS_VITERBI;
301

302 303
	if (val >= 7)
		*status |= FE_HAS_SYNC;
304

305 306 307
	if (val >= 8)				/* Maybe 9? */
		*status |= FE_HAS_LOCK;

308 309
	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
		 __func__, *status, val);
310 311

	return 0;
312 313
}

314
static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
315 316
{
	struct mb86a20s_state *state = fe->demodulator_priv;
317
	int rc;
318
	unsigned rf_max, rf_min, rf;
319

320 321 322 323 324
	/* Does a binary search to get RF strength */
	rf_max = 0xfff;
	rf_min = 0;
	do {
		rf = (rf_max + rf_min) / 2;
325 326 327 328 329 330 331 332 333 334 335 336
		rc = mb86a20s_writereg(state, 0x04, 0x1f);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x04, 0x20);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x04, rf);
		if (rc < 0)
			return rc;
337

338 339 340 341
		rc = mb86a20s_readreg(state, 0x02);
		if (rc < 0)
			return rc;
		if (rc & 0x08)
342 343 344 345
			rf_min = (rf_max + rf_min) / 2;
		else
			rf_max = (rf_max + rf_min) / 2;
		if (rf_max - rf_min < 4) {
346 347 348 349
			rf = (rf_max + rf_min) / 2;

			/* Rescale it from 2^12 (4096) to 2^16 */
			rf <<= (16 - 12);
350 351 352
			dev_dbg(&state->i2c->dev,
				"%s: signal strength = %d (%d < RF=%d < %d)\n",
				__func__, rf, rf_min, rf >> 4, rf_max);
353
			return rf;
354 355 356 357 358 359
		}
	} while (1);

	return 0;
}

360 361 362 363 364 365 366 367 368 369
static int mb86a20s_get_modulation(struct mb86a20s_state *state,
				   unsigned layer)
{
	int rc;
	static unsigned char reg[] = {
		[0] = 0x86,	/* Layer A */
		[1] = 0x8a,	/* Layer B */
		[2] = 0x8e,	/* Layer C */
	};

370
	if (layer >= ARRAY_SIZE(reg))
371 372 373 374 375 376 377
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
378
	switch ((rc >> 4) & 0x07) {
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	case 0:
		return DQPSK;
	case 1:
		return QPSK;
	case 2:
		return QAM_16;
	case 3:
		return QAM_64;
	default:
		return QAM_AUTO;
	}
}

static int mb86a20s_get_fec(struct mb86a20s_state *state,
			    unsigned layer)
{
	int rc;

	static unsigned char reg[] = {
		[0] = 0x87,	/* Layer A */
		[1] = 0x8b,	/* Layer B */
		[2] = 0x8f,	/* Layer C */
	};

403
	if (layer >= ARRAY_SIZE(reg))
404 405 406 407 408 409 410
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
411
	switch ((rc >> 4) & 0x07) {
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	case 0:
		return FEC_1_2;
	case 1:
		return FEC_2_3;
	case 2:
		return FEC_3_4;
	case 3:
		return FEC_5_6;
	case 4:
		return FEC_7_8;
	default:
		return FEC_AUTO;
	}
}

static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
				     unsigned layer)
{
	int rc;

	static unsigned char reg[] = {
		[0] = 0x88,	/* Layer A */
		[1] = 0x8c,	/* Layer B */
		[2] = 0x90,	/* Layer C */
	};

438
	if (layer >= ARRAY_SIZE(reg))
439 440 441 442 443 444 445
		return -EINVAL;
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

	switch ((rc >> 4) & 0x07) {
	case 1:
		return GUARD_INTERVAL_1_4;
	case 2:
		return GUARD_INTERVAL_1_8;
	case 3:
		return GUARD_INTERVAL_1_16;
	case 4:
		return GUARD_INTERVAL_1_32;

	default:
	case 0:
		return GUARD_INTERVAL_AUTO;
	}
461 462 463 464 465 466 467 468 469 470 471 472
}

static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
				      unsigned layer)
{
	int rc, count;
	static unsigned char reg[] = {
		[0] = 0x89,	/* Layer A */
		[1] = 0x8d,	/* Layer B */
		[2] = 0x91,	/* Layer C */
	};

473 474
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

475
	if (layer >= ARRAY_SIZE(reg))
476
		return -EINVAL;
477

478 479 480 481 482 483 484 485
	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
	count = (rc >> 4) & 0x0f;

486 487
	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);

488 489 490
	return count;
}

491 492
static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
{
493
	struct mb86a20s_state *state = fe->demodulator_priv;
494 495
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;

496 497
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

498 499 500 501 502 503 504 505 506 507 508 509
	/* Fixed parameters */
	c->delivery_system = SYS_ISDBT;
	c->bandwidth_hz = 6000000;

	/* Initialize values that will be later autodetected */
	c->isdbt_layer_enabled = 0;
	c->transmission_mode = TRANSMISSION_MODE_AUTO;
	c->guard_interval = GUARD_INTERVAL_AUTO;
	c->isdbt_sb_mode = 0;
	c->isdbt_sb_segment_count = 0;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/*
 * Estimates the bit rate using the per-segment bit rate given by
 * ABNT/NBR 15601 spec (table 4).
 */
static u32 isdbt_rate[3][5][4] = {
	{	/* DQPSK/QPSK */
		{  280850,  312060,  330420,  340430 },	/* 1/2 */
		{  374470,  416080,  440560,  453910 },	/* 2/3 */
		{  421280,  468090,  495630,  510650 },	/* 3/4 */
		{  468090,  520100,  550700,  567390 },	/* 5/6 */
		{  491500,  546110,  578230,  595760 },	/* 7/8 */
	}, {	/* QAM16 */
		{  561710,  624130,  660840,  680870 },	/* 1/2 */
		{  748950,  832170,  881120,  907820 },	/* 2/3 */
		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
	}, {	/* QAM64 */
		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
	}
};

static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
				   u32 modulation, u32 fec, u32 interleaving,
				   u32 segment)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	u32 rate;
	int m, f, i;

	/*
	 * If modulation/fec/interleaving is not detected, the default is
	 * to consider the lowest bit rate, to avoid taking too long time
	 * to get BER.
	 */
	switch (modulation) {
	case DQPSK:
	case QPSK:
	default:
		m = 0;
		break;
	case QAM_16:
		m = 1;
		break;
	case QAM_64:
		m = 2;
		break;
	}

	switch (fec) {
	default:
	case FEC_1_2:
	case FEC_AUTO:
		f = 0;
		break;
	case FEC_2_3:
		f = 1;
		break;
	case FEC_3_4:
		f = 2;
		break;
	case FEC_5_6:
		f = 3;
		break;
	case FEC_7_8:
		f = 4;
		break;
	}

	switch (interleaving) {
	default:
	case GUARD_INTERVAL_1_4:
		i = 0;
		break;
	case GUARD_INTERVAL_1_8:
		i = 1;
		break;
	case GUARD_INTERVAL_1_16:
		i = 2;
		break;
	case GUARD_INTERVAL_1_32:
		i = 3;
		break;
	}

	/* Samples BER at BER_SAMPLING_RATE seconds */
	rate = isdbt_rate[m][f][i] * segment * BER_SAMPLING_RATE;

	/* Avoids sampling too quickly or to overflow the register */
	if (rate < 256)
		rate = 256;
	else if (rate > (1 << 24) - 1)
		rate = (1 << 24) - 1;

	dev_dbg(&state->i2c->dev,
		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
	       __func__, 'A' + layer, segment * isdbt_rate[m][f][i]/1000,
		rate, rate);

	state->estimated_rate[i] = rate;
}


617
static int mb86a20s_get_frontend(struct dvb_frontend *fe)
618
{
619
	struct mb86a20s_state *state = fe->demodulator_priv;
620
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
621
	int i, rc;
622

623 624
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

625 626
	/* Reset frontend cache to default values */
	mb86a20s_reset_frontend_cache(fe);
627 628 629

	/* Check for partial reception */
	rc = mb86a20s_writereg(state, 0x6d, 0x85);
630 631 632 633 634 635
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x6e);
	if (rc < 0)
		return rc;
	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
636 637

	/* Get per-layer data */
638

639
	for (i = 0; i < 3; i++) {
640 641 642
		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
			__func__, 'A' + i);

643
		rc = mb86a20s_get_segment_count(state, i);
644
		if (rc < 0)
645
			goto noperlayer_error;
646
		if (rc >= 0 && rc < 14) {
647
			c->layer[i].segment_count = rc;
648
		} else {
649
			c->layer[i].segment_count = 0;
650
			state->estimated_rate[i] = 0;
651
			continue;
652 653
		}
		c->isdbt_layer_enabled |= 1 << i;
654
		rc = mb86a20s_get_modulation(state, i);
655
		if (rc < 0)
656 657 658
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
			__func__, rc);
659
		c->layer[i].modulation = rc;
660
		rc = mb86a20s_get_fec(state, i);
661
		if (rc < 0)
662 663 664
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
			__func__, rc);
665
		c->layer[i].fec = rc;
666
		rc = mb86a20s_get_interleaving(state, i);
667
		if (rc < 0)
668 669 670
			goto noperlayer_error;
		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
			__func__, rc);
671
		c->layer[i].interleaving = rc;
672 673 674 675
		mb86a20s_layer_bitrate(fe, i, c->layer[i].modulation,
				       c->layer[i].fec,
				       c->layer[i].interleaving,
				       c->layer[i].segment_count);
676 677 678
	}

	rc = mb86a20s_writereg(state, 0x6d, 0x84);
679 680 681 682
	if (rc < 0)
		return rc;
	if ((rc & 0x60) == 0x20) {
		c->isdbt_sb_mode = 1;
683
		/* At least, one segment should exist */
684 685 686
		if (!c->isdbt_sb_segment_count)
			c->isdbt_sb_segment_count = 1;
	}
687 688 689

	/* Get transmission mode and guard interval */
	rc = mb86a20s_readreg(state, 0x07);
690 691 692 693 694 695 696 697 698 699 700 701 702
	if (rc < 0)
		return rc;
	if ((rc & 0x60) == 0x20) {
		switch (rc & 0x0c >> 2) {
		case 0:
			c->transmission_mode = TRANSMISSION_MODE_2K;
			break;
		case 1:
			c->transmission_mode = TRANSMISSION_MODE_4K;
			break;
		case 2:
			c->transmission_mode = TRANSMISSION_MODE_8K;
			break;
703
		}
704 705 706 707 708 709 710 711 712 713 714 715
	}
	if (!(rc & 0x10)) {
		switch (rc & 0x3) {
		case 0:
			c->guard_interval = GUARD_INTERVAL_1_4;
			break;
		case 1:
			c->guard_interval = GUARD_INTERVAL_1_8;
			break;
		case 2:
			c->guard_interval = GUARD_INTERVAL_1_16;
			break;
716 717
		}
	}
718
	return 0;
719

720
noperlayer_error:
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	/* per-layer info is incomplete; discard all per-layer */
	c->isdbt_layer_enabled = 0;

	return rc;
}

static int mb86a20s_reset_counters(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int rc, val;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	/* Reset the counters, if the channel changed */
	if (state->last_frequency != c->frequency) {
		memset(&c->strength, 0, sizeof(c->strength));
		memset(&c->cnr, 0, sizeof(c->cnr));
		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
742 743
		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
744 745 746 747 748 749 750 751
		memset(&c->block_error, 0, sizeof(c->block_error));
		memset(&c->block_count, 0, sizeof(c->block_count));

		state->last_frequency = c->frequency;
	}

	/* Clear status for most stats */

752 753
	/* BER/PER counter reset */
	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	if (rc < 0)
		goto err;

	/* CNR counter reset */
	rc = mb86a20s_readreg(state, 0x45);
	if (rc < 0)
		goto err;
	val = rc;
	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
	if (rc < 0)
		goto err;

	/* MER counter reset */
	rc = mb86a20s_writereg(state, 0x50, 0x50);
	if (rc < 0)
		goto err;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		goto err;
	val = rc;
	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
	if (rc < 0)
		goto err;
	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
	if (rc < 0)
		goto err;

784
	goto ok;
785
err:
786 787 788 789
	dev_err(&state->i2c->dev,
		"%s: Can't reset FE statistics (error %d).\n",
		__func__, rc);
ok:
790
	return rc;
791 792
}

793 794 795
static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
				unsigned layer,
				u32 *error, u32 *count)
796 797
{
	struct mb86a20s_state *state = fe->demodulator_priv;
798
	int rc, val;
799 800 801 802 803 804 805 806 807 808 809 810 811 812

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	if (layer >= 3)
		return -EINVAL;

	/* Check if the BER measures are already available */
	rc = mb86a20s_readreg(state, 0x54);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */
	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
813
			"%s: preBER for layer %c is not available yet.\n",
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
			__func__, 'A' + layer);
		return -EBUSY;
	}

	/* Read Bit Error Count */
	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
	if (rc < 0)
		return rc;
	*error = rc << 16;
	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc << 8;
	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: bit error before Viterbi for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count = rc << 16;
	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: bit count before Viterbi for layer %c: %d.\n",
		__func__, 'A' + layer, *count);


864 865 866 867 868 869 870 871 872 873
	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (state->estimated_rate[layer]
	    && state->estimated_rate[layer] != *count) {
		dev_dbg(&state->i2c->dev,
874
			"%s: updating layer %c preBER counter to %d.\n",
875
			__func__, 'A' + layer, state->estimated_rate[layer]);
876 877 878 879 880

		/* Turn off BER before Viterbi */
		rc = mb86a20s_writereg(state, 0x52, 0x00);

		/* Update counter for this layer */
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer] >> 16);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer] >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51,
				       state->estimated_rate[layer]);
		if (rc < 0)
			return rc;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

		/* Turn on BER before Viterbi */
		rc = mb86a20s_writereg(state, 0x52, 0x01);

		/* Reset all preBER counters */
		rc = mb86a20s_writereg(state, 0x53, 0x00);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x53, 0x07);
	} else {
		/* Reset counter to collect new data */
		rc = mb86a20s_readreg(state, 0x53);
		if (rc < 0)
			return rc;
		val = rc;
		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
921 922
	}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	return rc;
}

static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
				 unsigned layer,
				  u32 *error, u32 *count)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	u32 counter, collect_rate;
	int rc, val;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	if (layer >= 3)
		return -EINVAL;

	/* Check if the BER measures are already available */
	rc = mb86a20s_readreg(state, 0x60);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */
	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
			"%s: post BER for layer %c is not available yet.\n",
			__func__, 'A' + layer);
		return -EBUSY;
	}
951

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	/* Read Bit Error Count */
	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
	if (rc < 0)
		return rc;
	*error = rc << 16;
	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc << 8;
	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
	if (rc < 0)
		return rc;
	*error |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: post bit error for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	counter = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	counter |= rc;
	*count = counter * 204 * 8;

	dev_dbg(&state->i2c->dev,
		"%s: post bit count for layer %c: %d.\n",
		__func__, 'A' + layer, *count);

	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (!state->estimated_rate[layer])
		goto reset_measurement;

	collect_rate = state->estimated_rate[layer] / 204 / 8;
	if (collect_rate < 32)
		collect_rate = 32;
	if (collect_rate > 65535)
		collect_rate = 65535;
	if (collect_rate != counter) {
		dev_dbg(&state->i2c->dev,
			"%s: updating postBER counter on layer %c to %d.\n",
			__func__, 'A' + layer, collect_rate);

		/* Turn off BER after Viterbi */
		rc = mb86a20s_writereg(state, 0x5e, 0x00);

		/* Update counter for this layer */
		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
		if (rc < 0)
			return rc;

		/* Turn on BER after Viterbi */
		rc = mb86a20s_writereg(state, 0x5e, 0x07);

		/* Reset all preBER counters */
		rc = mb86a20s_writereg(state, 0x5f, 0x00);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x5f, 0x07);

		return rc;
	}

reset_measurement:
1041
	/* Reset counter to collect new data */
1042 1043 1044 1045 1046
	rc = mb86a20s_readreg(state, 0x5f);
	if (rc < 0)
		return rc;
	val = rc;
	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1047 1048
	if (rc < 0)
		return rc;
1049
	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1050

1051
	return rc;
1052 1053
}

1054 1055 1056 1057 1058
static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
			    unsigned layer,
			    u32 *error, u32 *count)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
1059
	int rc, val;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	u32 collect_rate;
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	if (layer >= 3)
		return -EINVAL;

	/* Check if the PER measures are already available */
	rc = mb86a20s_writereg(state, 0x50, 0xb8);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;

	/* Check if data is available for that layer */

	if (!(rc & (1 << layer))) {
		dev_dbg(&state->i2c->dev,
			"%s: block counts for layer %c aren't available yet.\n",
			__func__, 'A' + layer);
		return -EBUSY;
	}

	/* Read Packet error Count */
	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*error = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*error |= rc;
	dev_err(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
		__func__, 'A' + layer, *error);

	/* Read Bit Count */
	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count = rc << 8;
	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	*count |= rc;

	dev_dbg(&state->i2c->dev,
		"%s: block count for layer %c: %d.\n",
		__func__, 'A' + layer, *count);

	/*
	 * As we get TMCC data from the frontend, we can better estimate the
	 * BER bit counters, in order to do the BER measure during a longer
	 * time. Use those data, if available, to update the bit count
	 * measure.
	 */

	if (!state->estimated_rate[layer])
		goto reset_measurement;

	collect_rate = state->estimated_rate[layer] / 204 / 8;
	if (collect_rate < 32)
		collect_rate = 32;
	if (collect_rate > 65535)
		collect_rate = 65535;

	if (collect_rate != *count) {
		dev_dbg(&state->i2c->dev,
			"%s: updating PER counter on layer %c to %d.\n",
			__func__, 'A' + layer, collect_rate);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

		/* Stop PER measurement */
		rc = mb86a20s_writereg(state, 0x50, 0xb0);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x00);
		if (rc < 0)
			return rc;

		/* Update this layer's counter */
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
		if (rc < 0)
			return rc;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

		/* start PER measurement */
		rc = mb86a20s_writereg(state, 0x50, 0xb0);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x07);
		if (rc < 0)
			return rc;

		/* Reset all counters to collect new data */
		rc = mb86a20s_writereg(state, 0x50, 0xb1);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x07);
		if (rc < 0)
			return rc;
		rc = mb86a20s_writereg(state, 0x51, 0x00);

		return rc;
1182 1183 1184 1185 1186 1187 1188
	}

reset_measurement:
	/* Reset counter to collect new data */
	rc = mb86a20s_writereg(state, 0x50, 0xb1);
	if (rc < 0)
		return rc;
1189
	rc = mb86a20s_readreg(state, 0x51);
1190 1191
	if (rc < 0)
		return rc;
1192 1193
	val = rc;
	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1194 1195
	if (rc < 0)
		return rc;
1196
	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1197

1198
	return rc;
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
struct linear_segments {
	unsigned x, y;
};

/*
 * All tables below return a dB/1000 measurement
 */

static struct linear_segments cnr_to_db_table[] = {
	{ 19648,     0},
	{ 18187,  1000},
	{ 16534,  2000},
	{ 14823,  3000},
	{ 13161,  4000},
	{ 11622,  5000},
	{ 10279,  6000},
	{  9089,  7000},
	{  8042,  8000},
	{  7137,  9000},
	{  6342, 10000},
	{  5641, 11000},
	{  5030, 12000},
	{  4474, 13000},
	{  3988, 14000},
	{  3556, 15000},
	{  3180, 16000},
	{  2841, 17000},
	{  2541, 18000},
	{  2276, 19000},
	{  2038, 20000},
	{  1800, 21000},
	{  1625, 22000},
	{  1462, 23000},
	{  1324, 24000},
	{  1175, 25000},
	{  1063, 26000},
	{   980, 27000},
	{   907, 28000},
	{   840, 29000},
	{   788, 30000},
};

static struct linear_segments cnr_64qam_table[] = {
	{ 3922688,     0},
	{ 3920384,  1000},
	{ 3902720,  2000},
	{ 3894784,  3000},
	{ 3882496,  4000},
	{ 3872768,  5000},
	{ 3858944,  6000},
	{ 3851520,  7000},
	{ 3838976,  8000},
	{ 3829248,  9000},
	{ 3818240, 10000},
	{ 3806976, 11000},
	{ 3791872, 12000},
	{ 3767040, 13000},
	{ 3720960, 14000},
	{ 3637504, 15000},
	{ 3498496, 16000},
	{ 3296000, 17000},
	{ 3031040, 18000},
	{ 2715392, 19000},
	{ 2362624, 20000},
	{ 1963264, 21000},
	{ 1649664, 22000},
	{ 1366784, 23000},
	{ 1120768, 24000},
	{  890880, 25000},
	{  723456, 26000},
	{  612096, 27000},
	{  518912, 28000},
	{  448256, 29000},
	{  388864, 30000},
};

static struct linear_segments cnr_16qam_table[] = {
	{ 5314816,     0},
	{ 5219072,  1000},
	{ 5118720,  2000},
	{ 4998912,  3000},
	{ 4875520,  4000},
	{ 4736000,  5000},
	{ 4604160,  6000},
	{ 4458752,  7000},
	{ 4300288,  8000},
	{ 4092928,  9000},
	{ 3836160, 10000},
	{ 3521024, 11000},
	{ 3155968, 12000},
	{ 2756864, 13000},
	{ 2347008, 14000},
	{ 1955072, 15000},
	{ 1593600, 16000},
	{ 1297920, 17000},
	{ 1043968, 18000},
	{  839680, 19000},
	{  672256, 20000},
	{  523008, 21000},
	{  424704, 22000},
	{  345088, 23000},
	{  280064, 24000},
	{  221440, 25000},
	{  179712, 26000},
	{  151040, 27000},
	{  128512, 28000},
	{  110080, 29000},
	{   95744, 30000},
};

struct linear_segments cnr_qpsk_table[] = {
	{ 2834176,     0},
	{ 2683648,  1000},
	{ 2536960,  2000},
	{ 2391808,  3000},
	{ 2133248,  4000},
	{ 1906176,  5000},
	{ 1666560,  6000},
	{ 1422080,  7000},
	{ 1189632,  8000},
	{  976384,  9000},
	{  790272, 10000},
	{  633344, 11000},
	{  505600, 12000},
	{  402944, 13000},
	{  320768, 14000},
	{  255488, 15000},
	{  204032, 16000},
	{  163072, 17000},
	{  130304, 18000},
	{  105216, 19000},
	{   83456, 20000},
	{   65024, 21000},
	{   52480, 22000},
	{   42752, 23000},
	{   34560, 24000},
	{   27136, 25000},
	{   22016, 26000},
	{   18432, 27000},
	{   15616, 28000},
	{   13312, 29000},
	{   11520, 30000},
};

static u32 interpolate_value(u32 value, struct linear_segments *segments,
			     unsigned len)
{
	u64 tmp64;
	u32 dx, dy;
	int i, ret;

	if (value >= segments[0].x)
		return segments[0].y;
	if (value < segments[len-1].x)
		return segments[len-1].y;

	for (i = 1; i < len - 1; i++) {
		/* If value is identical, no need to interpolate */
		if (value == segments[i].x)
			return segments[i].y;
		if (value > segments[i].x)
			break;
	}

	/* Linear interpolation between the two (x,y) points */
	dy = segments[i].y - segments[i - 1].y;
	dx = segments[i - 1].x - segments[i].x;
	tmp64 = value - segments[i].x;
	tmp64 *= dy;
	do_div(tmp64, dx);
	ret = segments[i].y - tmp64;

	return ret;
}

static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 cnr_linear, cnr;
	int rc, val;

	/* Check if CNR is available */
	rc = mb86a20s_readreg(state, 0x45);
	if (rc < 0)
		return rc;

	if (!(rc & 0x40)) {
		dev_info(&state->i2c->dev, "%s: CNR is not available yet.\n",
			 __func__);
		return -EBUSY;
	}
	val = rc;

	rc = mb86a20s_readreg(state, 0x46);
	if (rc < 0)
		return rc;
	cnr_linear = rc << 8;

	rc = mb86a20s_readreg(state, 0x46);
	if (rc < 0)
		return rc;
	cnr_linear |= rc;

	cnr = interpolate_value(cnr_linear,
				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));

	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
	c->cnr.stat[0].svalue = cnr;

	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
		__func__, cnr / 1000, cnr % 1000, cnr_linear);

	/* CNR counter reset */
	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
	if (rc < 0)
		return rc;
	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);

	return rc;
}

1423
static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	u32 mer, cnr;
	int rc, val, i;
	struct linear_segments *segs;
	unsigned segs_len;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	/* Check if the measures are already available */
	rc = mb86a20s_writereg(state, 0x50, 0x5b);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;

	/* Check if data is available */
	if (!(rc & 0x01)) {
		dev_info(&state->i2c->dev,
			"%s: MER measures aren't available yet.\n", __func__);
		return -EBUSY;
	}

	/* Read all layers */
	for (i = 0; i < 3; i++) {
		if (!(c->isdbt_layer_enabled & (1 << i))) {
			c->cnr.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
			continue;
		}

		rc = mb86a20s_writereg(state, 0x50, 0x52 + i * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer = rc << 16;
		rc = mb86a20s_writereg(state, 0x50, 0x53 + i * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer |= rc << 8;
		rc = mb86a20s_writereg(state, 0x50, 0x54 + i * 3);
		if (rc < 0)
			return rc;
		rc = mb86a20s_readreg(state, 0x51);
		if (rc < 0)
			return rc;
		mer |= rc;

		switch (c->layer[i].modulation) {
		case DQPSK:
		case QPSK:
			segs = cnr_qpsk_table;
			segs_len = ARRAY_SIZE(cnr_qpsk_table);
			break;
		case QAM_16:
			segs = cnr_16qam_table;
			segs_len = ARRAY_SIZE(cnr_16qam_table);
			break;
		default:
		case QAM_64:
			segs = cnr_64qam_table;
			segs_len = ARRAY_SIZE(cnr_64qam_table);
			break;
		}
		cnr = interpolate_value(mer, segs, segs_len);

		c->cnr.stat[1 + i].scale = FE_SCALE_DECIBEL;
		c->cnr.stat[1 + i].svalue = cnr;

		dev_dbg(&state->i2c->dev,
			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
			__func__, 'A' + i, cnr / 1000, cnr % 1000, mer);

	}

	/* Start a new MER measurement */
	/* MER counter reset */
	rc = mb86a20s_writereg(state, 0x50, 0x50);
	if (rc < 0)
		return rc;
	rc = mb86a20s_readreg(state, 0x51);
	if (rc < 0)
		return rc;
	val = rc;

	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
	if (rc < 0)
		return rc;
	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
	if (rc < 0)
		return rc;

	return 0;
}

1525 1526 1527 1528 1529 1530 1531
static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int i;

	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541
	/* Fill the length of each status counter */

	/* Only global stats */
	c->strength.len = 1;

	/* Per-layer stats - 3 layers + global */
	c->cnr.len = 4;
	c->pre_bit_error.len = 4;
	c->pre_bit_count.len = 4;
1542 1543
	c->post_bit_error.len = 4;
	c->post_bit_count.len = 4;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	c->block_error.len = 4;
	c->block_count.len = 4;

	/* Signal is always available */
	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
	c->strength.stat[0].uvalue = 0;

	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
	for (i = 0; i < 4; i++) {
		c->cnr.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
1556 1557
		c->post_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
1558 1559 1560
		c->block_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
	}
1561 1562
}

1563 1564 1565 1566 1567 1568 1569
static int mb86a20s_get_stats(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int rc = 0, i;
	u32 bit_error = 0, bit_count = 0;
	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1570
	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1571 1572
	u32 block_error = 0, block_count = 0;
	u32 t_block_error = 0, t_block_count = 0;
1573 1574
	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
	int per_layers = 0;
1575

1576 1577 1578 1579
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);

	mb86a20s_get_main_CNR(fe);

1580
	/* Get per-layer stats */
1581
	mb86a20s_get_blk_error_layer_CNR(fe);
1582

1583 1584 1585 1586 1587 1588
	for (i = 0; i < 3; i++) {
		if (c->isdbt_layer_enabled & (1 << i)) {
			/* Layer is active and has rc segments */
			active_layers++;

			/* Handle BER before vterbi */
1589 1590
			rc = mb86a20s_get_pre_ber(fe, i,
						  &bit_error, &bit_count);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			if (rc >= 0) {
				c->pre_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->pre_bit_error.stat[1 + i].uvalue += bit_error;
				c->pre_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->pre_bit_count.stat[1 + i].uvalue += bit_count;
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
				c->pre_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				c->pre_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				dev_err(&state->i2c->dev,
					"%s: Can't get BER for layer %c (error %d).\n",
					__func__, 'A' + i, rc);
			}
			if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
				pre_ber_layers++;

			/* Handle BER post vterbi */
			rc = mb86a20s_get_post_ber(fe, i,
						   &bit_error, &bit_count);
			if (rc >= 0) {
				c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->post_bit_error.stat[1 + i].uvalue += bit_error;
				c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->post_bit_count.stat[1 + i].uvalue += bit_count;
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
				c->post_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				c->post_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				dev_err(&state->i2c->dev,
					"%s: Can't get BER for layer %c (error %d).\n",
					__func__, 'A' + i, rc);
			}
			if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
				post_ber_layers++;
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			/* Handle Block errors for PER/UCB reports */
			rc = mb86a20s_get_blk_error(fe, i,
						&block_error,
						&block_count);
			if (rc >= 0) {
				c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->block_error.stat[1 + i].uvalue += block_error;
				c->block_count.stat[1 + i].scale = FE_SCALE_COUNTER;
				c->block_count.stat[1 + i].uvalue += block_count;
			} else if (rc != -EBUSY) {
				/*
					* If an I/O error happened,
					* measures are now unavailable
					*/
				c->block_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				c->block_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
				dev_err(&state->i2c->dev,
					"%s: Can't get PER for layer %c (error %d).\n",
					__func__, 'A' + i, rc);

			}
			if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
				per_layers++;

1656
			/* Update total preBER */
1657 1658
			t_pre_bit_error += c->pre_bit_error.stat[1 + i].uvalue;
			t_pre_bit_count += c->pre_bit_count.stat[1 + i].uvalue;
1659

1660 1661 1662 1663
			/* Update total postBER */
			t_post_bit_error += c->post_bit_error.stat[1 + i].uvalue;
			t_post_bit_count += c->post_bit_count.stat[1 + i].uvalue;

1664 1665 1666
			/* Update total PER */
			t_block_error += c->block_error.stat[1 + i].uvalue;
			t_block_count += c->block_count.stat[1 + i].uvalue;
1667 1668 1669 1670 1671 1672 1673
		}
	}

	/*
	 * Start showing global count if at least one error count is
	 * available.
	 */
1674
	if (pre_ber_layers) {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		/*
		 * At least one per-layer BER measure was read. We can now
		 * calculate the total BER
		 *
		 * Total Bit Error/Count is calculated as the sum of the
		 * bit errors on all active layers.
		 */
		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1686 1687 1688
	} else {
		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1689 1690
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	/*
	 * Start showing global count if at least one error count is
	 * available.
	 */
	if (post_ber_layers) {
		/*
		 * At least one per-layer BER measure was read. We can now
		 * calculate the total BER
		 *
		 * Total Bit Error/Count is calculated as the sum of the
		 * bit errors on all active layers.
		 */
		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1707 1708 1709
	} else {
		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1710 1711
	}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	if (per_layers) {
		/*
		 * At least one per-layer UCB measure was read. We can now
		 * calculate the total UCB
		 *
		 * Total block Error/Count is calculated as the sum of the
		 * block errors on all active layers.
		 */
		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
		c->block_error.stat[0].uvalue = t_block_error;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
		c->block_count.stat[0].uvalue = t_block_count;
1724 1725 1726
	} else {
		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1727 1728
	}

1729 1730
	return rc;
}
1731 1732 1733 1734 1735 1736

/*
 * The functions below are called via DVB callbacks, so they need to
 * properly use the I2C gate control
 */

1737 1738 1739 1740 1741 1742
static int mb86a20s_initfe(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	int rc;
	u8  regD5 = 1;

1743
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

	/* Initialize the frontend */
	rc = mb86a20s_writeregdata(state, mb86a20s_init);
	if (rc < 0)
		goto err;

	if (!state->config->is_serial) {
		regD5 &= ~1;

		rc = mb86a20s_writereg(state, 0x50, 0xd5);
		if (rc < 0)
			goto err;
		rc = mb86a20s_writereg(state, 0x51, regD5);
		if (rc < 0)
			goto err;
	}

err:
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);

	if (rc < 0) {
		state->need_init = true;
1770 1771
		dev_info(&state->i2c->dev,
			 "mb86a20s: Init failed. Will try again later\n");
1772 1773
	} else {
		state->need_init = false;
1774
		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	}
	return rc;
}

static int mb86a20s_set_frontend(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;
	int rc;
#if 0
	/*
	 * FIXME: Properly implement the set frontend properties
	 */
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
#endif
1789
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	/*
	 * Gate should already be opened, but it doesn't hurt to
	 * double-check
	 */
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
	fe->ops.tuner_ops.set_params(fe);

	/*
	 * Make it more reliable: if, for some reason, the initial
	 * device initialization doesn't happen, initialize it when
	 * a SBTVD parameters are adjusted.
	 *
	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
	 * the agc callback logic is not called during DVB attach time,
	 * causing mb86a20s to not be initialized with Kworld SBTVD.
	 * So, this hack is needed, in order to make Kworld SBTVD to work.
	 */
	if (state->need_init)
		mb86a20s_initfe(fe);

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
1814

1815
	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1816
	mb86a20s_reset_counters(fe);
1817

1818 1819 1820 1821 1822 1823
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);

	return rc;
}

1824 1825
static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
					  fe_status_t *status)
1826
{
1827 1828 1829
	struct mb86a20s_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	int rc;
1830

1831
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1832 1833 1834 1835

	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

1836 1837 1838 1839 1840 1841
	/* Get lock */
	rc = mb86a20s_read_status(fe, status);
	if (!(*status & FE_HAS_LOCK)) {
		mb86a20s_stats_not_ready(fe);
		mb86a20s_reset_frontend_cache(fe);
	}
1842 1843 1844
	if (rc < 0) {
		dev_err(&state->i2c->dev,
			"%s: Can't read frontend lock status\n", __func__);
1845
		goto error;
1846
	}
1847 1848 1849 1850

	/* Get signal strength */
	rc = mb86a20s_read_signal_strength(fe);
	if (rc < 0) {
1851 1852
		dev_err(&state->i2c->dev,
			"%s: Can't reset VBER registers.\n", __func__);
1853 1854
		mb86a20s_stats_not_ready(fe);
		mb86a20s_reset_frontend_cache(fe);
1855 1856

		rc = 0;		/* Status is OK */
1857 1858 1859 1860 1861 1862 1863 1864
		goto error;
	}
	/* Fill signal strength */
	c->strength.stat[0].uvalue = rc;

	if (*status & FE_HAS_LOCK) {
		/* Get TMCC info*/
		rc = mb86a20s_get_frontend(fe);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		if (rc < 0) {
			dev_err(&state->i2c->dev,
				"%s: Can't get FE TMCC data.\n", __func__);
			rc = 0;		/* Status is OK */
			goto error;
		}

		/* Get statistics */
		rc = mb86a20s_get_stats(fe);
		if (rc < 0 && rc != -EBUSY) {
			dev_err(&state->i2c->dev,
				"%s: Can't get FE statistics.\n", __func__);
			rc = 0;
1878
			goto error;
1879 1880
		}
		rc = 0;	/* Don't return EBUSY to userspace */
1881
	}
1882
	goto ok;
1883

1884
error:
1885
	mb86a20s_stats_not_ready(fe);
1886

1887
ok:
1888 1889
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	return rc;
}

static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
						    u16 *strength)
{
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;


	*strength = c->strength.stat[0].uvalue;
1901

1902
	return 0;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
{
	/*
	 * get_frontend is now handled together with other stats
	 * retrival, when read_status() is called, as some statistics
	 * will depend on the layers detection.
	 */
	return 0;
};

1915
static int mb86a20s_tune(struct dvb_frontend *fe,
1916
			bool re_tune,
1917 1918 1919 1920
			unsigned int mode_flags,
			unsigned int *delay,
			fe_status_t *status)
{
1921
	struct mb86a20s_state *state = fe->demodulator_priv;
1922 1923
	int rc = 0;

1924
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1925

1926
	if (re_tune)
1927
		rc = mb86a20s_set_frontend(fe);
1928 1929

	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
1930
		mb86a20s_read_status_and_stats(fe, status);
1931 1932 1933 1934 1935 1936 1937 1938

	return rc;
}

static void mb86a20s_release(struct dvb_frontend *fe)
{
	struct mb86a20s_state *state = fe->demodulator_priv;

1939
	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1940 1941 1942 1943 1944 1945 1946 1947 1948

	kfree(state);
}

static struct dvb_frontend_ops mb86a20s_ops;

struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
				    struct i2c_adapter *i2c)
{
1949
	struct mb86a20s_state *state;
1950 1951
	u8	rev;

1952 1953
	dev_dbg(&i2c->dev, "%s called.\n", __func__);

1954
	/* allocate memory for the internal state */
1955
	state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
1956
	if (state == NULL) {
1957
		dev_err(&i2c->dev,
1958
			"%s: unable to allocate memory for state\n", __func__);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		goto error;
	}

	/* setup the state */
	state->config = config;
	state->i2c = i2c;

	/* create dvb_frontend */
	memcpy(&state->frontend.ops, &mb86a20s_ops,
		sizeof(struct dvb_frontend_ops));
	state->frontend.demodulator_priv = state;

	/* Check if it is a mb86a20s frontend */
	rev = mb86a20s_readreg(state, 0);

	if (rev == 0x13) {
1975
		dev_info(&i2c->dev,
1976
			 "Detected a Fujitsu mb86a20s frontend\n");
1977
	} else {
1978
		dev_dbg(&i2c->dev,
1979
			"Frontend revision %d is unknown - aborting.\n",
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		       rev);
		goto error;
	}

	return &state->frontend;

error:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(mb86a20s_attach);

static struct dvb_frontend_ops mb86a20s_ops = {
1993
	.delsys = { SYS_ISDBT },
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/* Use dib8000 values per default */
	.info = {
		.name = "Fujitsu mb86A20s",
		.caps = FE_CAN_INVERSION_AUTO | FE_CAN_RECOVER |
			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
		/* Actually, those values depend on the used tuner */
		.frequency_min = 45000000,
		.frequency_max = 864000000,
		.frequency_stepsize = 62500,
	},

	.release = mb86a20s_release,

	.init = mb86a20s_initfe,
2012
	.set_frontend = mb86a20s_set_frontend,
2013 2014 2015
	.get_frontend = mb86a20s_get_frontend_dummy,
	.read_status = mb86a20s_read_status_and_stats,
	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2016 2017 2018 2019 2020 2021
	.tune = mb86a20s_tune,
};

MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");