enlighten.c 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22 23 24
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
25 26 27
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
28 29 30 31

#include <xen/interface/xen.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
J
Jeremy Fitzhardinge 已提交
32
#include <xen/interface/sched.h>
33 34 35 36 37 38 39 40 41 42 43 44
#include <xen/features.h>
#include <xen/page.h>

#include <asm/paravirt.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
J
Jeremy Fitzhardinge 已提交
45
#include <asm/tlbflush.h>
J
Jeremy Fitzhardinge 已提交
46
#include <asm/reboot.h>
47 48

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
49
#include "mmu.h"
50 51 52 53 54 55
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
73 74 75 76

struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static /* __initdata */ struct shared_info dummy_shared_info;

/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
98
static int have_vcpu_info_placement = 1;
99 100

static void __init xen_vcpu_setup(int cpu)
101
{
102 103 104 105
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

106
	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
107 108 109 110 111 112 113 114 115

	if (!have_vcpu_info_placement)
		return;		/* already tested, not available */

	vcpup = &per_cpu(xen_vcpu_info, cpu);

	info.mfn = virt_to_mfn(vcpup);
	info.offset = offset_in_page(vcpup);

116
	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 118 119 120 121 122 123 124 125 126 127 128 129 130
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
131

132 133 134
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
135 136 137 138 139
}

static void __init xen_banner(void)
{
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
140
	       pv_info.name);
141 142 143
	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
}

144 145
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
		      unsigned int *cx, unsigned int *dx)
146 147 148 149 150 151 152
{
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
153
	if (*ax == 1)
154 155
		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
156
			    (1 << X86_FEATURE_SEP)  |  /* disable SEP */
157 158 159
			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	asm(XEN_EMULATE_PREFIX "cpuid"
160 161 162 163 164 165
		: "=a" (*ax),
		  "=b" (*bx),
		  "=c" (*cx),
		  "=d" (*dx)
		: "0" (*ax), "2" (*cx));
	*dx &= maskedx;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
}

static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

static unsigned long xen_save_fl(void)
{
	struct vcpu_info *vcpu;
	unsigned long flags;

	vcpu = x86_read_percpu(xen_vcpu);
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	/* flag has opposite sense of mask */
	flags = !vcpu->evtchn_upcall_mask;

	/* convert to IF type flag
	   -0 -> 0x00000000
	   -1 -> 0xffffffff
	*/
	return (-flags) & X86_EFLAGS_IF;
}

static void xen_restore_fl(unsigned long flags)
{
	struct vcpu_info *vcpu;

	/* convert from IF type flag */
	flags = !(flags & X86_EFLAGS_IF);
201 202 203 204 205

	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
	preempt_disable();
206 207
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = flags;
208
	preempt_enable_no_resched();
209

210 211
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
212

213 214 215
	if (flags == 0) {
		preempt_check_resched();
		barrier(); /* unmask then check (avoid races) */
216 217
		if (unlikely(vcpu->evtchn_upcall_pending))
			force_evtchn_callback();
218
	}
219 220 221 222
}

static void xen_irq_disable(void)
{
223 224 225
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
226
	preempt_disable();
227
	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
228 229 230 231 232 233 234
	preempt_enable_no_resched();
}

static void xen_irq_enable(void)
{
	struct vcpu_info *vcpu;

235 236 237
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
238 239 240
	preempt_disable();
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = 0;
241
	preempt_enable_no_resched();
242

243 244
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
245

246
	barrier(); /* unmask then check (avoid races) */
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	if (unlikely(vcpu->evtchn_upcall_pending))
		force_evtchn_callback();
}

static void xen_safe_halt(void)
{
	/* Blocking includes an implicit local_irq_enable(). */
	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
		BUG();
}

static void xen_halt(void)
{
	if (irqs_disabled())
		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
	else
		xen_safe_halt();
}

266
static void xen_leave_lazy(void)
267
{
268
	paravirt_leave_lazy(paravirt_get_lazy_mode());
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	xen_mc_flush();
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

static void xen_set_ldt(const void *addr, unsigned entries)
{
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
284
	op->arg1.linear_addr = (unsigned long)addr;
285 286 287 288 289 290 291
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

292
static void xen_load_gdt(const struct desc_ptr *dtr)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
{
	unsigned long *frames;
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	int f;
	struct multicall_space mcs;

	/* A GDT can be up to 64k in size, which corresponds to 8192
	   8-byte entries, or 16 4k pages.. */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	mcs = xen_mc_entry(sizeof(*frames) * pages);
	frames = mcs.args;

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		frames[f] = virt_to_mfn(va);
		make_lowmem_page_readonly((void *)va);
	}

	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
339 340 341 342 343 344 345 346 347 348

	/*
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
	 * it means we're in a context switch, and %gs has just been
	 * saved.  This means we can zero it out to prevent faults on
	 * exit from the hypervisor if the next process has no %gs.
	 * Either way, it has been saved, and the new value will get
	 * loaded properly.  This will go away as soon as Xen has been
	 * modified to not save/restore %gs for normal hypercalls.
	 */
349
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
350
		loadsegment(gs, 0);
351 352 353
}

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
354
				const void *ptr)
355 356 357
{
	unsigned long lp = (unsigned long)&dt[entrynum];
	xmaddr_t mach_lp = virt_to_machine(lp);
358
	u64 entry = *(u64 *)ptr;
359

360 361
	preempt_disable();

362 363 364
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
365 366

	preempt_enable();
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

static int cvt_gate_to_trap(int vector, u32 low, u32 high,
			    struct trap_info *info)
{
	u8 type, dpl;

	type = (high >> 8) & 0x1f;
	dpl = (high >> 13) & 3;

	if (type != 0xf && type != 0xe)
		return 0;

	info->vector = vector;
	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
	info->cs = low >> 16;
	info->flags = dpl;
	/* interrupt gates clear IF */
	if (type == 0xe)
		info->flags |= 4;

	return 1;
}

/* Locations of each CPU's IDT */
392
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
393 394 395

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
396
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
397 398
{
	unsigned long p = (unsigned long)&dt[entrynum];
399 400 401 402 403 404
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
405 406 407

	xen_mc_flush();

408
	native_write_idt_entry(dt, entrynum, g);
409 410 411

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];
412
		u32 *desc = (u32 *)g;
413 414 415

		info[1].address = 0;

416
		if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
417 418 419
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
420 421

	preempt_enable();
422 423
}

424
static void xen_convert_trap_info(const struct desc_ptr *desc,
J
Jeremy Fitzhardinge 已提交
425
				  struct trap_info *traps)
426 427 428 429 430 431 432 433 434 435 436 437 438
{
	unsigned in, out, count;

	count = (desc->size+1) / 8;
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
		const u32 *entry = (u32 *)(desc->address + in * 8);

		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
			out++;
	}
	traps[out].address = 0;
J
Jeremy Fitzhardinge 已提交
439 440 441 442
}

void xen_copy_trap_info(struct trap_info *traps)
{
443
	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
J
Jeremy Fitzhardinge 已提交
444 445 446 447 448 449 450

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
451
static void xen_load_idt(const struct desc_ptr *desc)
J
Jeremy Fitzhardinge 已提交
452 453 454 455 456 457
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

458 459
	__get_cpu_var(idt_desc) = *desc;

J
Jeremy Fitzhardinge 已提交
460
	xen_convert_trap_info(desc, traps);
461 462 463 464 465 466 467 468 469 470 471

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
472
				const void *desc, int type)
473
{
474 475
	preempt_disable();

476 477 478
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
479 480 481 482 483 484 485
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);

		xen_mc_flush();
486
		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
487 488 489 490
			BUG();
	}

	}
491 492

	preempt_enable();
493 494
}

495
static void xen_load_sp0(struct tss_struct *tss,
496
			  struct thread_struct *thread)
497 498
{
	struct multicall_space mcs = xen_mc_entry(0);
499
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
517
static u32 xen_apic_read(unsigned long reg)
518 519 520
{
	return 0;
}
J
Jeremy Fitzhardinge 已提交
521

522
static void xen_apic_write(unsigned long reg, u32 val)
J
Jeremy Fitzhardinge 已提交
523 524 525 526
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
527 528 529 530
#endif

static void xen_flush_tlb(void)
{
J
Jeremy Fitzhardinge 已提交
531 532
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
533

J
Jeremy Fitzhardinge 已提交
534 535 536 537 538
	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
539 540 541 542
}

static void xen_flush_tlb_single(unsigned long addr)
{
J
Jeremy Fitzhardinge 已提交
543 544
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
545

J
Jeremy Fitzhardinge 已提交
546 547 548 549 550 551
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
552 553
}

J
Jeremy Fitzhardinge 已提交
554 555 556
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
				 unsigned long va)
{
J
Jeremy Fitzhardinge 已提交
557 558 559 560
	struct {
		struct mmuext_op op;
		cpumask_t mask;
	} *args;
J
Jeremy Fitzhardinge 已提交
561
	cpumask_t cpumask = *cpus;
J
Jeremy Fitzhardinge 已提交
562
	struct multicall_space mcs;
J
Jeremy Fitzhardinge 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

	/*
	 * A couple of (to be removed) sanity checks:
	 *
	 * - current CPU must not be in mask
	 * - mask must exist :)
	 */
	BUG_ON(cpus_empty(cpumask));
	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
	BUG_ON(!mm);

	/* If a CPU which we ran on has gone down, OK. */
	cpus_and(cpumask, cpumask, cpu_online_map);
	if (cpus_empty(cpumask))
		return;

J
Jeremy Fitzhardinge 已提交
579 580 581 582 583
	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->mask = cpumask;
	args->op.arg2.vcpumask = &args->mask;

J
Jeremy Fitzhardinge 已提交
584
	if (va == TLB_FLUSH_ALL) {
J
Jeremy Fitzhardinge 已提交
585
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
J
Jeremy Fitzhardinge 已提交
586
	} else {
J
Jeremy Fitzhardinge 已提交
587 588
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
J
Jeremy Fitzhardinge 已提交
589 590
	}

J
Jeremy Fitzhardinge 已提交
591 592 593
	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
594 595
}

596 597 598 599 600
static void xen_write_cr2(unsigned long cr2)
{
	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
}

601 602 603 604 605
static unsigned long xen_read_cr2(void)
{
	return x86_read_percpu(xen_vcpu)->arch.cr2;
}

606 607 608 609 610
static unsigned long xen_read_cr2_direct(void)
{
	return x86_read_percpu(xen_vcpu_info.arch.cr2);
}

611 612
static void xen_write_cr4(unsigned long cr4)
{
613 614
	/* Just ignore cr4 changes; Xen doesn't allow us to do
	   anything anyway. */
615 616 617 618 619 620 621
}

static unsigned long xen_read_cr3(void)
{
	return x86_read_percpu(xen_cr3);
}

622 623 624 625 626
static void set_current_cr3(void *v)
{
	x86_write_percpu(xen_current_cr3, (unsigned long)v);
}

627 628
static void xen_write_cr3(unsigned long cr3)
{
629 630 631 632
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));

633 634
	BUG_ON(preemptible());

635
	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
636

637 638
	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
639 640
	x86_write_percpu(xen_cr3, cr3);

641 642 643
	op = mcs.args;
	op->cmd = MMUEXT_NEW_BASEPTR;
	op->arg1.mfn = mfn;
644

645
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
646

647 648 649
	/* Update xen_update_cr3 once the batch has actually
	   been submitted. */
	xen_mc_callback(set_current_cr3, (void *)cr3);
650

651
	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
652 653
}

654 655
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
656
static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
657
{
658
	BUG_ON(mem_map);	/* should only be used early */
659 660 661
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

662 663 664 665 666 667 668
/* Early release_pt assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
static void xen_release_pt_init(u32 pfn)
{
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

669 670 671 672 673 674 675 676 677
static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

678 679
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
680
static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
681
{
682
	struct page *page = pfn_to_page(pfn);
683

684 685 686
	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

687
		if (!PageHighMem(page)) {
688
			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
689
			pin_pagetable_pfn(level, pfn);
690
		} else
691 692 693 694
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
	}
695 696
}

697 698 699 700 701 702 703 704 705 706
static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
{
	xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L1_TABLE);
}

static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
{
	xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L2_TABLE);
}

707
/* This should never happen until we're OK to use struct page */
708 709
static void xen_release_pt(u32 pfn)
{
710 711 712
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
713 714
		if (!PageHighMem(page)) {
			pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
715
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
716
		}
717
	}
718 719
}

720 721
#ifdef CONFIG_HIGHPTE
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
722
{
723 724 725 726 727 728 729 730 731 732 733
	pgprot_t prot = PAGE_KERNEL;

	if (PagePinned(page))
		prot = PAGE_KERNEL_RO;

	if (0 && PageHighMem(page))
		printk("mapping highpte %lx type %d prot %s\n",
		       page_to_pfn(page), type,
		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");

	return kmap_atomic_prot(page, type, prot);
734
}
735
#endif
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}

756 757 758 759
static __init void xen_pagetable_setup_start(pgd_t *base)
{
	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;

760
	/* special set_pte for pagetable initialization */
761
	pv_mmu_ops.set_pte = xen_set_pte_init;
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	init_mm.pgd = base;
	/*
	 * copy top-level of Xen-supplied pagetable into place.	 For
	 * !PAE we can use this as-is, but for PAE it is a stand-in
	 * while we copy the pmd pages.
	 */
	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	if (PTRS_PER_PMD > 1) {
		int i;
		/*
		 * For PAE, need to allocate new pmds, rather than
		 * share Xen's, since Xen doesn't like pmd's being
		 * shared between address spaces.
		 */
		for (i = 0; i < PTRS_PER_PGD; i++) {
			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);

				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
				       PAGE_SIZE);

785
				make_lowmem_page_readonly(pmd);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
			} else
				pgd_clear(&base[i]);
		}
	}

	/* make sure zero_page is mapped RO so we can use it in pagetables */
	make_lowmem_page_readonly(empty_zero_page);
	make_lowmem_page_readonly(base);
	/*
	 * Switch to new pagetable.  This is done before
	 * pagetable_init has done anything so that the new pages
	 * added to the table can be prepared properly for Xen.
	 */
	xen_write_cr3(__pa(base));
802 803 804 805

	/* Unpin initial Xen pagetable */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(xen_start_info->pt_base)));
806 807 808 809
}

static __init void xen_pagetable_setup_done(pgd_t *base)
{
810 811
	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
812
	pv_mmu_ops.alloc_pt = xen_alloc_pt;
813 814 815
	pv_mmu_ops.alloc_pd = xen_alloc_pd;
	pv_mmu_ops.release_pt = xen_release_pt;
	pv_mmu_ops.release_pd = xen_release_pt;
816
	pv_mmu_ops.set_pte = xen_set_pte;
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/*
		 * Create a mapping for the shared info page.
		 * Should be set_fixmap(), but shared_info is a machine
		 * address with no corresponding pseudo-phys address.
		 */
		set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
			    PFN_DOWN(xen_start_info->shared_info),
			    PAGE_KERNEL);

		HYPERVISOR_shared_info =
			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);

	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

835 836 837
	/* Actually pin the pagetable down, but we can't set PG_pinned
	   yet because the page structures don't exist yet. */
	{
838 839
		unsigned level;

840
#ifdef CONFIG_X86_PAE
841
		level = MMUEXT_PIN_L3_TABLE;
842
#else
843
		level = MMUEXT_PIN_L2_TABLE;
844
#endif
845 846

		pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
847
	}
848
}
849

850 851 852 853 854 855 856 857 858 859 860 861 862
/* This is called once we have the cpu_possible_map */
void __init xen_setup_vcpu_info_placement(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

863 864 865 866 867 868
		pv_irq_ops.save_fl = xen_save_fl_direct;
		pv_irq_ops.restore_fl = xen_restore_fl_direct;
		pv_irq_ops.irq_disable = xen_irq_disable_direct;
		pv_irq_ops.irq_enable = xen_irq_enable_direct;
		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
		pv_cpu_ops.iret = xen_iret_direct;
869
	}
870 871
}

872 873
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
874 875 876 877 878 879
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

880 881
#define SITE(op, x)							\
	case PARAVIRT_PATCH(op.x):					\
882 883 884 885 886 887 888 889
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
890 891 892 893
		SITE(pv_irq_ops, irq_enable);
		SITE(pv_irq_ops, irq_disable);
		SITE(pv_irq_ops, save_fl);
		SITE(pv_irq_ops, restore_fl);
894 895 896 897 898 899
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

900
		ret = paravirt_patch_insns(insnbuf, len, start, end);
901 902 903 904 905 906 907

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
908 909
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
910 911 912 913 914 915 916

			*relocp += delta;
		}
		break;

	default_patch:
	default:
917 918
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
919 920 921 922 923 924
		break;
	}

	return ret;
}

925
static const struct pv_info xen_info __initdata = {
926 927 928 929
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
930
};
931

932
static const struct pv_init_ops xen_init_ops __initdata = {
933
	.patch = xen_patch,
934

935
	.banner = xen_banner,
936 937
	.memory_setup = xen_memory_setup,
	.arch_setup = xen_arch_setup,
938
	.post_allocator_init = xen_mark_init_mm_pinned,
939
};
940

941
static const struct pv_time_ops xen_time_ops __initdata = {
J
Jeremy Fitzhardinge 已提交
942
	.time_init = xen_time_init,
943

J
Jeremy Fitzhardinge 已提交
944 945 946
	.set_wallclock = xen_set_wallclock,
	.get_wallclock = xen_get_wallclock,
	.get_cpu_khz = xen_cpu_khz,
J
Jeremy Fitzhardinge 已提交
947
	.sched_clock = xen_sched_clock,
948
};
J
Jeremy Fitzhardinge 已提交
949

950
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

	.clts = native_clts,

	.read_cr0 = native_read_cr0,
	.write_cr0 = native_write_cr0,

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
	.write_msr = native_write_msr_safe,
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

	.iret = (void *)&hypercall_page[__HYPERVISOR_iret],
973
	.irq_enable_syscall_ret = NULL,  /* never called */
974 975 976 977 978 979 980 981 982 983 984 985 986 987

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,

	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
988
	.load_sp0 = xen_load_sp0,
989 990 991 992

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

993 994 995 996
	.lazy_mode = {
		.enter = paravirt_enter_lazy_cpu,
		.leave = xen_leave_lazy,
	},
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
};

static const struct pv_irq_ops xen_irq_ops __initdata = {
	.init_IRQ = xen_init_IRQ,
	.save_fl = xen_save_fl,
	.restore_fl = xen_restore_fl,
	.irq_disable = xen_irq_disable,
	.irq_enable = xen_irq_enable,
	.safe_halt = xen_safe_halt,
	.halt = xen_halt,
};
1008

1009
static const struct pv_apic_ops xen_apic_ops __initdata = {
1010
#ifdef CONFIG_X86_LOCAL_APIC
J
Jeremy Fitzhardinge 已提交
1011 1012
	.apic_write = xen_apic_write,
	.apic_write_atomic = xen_apic_write,
1013 1014 1015 1016 1017
	.apic_read = xen_apic_read,
	.setup_boot_clock = paravirt_nop,
	.setup_secondary_clock = paravirt_nop,
	.startup_ipi_hook = paravirt_nop,
#endif
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
};

static const struct pv_mmu_ops xen_mmu_ops __initdata = {
	.pagetable_setup_start = xen_pagetable_setup_start,
	.pagetable_setup_done = xen_pagetable_setup_done,

	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,
1029 1030 1031 1032

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
J
Jeremy Fitzhardinge 已提交
1033
	.flush_tlb_others = xen_flush_tlb_others,
1034 1035 1036 1037

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

1038
	.alloc_pt = xen_alloc_pt_init,
1039 1040
	.release_pt = xen_release_pt_init,
	.alloc_pd = xen_alloc_pt_init,
1041
	.alloc_pd_clone = paravirt_nop,
1042
	.release_pd = xen_release_pt_init,
1043 1044 1045 1046

#ifdef CONFIG_HIGHPTE
	.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
1047

1048
	.set_pte = NULL,	/* see xen_pagetable_setup_* */
J
Jeremy Fitzhardinge 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd,

	.pte_val = xen_pte_val,
	.pgd_val = xen_pgd_val,

	.make_pte = xen_make_pte,
	.make_pgd = xen_make_pgd,

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.set_pte_present = xen_set_pte_at,
	.set_pud = xen_set_pud,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,

	.make_pmd = xen_make_pmd,
	.pmd_val = xen_pmd_val,
#endif	/* PAE */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

1073 1074 1075 1076
	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
		.leave = xen_leave_lazy,
	},
1077 1078
};

J
Jeremy Fitzhardinge 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef CONFIG_SMP
static const struct smp_ops xen_smp_ops __initdata = {
	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
	.smp_prepare_cpus = xen_smp_prepare_cpus,
	.cpu_up = xen_cpu_up,
	.smp_cpus_done = xen_smp_cpus_done,

	.smp_send_stop = xen_smp_send_stop,
	.smp_send_reschedule = xen_smp_send_reschedule,
	.smp_call_function_mask = xen_smp_call_function_mask,
};
#endif	/* CONFIG_SMP */

J
Jeremy Fitzhardinge 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static void xen_reboot(int reason)
{
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static void __init xen_reserve_top(void)
{
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top + 2 * PAGE_SIZE);
}

1143 1144 1145 1146 1147 1148 1149 1150
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

J
Jeremy Fitzhardinge 已提交
1151
	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1152 1153

	/* Install Xen paravirt ops */
1154 1155 1156 1157 1158 1159 1160 1161
	pv_info = xen_info;
	pv_init_ops = xen_init_ops;
	pv_time_ops = xen_time_ops;
	pv_cpu_ops = xen_cpu_ops;
	pv_irq_ops = xen_irq_ops;
	pv_apic_ops = xen_apic_ops;
	pv_mmu_ops = xen_mmu_ops;

J
Jeremy Fitzhardinge 已提交
1162 1163
	machine_ops = xen_machine_ops;

J
Jeremy Fitzhardinge 已提交
1164 1165 1166
#ifdef CONFIG_SMP
	smp_ops = xen_smp_ops;
#endif
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	xen_setup_features();

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;

	pgd = (pgd_t *)xen_start_info->pt_base;

	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;

	init_mm.pgd = pgd; /* use the Xen pagetables to start */

	/* keep using Xen gdt for now; no urgent need to change it */

	x86_write_percpu(xen_cr3, __pa(pgd));
1183
	x86_write_percpu(xen_current_cr3, __pa(pgd));
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

#ifdef CONFIG_SMP
	/* Don't do the full vcpu_info placement stuff until we have a
	   possible map. */
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
#else
	/* May as well do it now, since there's no good time to call
	   it later on UP. */
	xen_setup_vcpu_info_placement();
#endif
1194

1195
	pv_info.kernel_rpl = 1;
1196
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1197
		pv_info.kernel_rpl = 0;
1198 1199

	/* set the limit of our address space */
1200
	xen_reserve_top();
1201 1202 1203 1204 1205 1206 1207

	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
	new_cpu_data.hard_math = 1;
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Poke various useful things into boot_params */
1208 1209 1210 1211
	boot_params.hdr.type_of_loader = (9 << 4) | 0;
	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
		? __pa(xen_start_info->mod_start) : 0;
	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1212 1213 1214 1215

	/* Start the world */
	start_kernel();
}