enlighten.c 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22 23 24
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
25 26 27
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
28
#include <linux/console.h>
29 30 31 32

#include <xen/interface/xen.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
J
Jeremy Fitzhardinge 已提交
33
#include <xen/interface/sched.h>
34 35 36 37 38 39 40 41 42 43 44 45
#include <xen/features.h>
#include <xen/page.h>

#include <asm/paravirt.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
J
Jeremy Fitzhardinge 已提交
46
#include <asm/tlbflush.h>
J
Jeremy Fitzhardinge 已提交
47
#include <asm/reboot.h>
48
#include <asm/pgalloc.h>
49 50

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
51
#include "mmu.h"
52 53 54 55 56 57
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
75 76 77 78

struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

79
struct shared_info xen_dummy_shared_info;
80 81 82 83 84

/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
85
struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
86 87 88 89 90 91 92 93 94 95 96 97 98 99

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
100
static int have_vcpu_info_placement = 1;
101

102
static void xen_vcpu_setup(int cpu)
103
{
104 105 106 107
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

108
	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
109
	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
110 111 112 113 114 115 116 117 118

	if (!have_vcpu_info_placement)
		return;		/* already tested, not available */

	vcpup = &per_cpu(xen_vcpu_info, cpu);

	info.mfn = virt_to_mfn(vcpup);
	info.offset = offset_in_page(vcpup);

119
	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
120 121 122 123 124 125 126 127 128 129 130 131 132 133
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
134

135 136 137
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
138 139
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * On restore, set the vcpu placement up again.
 * If it fails, then we're in a bad state, since
 * we can't back out from using it...
 */
void xen_vcpu_restore(void)
{
	if (have_vcpu_info_placement) {
		int cpu;

		for_each_online_cpu(cpu) {
			bool other_cpu = (cpu != smp_processor_id());

			if (other_cpu &&
			    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
				BUG();

			xen_vcpu_setup(cpu);

			if (other_cpu &&
			    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
				BUG();
		}

		BUG_ON(!have_vcpu_info_placement);
	}
}

168 169 170
static void __init xen_banner(void)
{
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
171
	       pv_info.name);
172 173 174
	printk(KERN_INFO "Hypervisor signature: %s%s\n",
	       xen_start_info->magic,
	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
175 176
}

177 178
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
		      unsigned int *cx, unsigned int *dx)
179 180 181 182 183 184 185
{
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
186
	if (*ax == 1)
187 188
		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
189 190
			    (1 << X86_FEATURE_MCE)  |  /* disable MCE */
			    (1 << X86_FEATURE_MCA)  |  /* disable MCA */
191 192 193
			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	asm(XEN_EMULATE_PREFIX "cpuid"
194 195 196 197 198 199
		: "=a" (*ax),
		  "=b" (*bx),
		  "=c" (*cx),
		  "=d" (*dx)
		: "0" (*ax), "2" (*cx));
	*dx &= maskedx;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
}

static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

static unsigned long xen_save_fl(void)
{
	struct vcpu_info *vcpu;
	unsigned long flags;

	vcpu = x86_read_percpu(xen_vcpu);
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	/* flag has opposite sense of mask */
	flags = !vcpu->evtchn_upcall_mask;

	/* convert to IF type flag
	   -0 -> 0x00000000
	   -1 -> 0xffffffff
	*/
	return (-flags) & X86_EFLAGS_IF;
}

static void xen_restore_fl(unsigned long flags)
{
	struct vcpu_info *vcpu;

	/* convert from IF type flag */
	flags = !(flags & X86_EFLAGS_IF);
235 236 237 238 239

	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
	preempt_disable();
240 241
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = flags;
242
	preempt_enable_no_resched();
243

244 245
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
246

247 248 249
	if (flags == 0) {
		preempt_check_resched();
		barrier(); /* unmask then check (avoid races) */
250 251
		if (unlikely(vcpu->evtchn_upcall_pending))
			force_evtchn_callback();
252
	}
253 254 255 256
}

static void xen_irq_disable(void)
{
257 258 259
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
260
	preempt_disable();
261
	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
262 263 264 265 266 267 268
	preempt_enable_no_resched();
}

static void xen_irq_enable(void)
{
	struct vcpu_info *vcpu;

269 270 271 272 273
	/* We don't need to worry about being preempted here, since
	   either a) interrupts are disabled, so no preemption, or b)
	   the caller is confused and is trying to re-enable interrupts
	   on an indeterminate processor. */

274 275 276
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = 0;

277 278
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
279

280
	barrier(); /* unmask then check (avoid races) */
281 282 283 284 285 286 287
	if (unlikely(vcpu->evtchn_upcall_pending))
		force_evtchn_callback();
}

static void xen_safe_halt(void)
{
	/* Blocking includes an implicit local_irq_enable(). */
J
Jeremy Fitzhardinge 已提交
288
	if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
289 290 291 292 293 294 295 296 297 298 299
		BUG();
}

static void xen_halt(void)
{
	if (irqs_disabled())
		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
	else
		xen_safe_halt();
}

300
static void xen_leave_lazy(void)
301
{
302
	paravirt_leave_lazy(paravirt_get_lazy_mode());
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	xen_mc_flush();
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

static void xen_set_ldt(const void *addr, unsigned entries)
{
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
318
	op->arg1.linear_addr = (unsigned long)addr;
319 320 321 322 323 324 325
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

326
static void xen_load_gdt(const struct desc_ptr *dtr)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
{
	unsigned long *frames;
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	int f;
	struct multicall_space mcs;

	/* A GDT can be up to 64k in size, which corresponds to 8192
	   8-byte entries, or 16 4k pages.. */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	mcs = xen_mc_entry(sizeof(*frames) * pages);
	frames = mcs.args;

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		frames[f] = virt_to_mfn(va);
		make_lowmem_page_readonly((void *)va);
	}

	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
373 374 375 376 377 378 379 380 381 382

	/*
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
	 * it means we're in a context switch, and %gs has just been
	 * saved.  This means we can zero it out to prevent faults on
	 * exit from the hypervisor if the next process has no %gs.
	 * Either way, it has been saved, and the new value will get
	 * loaded properly.  This will go away as soon as Xen has been
	 * modified to not save/restore %gs for normal hypercalls.
	 */
383
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
384
		loadsegment(gs, 0);
385 386 387
}

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
388
				const void *ptr)
389 390 391
{
	unsigned long lp = (unsigned long)&dt[entrynum];
	xmaddr_t mach_lp = virt_to_machine(lp);
392
	u64 entry = *(u64 *)ptr;
393

394 395
	preempt_disable();

396 397 398
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
399 400

	preempt_enable();
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
}

static int cvt_gate_to_trap(int vector, u32 low, u32 high,
			    struct trap_info *info)
{
	u8 type, dpl;

	type = (high >> 8) & 0x1f;
	dpl = (high >> 13) & 3;

	if (type != 0xf && type != 0xe)
		return 0;

	info->vector = vector;
	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
	info->cs = low >> 16;
	info->flags = dpl;
	/* interrupt gates clear IF */
	if (type == 0xe)
		info->flags |= 4;

	return 1;
}

/* Locations of each CPU's IDT */
426
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
427 428 429

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
430
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
431 432
{
	unsigned long p = (unsigned long)&dt[entrynum];
433 434 435 436 437 438
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
439 440 441

	xen_mc_flush();

442
	native_write_idt_entry(dt, entrynum, g);
443 444 445

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];
446
		u32 *desc = (u32 *)g;
447 448 449

		info[1].address = 0;

450
		if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
451 452 453
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
454 455

	preempt_enable();
456 457
}

458
static void xen_convert_trap_info(const struct desc_ptr *desc,
J
Jeremy Fitzhardinge 已提交
459
				  struct trap_info *traps)
460 461 462 463 464 465 466 467 468 469 470 471 472
{
	unsigned in, out, count;

	count = (desc->size+1) / 8;
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
		const u32 *entry = (u32 *)(desc->address + in * 8);

		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
			out++;
	}
	traps[out].address = 0;
J
Jeremy Fitzhardinge 已提交
473 474 475 476
}

void xen_copy_trap_info(struct trap_info *traps)
{
477
	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
J
Jeremy Fitzhardinge 已提交
478 479 480 481 482 483 484

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
485
static void xen_load_idt(const struct desc_ptr *desc)
J
Jeremy Fitzhardinge 已提交
486 487 488 489 490 491
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

492 493
	__get_cpu_var(idt_desc) = *desc;

J
Jeremy Fitzhardinge 已提交
494
	xen_convert_trap_info(desc, traps);
495 496 497 498 499 500 501 502 503 504 505

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
506
				const void *desc, int type)
507
{
508 509
	preempt_disable();

510 511 512
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
513 514 515 516 517 518 519
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);

		xen_mc_flush();
520
		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
521 522 523 524
			BUG();
	}

	}
525 526

	preempt_enable();
527 528
}

529
static void xen_load_sp0(struct tss_struct *tss,
530
			  struct thread_struct *thread)
531 532
{
	struct multicall_space mcs = xen_mc_entry(0);
533
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
551
static u32 xen_apic_read(unsigned long reg)
552 553 554
{
	return 0;
}
J
Jeremy Fitzhardinge 已提交
555

556
static void xen_apic_write(unsigned long reg, u32 val)
J
Jeremy Fitzhardinge 已提交
557 558 559 560
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
561 562 563 564
#endif

static void xen_flush_tlb(void)
{
J
Jeremy Fitzhardinge 已提交
565
	struct mmuext_op *op;
566 567 568 569 570
	struct multicall_space mcs;

	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
571

J
Jeremy Fitzhardinge 已提交
572 573 574 575 576
	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
577 578

	preempt_enable();
579 580 581 582
}

static void xen_flush_tlb_single(unsigned long addr)
{
J
Jeremy Fitzhardinge 已提交
583
	struct mmuext_op *op;
584 585 586
	struct multicall_space mcs;

	preempt_disable();
587

588
	mcs = xen_mc_entry(sizeof(*op));
J
Jeremy Fitzhardinge 已提交
589 590 591 592 593 594
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
595 596

	preempt_enable();
597 598
}

J
Jeremy Fitzhardinge 已提交
599 600 601
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
				 unsigned long va)
{
J
Jeremy Fitzhardinge 已提交
602 603 604 605
	struct {
		struct mmuext_op op;
		cpumask_t mask;
	} *args;
J
Jeremy Fitzhardinge 已提交
606
	cpumask_t cpumask = *cpus;
J
Jeremy Fitzhardinge 已提交
607
	struct multicall_space mcs;
J
Jeremy Fitzhardinge 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

	/*
	 * A couple of (to be removed) sanity checks:
	 *
	 * - current CPU must not be in mask
	 * - mask must exist :)
	 */
	BUG_ON(cpus_empty(cpumask));
	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
	BUG_ON(!mm);

	/* If a CPU which we ran on has gone down, OK. */
	cpus_and(cpumask, cpumask, cpu_online_map);
	if (cpus_empty(cpumask))
		return;

J
Jeremy Fitzhardinge 已提交
624 625 626 627 628
	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->mask = cpumask;
	args->op.arg2.vcpumask = &args->mask;

J
Jeremy Fitzhardinge 已提交
629
	if (va == TLB_FLUSH_ALL) {
J
Jeremy Fitzhardinge 已提交
630
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
J
Jeremy Fitzhardinge 已提交
631
	} else {
J
Jeremy Fitzhardinge 已提交
632 633
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
J
Jeremy Fitzhardinge 已提交
634 635
	}

J
Jeremy Fitzhardinge 已提交
636 637 638
	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
639 640
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void xen_clts(void)
{
	struct multicall_space mcs;

	mcs = xen_mc_entry(0);

	MULTI_fpu_taskswitch(mcs.mc, 0);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_write_cr0(unsigned long cr0)
{
	struct multicall_space mcs;

	/* Only pay attention to cr0.TS; everything else is
	   ignored. */
	mcs = xen_mc_entry(0);

	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

665 666 667 668 669
static void xen_write_cr2(unsigned long cr2)
{
	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
}

670 671 672 673 674
static unsigned long xen_read_cr2(void)
{
	return x86_read_percpu(xen_vcpu)->arch.cr2;
}

675 676 677 678 679
static unsigned long xen_read_cr2_direct(void)
{
	return x86_read_percpu(xen_vcpu_info.arch.cr2);
}

680 681
static void xen_write_cr4(unsigned long cr4)
{
682 683 684 685
	cr4 &= ~X86_CR4_PGE;
	cr4 &= ~X86_CR4_PSE;

	native_write_cr4(cr4);
686 687 688 689 690 691 692
}

static unsigned long xen_read_cr3(void)
{
	return x86_read_percpu(xen_cr3);
}

693 694 695 696 697
static void set_current_cr3(void *v)
{
	x86_write_percpu(xen_current_cr3, (unsigned long)v);
}

698 699
static void xen_write_cr3(unsigned long cr3)
{
700 701 702 703
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));

704 705
	BUG_ON(preemptible());

706
	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
707

708 709
	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
710 711
	x86_write_percpu(xen_cr3, cr3);

712 713 714
	op = mcs.args;
	op->cmd = MMUEXT_NEW_BASEPTR;
	op->arg1.mfn = mfn;
715

716
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
717

718 719 720
	/* Update xen_update_cr3 once the batch has actually
	   been submitted. */
	xen_mc_callback(set_current_cr3, (void *)cr3);
721

722
	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
723 724
}

725 726
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
727
static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
728
{
729
#ifdef CONFIG_FLATMEM
730
	BUG_ON(mem_map);	/* should only be used early */
731
#endif
732 733 734
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

735
/* Early release_pte assumes that all pts are pinned, since there's
736
   only init_mm and anything attached to that is pinned. */
737
static void xen_release_pte_init(u32 pfn)
738 739 740 741
{
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

742
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
743 744
{
	struct mmuext_op op;
745
	op.cmd = cmd;
746 747 748 749 750
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

751 752
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
753
static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
754
{
755
	struct page *page = pfn_to_page(pfn);
756

757 758 759
	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

760
		if (!PageHighMem(page)) {
761
			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
762 763
			if (level == PT_PTE)
				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
764
		} else
765 766 767 768
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
	}
769 770
}

771
static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
772
{
773
	xen_alloc_ptpage(mm, pfn, PT_PTE);
774 775
}

776
static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
777
{
778
	xen_alloc_ptpage(mm, pfn, PT_PMD);
779 780
}

781
/* This should never happen until we're OK to use struct page */
782
static void xen_release_ptpage(u32 pfn, unsigned level)
783
{
784 785 786
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
787
		if (!PageHighMem(page)) {
788 789
			if (level == PT_PTE)
				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
790
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
791
		}
792
		ClearPagePinned(page);
793
	}
794 795
}

796
static void xen_release_pte(u32 pfn)
797 798 799 800
{
	xen_release_ptpage(pfn, PT_PTE);
}

801
static void xen_release_pmd(u32 pfn)
802 803 804 805
{
	xen_release_ptpage(pfn, PT_PMD);
}

806 807 808 809 810 811 812 813 814 815 816 817
#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(u32 pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

818 819
#ifdef CONFIG_HIGHPTE
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
820
{
821 822 823 824 825 826 827 828 829 830 831
	pgprot_t prot = PAGE_KERNEL;

	if (PagePinned(page))
		prot = PAGE_KERNEL_RO;

	if (0 && PageHighMem(page))
		printk("mapping highpte %lx type %d prot %s\n",
		       page_to_pfn(page), type,
		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");

	return kmap_atomic_prot(page, type, prot);
832
}
833
#endif
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}

854 855
static __init void xen_pagetable_setup_start(pgd_t *base)
{
856
#ifdef CONFIG_X86_32
857
	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
858
	int i;
859 860 861

	init_mm.pgd = base;
	/*
862 863
	 * copy top-level of Xen-supplied pagetable into place.  This
	 * is a stand-in while we copy the pmd pages.
864 865 866
	 */
	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));

867 868 869 870 871 872 873 874
	/*
	 * For PAE, need to allocate new pmds, rather than
	 * share Xen's, since Xen doesn't like pmd's being
	 * shared between address spaces.
	 */
	for (i = 0; i < PTRS_PER_PGD; i++) {
		if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
			pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
875

876 877
			memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
			       PAGE_SIZE);
878

879
			make_lowmem_page_readonly(pmd);
880

881 882 883
			set_pgd(&base[i], __pgd(1 + __pa(pmd)));
		} else
			pgd_clear(&base[i]);
884 885 886 887 888 889 890 891 892 893 894
	}

	/* make sure zero_page is mapped RO so we can use it in pagetables */
	make_lowmem_page_readonly(empty_zero_page);
	make_lowmem_page_readonly(base);
	/*
	 * Switch to new pagetable.  This is done before
	 * pagetable_init has done anything so that the new pages
	 * added to the table can be prepared properly for Xen.
	 */
	xen_write_cr3(__pa(base));
895 896 897 898

	/* Unpin initial Xen pagetable */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(xen_start_info->pt_base)));
899
#endif	/* CONFIG_X86_32 */
900 901
}

902
void xen_setup_shared_info(void)
903 904
{
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
905 906 907 908 909
		set_fixmap(FIX_PARAVIRT_BOOTMAP,
			   xen_start_info->shared_info);

		HYPERVISOR_shared_info =
			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
910 911 912 913
	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

914 915 916 917
#ifndef CONFIG_SMP
	/* In UP this is as good a place as any to set up shared info */
	xen_setup_vcpu_info_placement();
#endif
J
Jeremy Fitzhardinge 已提交
918 919

	xen_setup_mfn_list_list();
920 921 922 923 924 925
}

static __init void xen_pagetable_setup_done(pgd_t *base)
{
	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
926 927 928 929
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
930 931 932 933 934
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

935 936
	pv_mmu_ops.set_pte = xen_set_pte;

937
	xen_setup_shared_info();
938

939
#ifdef CONFIG_X86_32
940 941
	/* Actually pin the pagetable down, but we can't set PG_pinned
	   yet because the page structures don't exist yet. */
942
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(base)));
943
#endif
944
}
945

946 947 948 949
static __init void xen_post_allocator_init(void)
{
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
950 951 952
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif
953 954 955 956

	xen_mark_init_mm_pinned();
}

957
/* This is called once we have the cpu_possible_map */
958
void xen_setup_vcpu_info_placement(void)
959 960 961 962 963 964 965 966
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
967
#ifdef CONFIG_X86_32
968 969 970
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

971 972 973 974 975
		pv_irq_ops.save_fl = xen_save_fl_direct;
		pv_irq_ops.restore_fl = xen_restore_fl_direct;
		pv_irq_ops.irq_disable = xen_irq_disable_direct;
		pv_irq_ops.irq_enable = xen_irq_enable_direct;
		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
976
	}
977
#endif
978 979
}

980 981
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
982 983 984 985 986 987
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

988 989
#define SITE(op, x)							\
	case PARAVIRT_PATCH(op.x):					\
990 991 992 993 994 995 996 997
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
998
#ifdef CONFIG_X86_32
999 1000 1001 1002
		SITE(pv_irq_ops, irq_enable);
		SITE(pv_irq_ops, irq_disable);
		SITE(pv_irq_ops, save_fl);
		SITE(pv_irq_ops, restore_fl);
1003
#endif /* CONFIG_X86_32 */
1004 1005 1006 1007 1008 1009
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

1010
		ret = paravirt_patch_insns(insnbuf, len, start, end);
1011 1012 1013 1014 1015 1016 1017

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
1018 1019
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
1020 1021 1022 1023 1024 1025 1026

			*relocp += delta;
		}
		break;

	default_patch:
	default:
1027 1028
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
1029 1030 1031 1032 1033 1034
		break;
	}

	return ret;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
#ifdef CONFIG_X86_F00F_BUG
	case FIX_F00F_IDT:
#endif
1046
#ifdef CONFIG_X86_32
1047 1048
	case FIX_WP_TEST:
	case FIX_VDSO:
1049 1050 1051 1052
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
#endif
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
#endif
		pte = pfn_pte(phys, prot);
		break;

	default:
		pte = mfn_pte(phys, prot);
		break;
	}

	__native_set_fixmap(idx, pte);
}

1067
static const struct pv_info xen_info __initdata = {
1068 1069 1070 1071
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
1072
};
1073

1074
static const struct pv_init_ops xen_init_ops __initdata = {
1075
	.patch = xen_patch,
1076

1077
	.banner = xen_banner,
1078 1079
	.memory_setup = xen_memory_setup,
	.arch_setup = xen_arch_setup,
1080
	.post_allocator_init = xen_post_allocator_init,
1081
};
1082

1083
static const struct pv_time_ops xen_time_ops __initdata = {
J
Jeremy Fitzhardinge 已提交
1084
	.time_init = xen_time_init,
1085

J
Jeremy Fitzhardinge 已提交
1086 1087
	.set_wallclock = xen_set_wallclock,
	.get_wallclock = xen_get_wallclock,
1088
	.get_tsc_khz = xen_tsc_khz,
J
Jeremy Fitzhardinge 已提交
1089
	.sched_clock = xen_sched_clock,
1090
};
J
Jeremy Fitzhardinge 已提交
1091

1092
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1093 1094 1095 1096 1097
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

1098
	.clts = xen_clts,
1099 1100

	.read_cr0 = native_read_cr0,
1101
	.write_cr0 = xen_write_cr0,
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
	.write_msr = native_write_msr_safe,
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

1114
	.iret = xen_iret,
1115
	.irq_enable_sysexit = xen_sysexit,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,

	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
1130
	.load_sp0 = xen_load_sp0,
1131 1132 1133 1134

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

1135 1136 1137 1138
	.lazy_mode = {
		.enter = paravirt_enter_lazy_cpu,
		.leave = xen_leave_lazy,
	},
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
};

static const struct pv_irq_ops xen_irq_ops __initdata = {
	.init_IRQ = xen_init_IRQ,
	.save_fl = xen_save_fl,
	.restore_fl = xen_restore_fl,
	.irq_disable = xen_irq_disable,
	.irq_enable = xen_irq_enable,
	.safe_halt = xen_safe_halt,
	.halt = xen_halt,
1149 1150 1151
#ifdef CONFIG_X86_64
	.adjust_exception_frame = paravirt_nop,
#endif
1152
};
1153

1154
static const struct pv_apic_ops xen_apic_ops __initdata = {
1155
#ifdef CONFIG_X86_LOCAL_APIC
J
Jeremy Fitzhardinge 已提交
1156 1157
	.apic_write = xen_apic_write,
	.apic_write_atomic = xen_apic_write,
1158 1159 1160 1161 1162
	.apic_read = xen_apic_read,
	.setup_boot_clock = paravirt_nop,
	.setup_secondary_clock = paravirt_nop,
	.startup_ipi_hook = paravirt_nop,
#endif
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
};

static const struct pv_mmu_ops xen_mmu_ops __initdata = {
	.pagetable_setup_start = xen_pagetable_setup_start,
	.pagetable_setup_done = xen_pagetable_setup_done,

	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,
1174 1175 1176 1177

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
J
Jeremy Fitzhardinge 已提交
1178
	.flush_tlb_others = xen_flush_tlb_others,
1179 1180 1181 1182

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

1183 1184 1185
	.pgd_alloc = __paravirt_pgd_alloc,
	.pgd_free = paravirt_nop,

1186 1187 1188 1189 1190
	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
	.alloc_pmd = xen_alloc_pte_init,
	.alloc_pmd_clone = paravirt_nop,
	.release_pmd = xen_release_pte_init,
1191 1192 1193 1194

#ifdef CONFIG_HIGHPTE
	.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
1195

1196
	.set_pte = xen_set_pte_init,
J
Jeremy Fitzhardinge 已提交
1197
	.set_pte_at = xen_set_pte_at,
1198
	.set_pmd = xen_set_pmd_hyper,
J
Jeremy Fitzhardinge 已提交
1199

1200 1201 1202
	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

J
Jeremy Fitzhardinge 已提交
1203
	.pte_val = xen_pte_val,
1204
	.pte_flags = native_pte_val,
J
Jeremy Fitzhardinge 已提交
1205 1206 1207 1208 1209
	.pgd_val = xen_pgd_val,

	.make_pte = xen_make_pte,
	.make_pgd = xen_make_pgd,

1210
#ifdef CONFIG_X86_PAE
J
Jeremy Fitzhardinge 已提交
1211 1212 1213 1214
	.set_pte_atomic = xen_set_pte_atomic,
	.set_pte_present = xen_set_pte_at,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
1215 1216
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,
J
Jeremy Fitzhardinge 已提交
1217 1218 1219 1220

	.make_pmd = xen_make_pmd,
	.pmd_val = xen_pmd_val,

1221 1222 1223 1224 1225 1226 1227 1228 1229
#if PAGETABLE_LEVELS == 4
	.pud_val = xen_pud_val,
	.make_pud = xen_make_pud,
	.set_pgd = xen_set_pgd_hyper,

	.alloc_pud = xen_alloc_pte_init,
	.release_pud = xen_release_pte_init,
#endif	/* PAGETABLE_LEVELS == 4 */

J
Jeremy Fitzhardinge 已提交
1230 1231 1232 1233
	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

1234 1235 1236 1237
	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
		.leave = xen_leave_lazy,
	},
1238 1239

	.set_fixmap = xen_set_fixmap,
1240 1241
};

J
Jeremy Fitzhardinge 已提交
1242 1243
static void xen_reboot(int reason)
{
J
Jeremy Fitzhardinge 已提交
1244 1245
	struct sched_shutdown r = { .reason = reason };

J
Jeremy Fitzhardinge 已提交
1246 1247 1248 1249
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

J
Jeremy Fitzhardinge 已提交
1250
	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
J
Jeremy Fitzhardinge 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1283

1284 1285
static void __init xen_reserve_top(void)
{
1286
#ifdef CONFIG_X86_32
1287 1288 1289 1290 1291 1292 1293
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top + 2 * PAGE_SIZE);
1294
#endif	/* CONFIG_X86_32 */
1295 1296
}

1297 1298 1299 1300 1301 1302 1303 1304
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

J
Jeremy Fitzhardinge 已提交
1305
	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1306

1307 1308
	xen_setup_features();

1309
	/* Install Xen paravirt ops */
1310 1311 1312 1313 1314 1315 1316 1317
	pv_info = xen_info;
	pv_init_ops = xen_init_ops;
	pv_time_ops = xen_time_ops;
	pv_cpu_ops = xen_cpu_ops;
	pv_irq_ops = xen_irq_ops;
	pv_apic_ops = xen_apic_ops;
	pv_mmu_ops = xen_mmu_ops;

1318 1319 1320 1321 1322
	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
	}

J
Jeremy Fitzhardinge 已提交
1323 1324
	machine_ops = xen_machine_ops;

1325 1326 1327
#ifdef CONFIG_X86_64
	/* Disable until direct per-cpu data access. */
	have_vcpu_info_placement = 0;
1328
	x86_64_init_pda();
1329 1330
#endif

1331
	xen_smp_init();
1332 1333 1334

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
1335
		xen_build_dynamic_phys_to_machine();
1336 1337 1338

	pgd = (pgd_t *)xen_start_info->pt_base;

1339
#ifdef CONFIG_X86_32
1340
	init_pg_tables_start = __pa(pgd);
1341
	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
J
Jeremy Fitzhardinge 已提交
1342
	max_pfn_mapped = (init_pg_tables_end + 512*1024) >> PAGE_SHIFT;
1343
#endif
1344 1345 1346 1347 1348 1349

	init_mm.pgd = pgd; /* use the Xen pagetables to start */

	/* keep using Xen gdt for now; no urgent need to change it */

	x86_write_percpu(xen_cr3, __pa(pgd));
1350
	x86_write_percpu(xen_current_cr3, __pa(pgd));
1351 1352

	/* Don't do the full vcpu_info placement stuff until we have a
1353
	   possible map and a non-dummy shared_info. */
1354
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1355

1356
	pv_info.kernel_rpl = 1;
1357
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1358
		pv_info.kernel_rpl = 0;
1359

1360 1361 1362 1363 1364
	/* Prevent unwanted bits from being set in PTEs. */
	__supported_pte_mask &= ~_PAGE_GLOBAL;
	if (!is_initial_xendomain())
		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);

1365
	/* set the limit of our address space */
1366
	xen_reserve_top();
1367 1368 1369

	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
1370
#ifdef CONFIG_X86_32
1371
	new_cpu_data.hard_math = 1;
1372
#endif
1373 1374 1375
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Poke various useful things into boot_params */
1376 1377 1378 1379
	boot_params.hdr.type_of_loader = (9 << 4) | 0;
	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
		? __pa(xen_start_info->mod_start) : 0;
	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1380

1381
	if (!is_initial_xendomain()) {
1382
		add_preferred_console("xenboot", 0, NULL);
1383
		add_preferred_console("tty", 0, NULL);
1384
		add_preferred_console("hvc", 0, NULL);
1385
	}
1386

1387
	/* Start the world */
1388
#ifdef CONFIG_X86_32
1389
	i386_start_kernel();
1390 1391 1392
#else
	x86_64_start_kernel((char *)&boot_params);
#endif
1393
}