send.c 182.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012 Alexander Block.  All rights reserved.
 */

#include <linux/bsearch.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sort.h>
#include <linux/mount.h>
#include <linux/xattr.h>
#include <linux/posix_acl_xattr.h>
#include <linux/radix-tree.h>
14
#include <linux/vmalloc.h>
A
Andy Shevchenko 已提交
15
#include <linux/string.h>
16
#include <linux/compat.h>
17
#include <linux/crc32c.h>
18 19 20 21 22 23 24

#include "send.h"
#include "backref.h"
#include "locking.h"
#include "disk-io.h"
#include "btrfs_inode.h"
#include "transaction.h"
25
#include "compression.h"
26
#include "xattr.h"
27

28 29 30 31 32 33 34 35
/*
 * Maximum number of references an extent can have in order for us to attempt to
 * issue clone operations instead of write operations. This currently exists to
 * avoid hitting limitations of the backreference walking code (taking a lot of
 * time and using too much memory for extents with large number of references).
 */
#define SEND_MAX_EXTENT_REFS	64

36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * A fs_path is a helper to dynamically build path names with unknown size.
 * It reallocates the internal buffer on demand.
 * It allows fast adding of path elements on the right side (normal path) and
 * fast adding to the left side (reversed path). A reversed path can also be
 * unreversed if needed.
 */
struct fs_path {
	union {
		struct {
			char *start;
			char *end;

			char *buf;
50 51
			unsigned short buf_len:15;
			unsigned short reversed:1;
52 53
			char inline_buf[];
		};
54 55 56 57 58 59
		/*
		 * Average path length does not exceed 200 bytes, we'll have
		 * better packing in the slab and higher chance to satisfy
		 * a allocation later during send.
		 */
		char pad[256];
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	};
};
#define FS_PATH_INLINE_SIZE \
	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))


/* reused for each extent */
struct clone_root {
	struct btrfs_root *root;
	u64 ino;
	u64 offset;

	u64 found_refs;
};

#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)

struct send_ctx {
	struct file *send_filp;
	loff_t send_off;
	char *send_buf;
	u32 send_size;
	u32 send_max_size;
	u64 total_send_size;
	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86
	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

	struct btrfs_root *send_root;
	struct btrfs_root *parent_root;
	struct clone_root *clone_roots;
	int clone_roots_cnt;

	/* current state of the compare_tree call */
	struct btrfs_path *left_path;
	struct btrfs_path *right_path;
	struct btrfs_key *cmp_key;

	/*
	 * infos of the currently processed inode. In case of deleted inodes,
	 * these are the values from the deleted inode.
	 */
	u64 cur_ino;
	u64 cur_inode_gen;
	int cur_inode_new;
	int cur_inode_new_gen;
	int cur_inode_deleted;
	u64 cur_inode_size;
	u64 cur_inode_mode;
L
Liu Bo 已提交
109
	u64 cur_inode_rdev;
110
	u64 cur_inode_last_extent;
111
	u64 cur_inode_next_write_offset;
112
	bool ignore_cur_inode;
113 114 115 116 117 118 119 120 121 122

	u64 send_progress;

	struct list_head new_refs;
	struct list_head deleted_refs;

	struct radix_tree_root name_cache;
	struct list_head name_cache_list;
	int name_cache_size;

L
Liu Bo 已提交
123 124
	struct file_ra_state ra;

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	/*
	 * We process inodes by their increasing order, so if before an
	 * incremental send we reverse the parent/child relationship of
	 * directories such that a directory with a lower inode number was
	 * the parent of a directory with a higher inode number, and the one
	 * becoming the new parent got renamed too, we can't rename/move the
	 * directory with lower inode number when we finish processing it - we
	 * must process the directory with higher inode number first, then
	 * rename/move it and then rename/move the directory with lower inode
	 * number. Example follows.
	 *
	 * Tree state when the first send was performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |
	 *         |
	 *         |-- c           (ino 259)
	 *         |   |-- d       (ino 260)
	 *         |
	 *         |-- c2          (ino 261)
	 *
	 * Tree state when the second (incremental) send is performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |-- c2          (ino 261)
	 *             |-- d2      (ino 260)
	 *                 |-- cc  (ino 259)
	 *
	 * The sequence of steps that lead to the second state was:
	 *
	 * mv /a/b/c/d /a/b/c2/d2
	 * mv /a/b/c /a/b/c2/d2/cc
	 *
	 * "c" has lower inode number, but we can't move it (2nd mv operation)
	 * before we move "d", which has higher inode number.
	 *
	 * So we just memorize which move/rename operations must be performed
	 * later when their respective parent is processed and moved/renamed.
	 */

	/* Indexed by parent directory inode number. */
	struct rb_root pending_dir_moves;

	/*
	 * Reverse index, indexed by the inode number of a directory that
	 * is waiting for the move/rename of its immediate parent before its
	 * own move/rename can be performed.
	 */
	struct rb_root waiting_dir_moves;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	/*
	 * A directory that is going to be rm'ed might have a child directory
	 * which is in the pending directory moves index above. In this case,
	 * the directory can only be removed after the move/rename of its child
	 * is performed. Example:
	 *
	 * Parent snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- c/           (ino 259)
	 *         |   |-- x/       (ino 260)
	 *         |
	 *         |-- y/           (ino 261)
	 *
	 * Send snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- YY/          (ino 261)
	 *              |-- x/      (ino 260)
	 *
	 * Sequence of steps that lead to the send snapshot:
	 * rm -f /a/b/c/foo.txt
	 * mv /a/b/y /a/b/YY
	 * mv /a/b/c/x /a/b/YY
	 * rmdir /a/b/c
	 *
	 * When the child is processed, its move/rename is delayed until its
	 * parent is processed (as explained above), but all other operations
	 * like update utimes, chown, chgrp, etc, are performed and the paths
	 * that it uses for those operations must use the orphanized name of
	 * its parent (the directory we're going to rm later), so we need to
	 * memorize that name.
	 *
	 * Indexed by the inode number of the directory to be deleted.
	 */
	struct rb_root orphan_dirs;
219 220 221 222 223 224 225 226 227 228 229 230 231 232
};

struct pending_dir_move {
	struct rb_node node;
	struct list_head list;
	u64 parent_ino;
	u64 ino;
	u64 gen;
	struct list_head update_refs;
};

struct waiting_dir_move {
	struct rb_node node;
	u64 ino;
233 234 235 236 237 238
	/*
	 * There might be some directory that could not be removed because it
	 * was waiting for this directory inode to be moved first. Therefore
	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
	 */
	u64 rmdir_ino;
239
	u64 rmdir_gen;
240
	bool orphanized;
241 242 243 244 245 246
};

struct orphan_dir_info {
	struct rb_node node;
	u64 ino;
	u64 gen;
247
	u64 last_dir_index_offset;
248 249 250 251
};

struct name_cache_entry {
	struct list_head list;
252 253 254 255 256 257 258 259 260
	/*
	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
	 * more then one inum would fall into the same entry, we use radix_list
	 * to store the additional entries. radix_list is also used to store
	 * entries where two entries have the same inum but different
	 * generations.
	 */
	struct list_head radix_list;
261 262 263 264 265 266 267 268 269 270
	u64 ino;
	u64 gen;
	u64 parent_ino;
	u64 parent_gen;
	int ret;
	int need_later_update;
	int name_len;
	char name[];
};

271 272 273 274 275 276 277 278 279 280
#define ADVANCE							1
#define ADVANCE_ONLY_NEXT					-1

enum btrfs_compare_tree_result {
	BTRFS_COMPARE_TREE_NEW,
	BTRFS_COMPARE_TREE_DELETED,
	BTRFS_COMPARE_TREE_CHANGED,
	BTRFS_COMPARE_TREE_SAME,
};

281
__cold
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void inconsistent_snapshot_error(struct send_ctx *sctx,
					enum btrfs_compare_tree_result result,
					const char *what)
{
	const char *result_string;

	switch (result) {
	case BTRFS_COMPARE_TREE_NEW:
		result_string = "new";
		break;
	case BTRFS_COMPARE_TREE_DELETED:
		result_string = "deleted";
		break;
	case BTRFS_COMPARE_TREE_CHANGED:
		result_string = "updated";
		break;
	case BTRFS_COMPARE_TREE_SAME:
		ASSERT(0);
		result_string = "unchanged";
		break;
	default:
		ASSERT(0);
		result_string = "unexpected";
	}

	btrfs_err(sctx->send_root->fs_info,
		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
		  result_string, what, sctx->cmp_key->objectid,
		  sctx->send_root->root_key.objectid,
		  (sctx->parent_root ?
		   sctx->parent_root->root_key.objectid : 0));
}

315 316
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);

317 318 319
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino);

320
static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
321

322 323 324 325 326 327 328
static int need_send_hole(struct send_ctx *sctx)
{
	return (sctx->parent_root && !sctx->cur_inode_new &&
		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
		S_ISREG(sctx->cur_inode_mode));
}

329 330 331 332 333 334 335 336 337 338 339 340 341
static void fs_path_reset(struct fs_path *p)
{
	if (p->reversed) {
		p->start = p->buf + p->buf_len - 1;
		p->end = p->start;
		*p->start = 0;
	} else {
		p->start = p->buf;
		p->end = p->start;
		*p->start = 0;
	}
}

342
static struct fs_path *fs_path_alloc(void)
343 344 345
{
	struct fs_path *p;

346
	p = kmalloc(sizeof(*p), GFP_KERNEL);
347 348 349 350 351 352 353 354 355
	if (!p)
		return NULL;
	p->reversed = 0;
	p->buf = p->inline_buf;
	p->buf_len = FS_PATH_INLINE_SIZE;
	fs_path_reset(p);
	return p;
}

356
static struct fs_path *fs_path_alloc_reversed(void)
357 358 359
{
	struct fs_path *p;

360
	p = fs_path_alloc();
361 362 363 364 365 366 367
	if (!p)
		return NULL;
	p->reversed = 1;
	fs_path_reset(p);
	return p;
}

368
static void fs_path_free(struct fs_path *p)
369 370 371
{
	if (!p)
		return;
372 373
	if (p->buf != p->inline_buf)
		kfree(p->buf);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	kfree(p);
}

static int fs_path_len(struct fs_path *p)
{
	return p->end - p->start;
}

static int fs_path_ensure_buf(struct fs_path *p, int len)
{
	char *tmp_buf;
	int path_len;
	int old_buf_len;

	len++;

	if (p->buf_len >= len)
		return 0;

393 394 395 396 397
	if (len > PATH_MAX) {
		WARN_ON(1);
		return -ENOMEM;
	}

398 399 400
	path_len = p->end - p->start;
	old_buf_len = p->buf_len;

401 402 403
	/*
	 * First time the inline_buf does not suffice
	 */
404
	if (p->buf == p->inline_buf) {
405
		tmp_buf = kmalloc(len, GFP_KERNEL);
406 407 408
		if (tmp_buf)
			memcpy(tmp_buf, p->buf, old_buf_len);
	} else {
409
		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
410
	}
411 412 413 414 415 416 417 418
	if (!tmp_buf)
		return -ENOMEM;
	p->buf = tmp_buf;
	/*
	 * The real size of the buffer is bigger, this will let the fast path
	 * happen most of the time
	 */
	p->buf_len = ksize(p->buf);
419

420 421 422 423 424 425 426 427 428 429 430 431
	if (p->reversed) {
		tmp_buf = p->buf + old_buf_len - path_len - 1;
		p->end = p->buf + p->buf_len - 1;
		p->start = p->end - path_len;
		memmove(p->start, tmp_buf, path_len + 1);
	} else {
		p->start = p->buf;
		p->end = p->start + path_len;
	}
	return 0;
}

432 433
static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
				   char **prepared)
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	int ret;
	int new_len;

	new_len = p->end - p->start + name_len;
	if (p->start != p->end)
		new_len++;
	ret = fs_path_ensure_buf(p, new_len);
	if (ret < 0)
		goto out;

	if (p->reversed) {
		if (p->start != p->end)
			*--p->start = '/';
		p->start -= name_len;
449
		*prepared = p->start;
450 451 452
	} else {
		if (p->start != p->end)
			*p->end++ = '/';
453
		*prepared = p->end;
454 455 456 457 458 459 460 461 462 463 464
		p->end += name_len;
		*p->end = 0;
	}

out:
	return ret;
}

static int fs_path_add(struct fs_path *p, const char *name, int name_len)
{
	int ret;
465
	char *prepared;
466

467
	ret = fs_path_prepare_for_add(p, name_len, &prepared);
468 469
	if (ret < 0)
		goto out;
470
	memcpy(prepared, name, name_len);
471 472 473 474 475 476 477 478

out:
	return ret;
}

static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
{
	int ret;
479
	char *prepared;
480

481
	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
482 483
	if (ret < 0)
		goto out;
484
	memcpy(prepared, p2->start, p2->end - p2->start);
485 486 487 488 489 490 491 492 493 494

out:
	return ret;
}

static int fs_path_add_from_extent_buffer(struct fs_path *p,
					  struct extent_buffer *eb,
					  unsigned long off, int len)
{
	int ret;
495
	char *prepared;
496

497
	ret = fs_path_prepare_for_add(p, len, &prepared);
498 499 500
	if (ret < 0)
		goto out;

501
	read_extent_buffer(eb, prepared, off, len);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

out:
	return ret;
}

static int fs_path_copy(struct fs_path *p, struct fs_path *from)
{
	int ret;

	p->reversed = from->reversed;
	fs_path_reset(p);

	ret = fs_path_add_path(p, from);

	return ret;
}


static void fs_path_unreverse(struct fs_path *p)
{
	char *tmp;
	int len;

	if (!p->reversed)
		return;

	tmp = p->start;
	len = p->end - p->start;
	p->start = p->buf;
	p->end = p->start + len;
	memmove(p->start, tmp, len + 1);
	p->reversed = 0;
}

static struct btrfs_path *alloc_path_for_send(void)
{
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return NULL;
	path->search_commit_root = 1;
	path->skip_locking = 1;
545
	path->need_commit_sem = 1;
546 547 548
	return path;
}

549
static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
550 551 552 553 554
{
	int ret;
	u32 pos = 0;

	while (pos < len) {
555
		ret = kernel_write(filp, buf + pos, len - pos, off);
556 557 558 559 560
		/* TODO handle that correctly */
		/*if (ret == -ERESTARTSYS) {
			continue;
		}*/
		if (ret < 0)
561
			return ret;
562
		if (ret == 0) {
563
			return -EIO;
564 565 566 567
		}
		pos += ret;
	}

568
	return 0;
569 570 571 572 573 574 575 576 577 578 579 580
}

static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
{
	struct btrfs_tlv_header *hdr;
	int total_len = sizeof(*hdr) + len;
	int left = sctx->send_max_size - sctx->send_size;

	if (unlikely(left < total_len))
		return -EOVERFLOW;

	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 582
	put_unaligned_le16(attr, &hdr->tlv_type);
	put_unaligned_le16(len, &hdr->tlv_len);
583 584 585 586 587 588
	memcpy(hdr + 1, data, len);
	sctx->send_size += total_len;

	return 0;
}

D
David Sterba 已提交
589 590 591 592 593 594 595
#define TLV_PUT_DEFINE_INT(bits) \
	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
			u##bits attr, u##bits value)			\
	{								\
		__le##bits __tmp = cpu_to_le##bits(value);		\
		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
	}
596

D
David Sterba 已提交
597
TLV_PUT_DEFINE_INT(64)
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

static int tlv_put_string(struct send_ctx *sctx, u16 attr,
			  const char *str, int len)
{
	if (len == -1)
		len = strlen(str);
	return tlv_put(sctx, attr, str, len);
}

static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
			const u8 *uuid)
{
	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
}

static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
				  struct extent_buffer *eb,
				  struct btrfs_timespec *ts)
{
	struct btrfs_timespec bts;
	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
	return tlv_put(sctx, attr, &bts, sizeof(bts));
}


L
Liu Bo 已提交
623
#define TLV_PUT(sctx, attrtype, data, attrlen) \
624
	do { \
L
Liu Bo 已提交
625
		ret = tlv_put(sctx, attrtype, data, attrlen); \
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_INT(sctx, attrtype, bits, value) \
	do { \
		ret = tlv_put_u##bits(sctx, attrtype, value); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
#define TLV_PUT_STRING(sctx, attrtype, str, len) \
	do { \
		ret = tlv_put_string(sctx, attrtype, str, len); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_PATH(sctx, attrtype, p) \
	do { \
		ret = tlv_put_string(sctx, attrtype, p->start, \
			p->end - p->start); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while(0)
#define TLV_PUT_UUID(sctx, attrtype, uuid) \
	do { \
		ret = tlv_put_uuid(sctx, attrtype, uuid); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
	do { \
		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

static int send_header(struct send_ctx *sctx)
{
	struct btrfs_stream_header hdr;

	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);

674 675
	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
					&sctx->send_off);
676 677 678 679 680 681 682 683 684
}

/*
 * For each command/item we want to send to userspace, we call this function.
 */
static int begin_cmd(struct send_ctx *sctx, int cmd)
{
	struct btrfs_cmd_header *hdr;

685
	if (WARN_ON(!sctx->send_buf))
686 687 688 689 690 691
		return -EINVAL;

	BUG_ON(sctx->send_size);

	sctx->send_size += sizeof(*hdr);
	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692
	put_unaligned_le16(cmd, &hdr->cmd);
693 694 695 696 697 698 699 700 701 702 703

	return 0;
}

static int send_cmd(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_cmd_header *hdr;
	u32 crc;

	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 705
	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
	put_unaligned_le32(0, &hdr->crc);
706

707
	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708
	put_unaligned_le32(crc, &hdr->crc);
709

710 711
	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
					&sctx->send_off);
712 713

	sctx->total_send_size += sctx->send_size;
714
	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
715 716 717 718 719 720 721 722 723 724 725
	sctx->send_size = 0;

	return ret;
}

/*
 * Sends a move instruction to user space
 */
static int send_rename(struct send_ctx *sctx,
		     struct fs_path *from, struct fs_path *to)
{
726
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 728
	int ret;

729
	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a link instruction to user space
 */
static int send_link(struct send_ctx *sctx,
		     struct fs_path *path, struct fs_path *lnk)
{
751
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 753
	int ret;

754
	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends an unlink instruction to user space
 */
static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
{
775
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 777
	int ret;

778
	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a rmdir instruction to user space
 */
static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
{
798
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 800
	int ret;

801
	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Helper function to retrieve some fields from an inode item.
 */
819 820 821
static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
			  u64 *gid, u64 *rdev)
822 823 824 825 826 827 828 829 830 831
{
	int ret;
	struct btrfs_inode_item *ii;
	struct btrfs_key key;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret) {
832 833 834
		if (ret > 0)
			ret = -ENOENT;
		return ret;
835 836 837 838 839 840 841 842 843 844 845 846 847 848
	}

	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_inode_item);
	if (size)
		*size = btrfs_inode_size(path->nodes[0], ii);
	if (gen)
		*gen = btrfs_inode_generation(path->nodes[0], ii);
	if (mode)
		*mode = btrfs_inode_mode(path->nodes[0], ii);
	if (uid)
		*uid = btrfs_inode_uid(path->nodes[0], ii);
	if (gid)
		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 850
	if (rdev)
		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	return ret;
}

static int get_inode_info(struct btrfs_root *root,
			  u64 ino, u64 *size, u64 *gen,
			  u64 *mode, u64 *uid, u64 *gid,
			  u64 *rdev)
{
	struct btrfs_path *path;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;
	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
			       rdev);
868 869 870 871 872 873 874 875 876
	btrfs_free_path(path);
	return ret;
}

typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
				   struct fs_path *p,
				   void *ctx);

/*
877 878
 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 * btrfs_inode_extref.
879 880 881
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
882
 * path must point to the INODE_REF or INODE_EXTREF when called.
883
 */
884
static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 886 887
			     struct btrfs_key *found_key, int resolve,
			     iterate_inode_ref_t iterate, void *ctx)
{
888
	struct extent_buffer *eb = path->nodes[0];
889 890
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
891
	struct btrfs_inode_extref *extref;
892 893
	struct btrfs_path *tmp_path;
	struct fs_path *p;
894
	u32 cur = 0;
895
	u32 total;
896
	int slot = path->slots[0];
897 898 899
	u32 name_len;
	char *start;
	int ret = 0;
900
	int num = 0;
901
	int index;
902 903 904 905
	u64 dir;
	unsigned long name_off;
	unsigned long elem_size;
	unsigned long ptr;
906

907
	p = fs_path_alloc_reversed();
908 909 910 911 912
	if (!p)
		return -ENOMEM;

	tmp_path = alloc_path_for_send();
	if (!tmp_path) {
913
		fs_path_free(p);
914 915 916 917
		return -ENOMEM;
	}


918 919 920
	if (found_key->type == BTRFS_INODE_REF_KEY) {
		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
						    struct btrfs_inode_ref);
921
		item = btrfs_item_nr(slot);
922 923 924 925 926 927 928 929
		total = btrfs_item_size(eb, item);
		elem_size = sizeof(*iref);
	} else {
		ptr = btrfs_item_ptr_offset(eb, slot);
		total = btrfs_item_size_nr(eb, slot);
		elem_size = sizeof(*extref);
	}

930 931 932
	while (cur < total) {
		fs_path_reset(p);

933 934 935 936 937 938 939 940 941 942 943 944 945 946
		if (found_key->type == BTRFS_INODE_REF_KEY) {
			iref = (struct btrfs_inode_ref *)(ptr + cur);
			name_len = btrfs_inode_ref_name_len(eb, iref);
			name_off = (unsigned long)(iref + 1);
			index = btrfs_inode_ref_index(eb, iref);
			dir = found_key->offset;
		} else {
			extref = (struct btrfs_inode_extref *)(ptr + cur);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			name_off = (unsigned long)&extref->name;
			index = btrfs_inode_extref_index(eb, extref);
			dir = btrfs_inode_extref_parent(eb, extref);
		}

947
		if (resolve) {
948 949 950
			start = btrfs_ref_to_path(root, tmp_path, name_len,
						  name_off, eb, dir,
						  p->buf, p->buf_len);
951 952 953 954 955 956 957 958 959 960
			if (IS_ERR(start)) {
				ret = PTR_ERR(start);
				goto out;
			}
			if (start < p->buf) {
				/* overflow , try again with larger buffer */
				ret = fs_path_ensure_buf(p,
						p->buf_len + p->buf - start);
				if (ret < 0)
					goto out;
961 962 963 964
				start = btrfs_ref_to_path(root, tmp_path,
							  name_len, name_off,
							  eb, dir,
							  p->buf, p->buf_len);
965 966 967 968 969 970 971 972
				if (IS_ERR(start)) {
					ret = PTR_ERR(start);
					goto out;
				}
				BUG_ON(start < p->buf);
			}
			p->start = start;
		} else {
973 974
			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
							     name_len);
975 976 977 978
			if (ret < 0)
				goto out;
		}

979 980
		cur += elem_size + name_len;
		ret = iterate(num, dir, index, p, ctx);
981 982 983 984 985 986 987
		if (ret)
			goto out;
		num++;
	}

out:
	btrfs_free_path(tmp_path);
988
	fs_path_free(p);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	return ret;
}

typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
				  const char *name, int name_len,
				  const char *data, int data_len,
				  u8 type, void *ctx);

/*
 * Helper function to iterate the entries in ONE btrfs_dir_item.
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
 * path must point to the dir item when called.
 */
1004
static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 1006 1007 1008 1009 1010 1011 1012
			    iterate_dir_item_t iterate, void *ctx)
{
	int ret = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_dir_item *di;
	struct btrfs_key di_key;
	char *buf = NULL;
1013
	int buf_len;
1014 1015 1016 1017 1018 1019 1020 1021 1022
	u32 name_len;
	u32 data_len;
	u32 cur;
	u32 len;
	u32 total;
	int slot;
	int num;
	u8 type;

1023 1024 1025 1026 1027 1028 1029
	/*
	 * Start with a small buffer (1 page). If later we end up needing more
	 * space, which can happen for xattrs on a fs with a leaf size greater
	 * then the page size, attempt to increase the buffer. Typically xattr
	 * values are small.
	 */
	buf_len = PATH_MAX;
1030
	buf = kmalloc(buf_len, GFP_KERNEL);
1031 1032 1033 1034 1035 1036 1037
	if (!buf) {
		ret = -ENOMEM;
		goto out;
	}

	eb = path->nodes[0];
	slot = path->slots[0];
1038
	item = btrfs_item_nr(slot);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
	cur = 0;
	len = 0;
	total = btrfs_item_size(eb, item);

	num = 0;
	while (cur < total) {
		name_len = btrfs_dir_name_len(eb, di);
		data_len = btrfs_dir_data_len(eb, di);
		type = btrfs_dir_type(eb, di);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

1051 1052 1053 1054 1055
		if (type == BTRFS_FT_XATTR) {
			if (name_len > XATTR_NAME_MAX) {
				ret = -ENAMETOOLONG;
				goto out;
			}
1056 1057
			if (name_len + data_len >
					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058 1059 1060 1061 1062 1063 1064
				ret = -E2BIG;
				goto out;
			}
		} else {
			/*
			 * Path too long
			 */
1065
			if (name_len + data_len > PATH_MAX) {
1066 1067 1068
				ret = -ENAMETOOLONG;
				goto out;
			}
1069 1070
		}

1071 1072 1073 1074 1075 1076 1077
		if (name_len + data_len > buf_len) {
			buf_len = name_len + data_len;
			if (is_vmalloc_addr(buf)) {
				vfree(buf);
				buf = NULL;
			} else {
				char *tmp = krealloc(buf, buf_len,
1078
						GFP_KERNEL | __GFP_NOWARN);
1079 1080 1081 1082 1083 1084

				if (!tmp)
					kfree(buf);
				buf = tmp;
			}
			if (!buf) {
1085
				buf = kvmalloc(buf_len, GFP_KERNEL);
1086 1087 1088 1089 1090 1091 1092
				if (!buf) {
					ret = -ENOMEM;
					goto out;
				}
			}
		}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
				name_len + data_len);

		len = sizeof(*di) + name_len + data_len;
		di = (struct btrfs_dir_item *)((char *)di + len);
		cur += len;

		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
				data_len, type, ctx);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}

		num++;
	}

out:
1113
	kvfree(buf);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	return ret;
}

static int __copy_first_ref(int num, u64 dir, int index,
			    struct fs_path *p, void *ctx)
{
	int ret;
	struct fs_path *pt = ctx;

	ret = fs_path_copy(pt, p);
	if (ret < 0)
		return ret;

	/* we want the first only */
	return 1;
}

/*
 * Retrieve the first path of an inode. If an inode has more then one
 * ref/hardlink, this is ignored.
 */
1135
static int get_inode_path(struct btrfs_root *root,
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			  u64 ino, struct fs_path *path)
{
	int ret;
	struct btrfs_key key, found_key;
	struct btrfs_path *p;

	p = alloc_path_for_send();
	if (!p)
		return -ENOMEM;

	fs_path_reset(path);

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 1;
		goto out;
	}
	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
	if (found_key.objectid != ino ||
1161 1162
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 1164 1165 1166
		ret = -ENOENT;
		goto out;
	}

1167 1168
	ret = iterate_inode_ref(root, p, &found_key, 1,
				__copy_first_ref, path);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	if (ret < 0)
		goto out;
	ret = 0;

out:
	btrfs_free_path(p);
	return ret;
}

struct backref_ctx {
	struct send_ctx *sctx;

	/* number of total found references */
	u64 found;

	/*
	 * used for clones found in send_root. clones found behind cur_objectid
	 * and cur_offset are not considered as allowed clones.
	 */
	u64 cur_objectid;
	u64 cur_offset;

	/* may be truncated in case it's the last extent in a file */
	u64 extent_len;

	/* Just to check for bugs in backref resolving */
1195
	int found_itself;
1196 1197 1198 1199
};

static int __clone_root_cmp_bsearch(const void *key, const void *elt)
{
1200
	u64 root = (u64)(uintptr_t)key;
1201 1202
	struct clone_root *cr = (struct clone_root *)elt;

1203
	if (root < cr->root->root_key.objectid)
1204
		return -1;
1205
	if (root > cr->root->root_key.objectid)
1206 1207 1208 1209 1210 1211 1212 1213 1214
		return 1;
	return 0;
}

static int __clone_root_cmp_sort(const void *e1, const void *e2)
{
	struct clone_root *cr1 = (struct clone_root *)e1;
	struct clone_root *cr2 = (struct clone_root *)e2;

1215
	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216
		return -1;
1217
	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218 1219 1220 1221 1222 1223
		return 1;
	return 0;
}

/*
 * Called for every backref that is found for the current extent.
1224
 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225 1226 1227 1228 1229 1230 1231
 */
static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
{
	struct backref_ctx *bctx = ctx_;
	struct clone_root *found;

	/* First check if the root is in the list of accepted clone sources */
1232
	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233 1234 1235 1236 1237 1238 1239 1240 1241
			bctx->sctx->clone_roots_cnt,
			sizeof(struct clone_root),
			__clone_root_cmp_bsearch);
	if (!found)
		return 0;

	if (found->root == bctx->sctx->send_root &&
	    ino == bctx->cur_objectid &&
	    offset == bctx->cur_offset) {
1242
		bctx->found_itself = 1;
1243 1244 1245 1246 1247 1248 1249 1250
	}

	/*
	 * Make sure we don't consider clones from send_root that are
	 * behind the current inode/offset.
	 */
	if (found->root == bctx->sctx->send_root) {
		/*
1251 1252 1253
		 * If the source inode was not yet processed we can't issue a
		 * clone operation, as the source extent does not exist yet at
		 * the destination of the stream.
1254
		 */
1255 1256 1257 1258 1259 1260 1261 1262 1263
		if (ino > bctx->cur_objectid)
			return 0;
		/*
		 * We clone from the inode currently being sent as long as the
		 * source extent is already processed, otherwise we could try
		 * to clone from an extent that does not exist yet at the
		 * destination of the stream.
		 */
		if (ino == bctx->cur_objectid &&
1264 1265
		    offset + bctx->extent_len >
		    bctx->sctx->cur_inode_next_write_offset)
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
			return 0;
	}

	bctx->found++;
	found->found_refs++;
	if (ino < found->ino) {
		found->ino = ino;
		found->offset = offset;
	} else if (found->ino == ino) {
		/*
		 * same extent found more then once in the same file.
		 */
		if (found->offset > offset + bctx->extent_len)
			found->offset = offset;
	}

	return 0;
}

/*
1286 1287 1288 1289 1290 1291
 * Given an inode, offset and extent item, it finds a good clone for a clone
 * instruction. Returns -ENOENT when none could be found. The function makes
 * sure that the returned clone is usable at the point where sending is at the
 * moment. This means, that no clones are accepted which lie behind the current
 * inode+offset.
 *
1292 1293 1294 1295 1296 1297 1298 1299
 * path must point to the extent item when called.
 */
static int find_extent_clone(struct send_ctx *sctx,
			     struct btrfs_path *path,
			     u64 ino, u64 data_offset,
			     u64 ino_size,
			     struct clone_root **found)
{
1300
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1301 1302 1303
	int ret;
	int extent_type;
	u64 logical;
1304
	u64 disk_byte;
1305 1306
	u64 num_bytes;
	u64 extent_item_pos;
1307
	u64 flags = 0;
1308 1309
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *eb = path->nodes[0];
1310
	struct backref_ctx *backref_ctx = NULL;
1311 1312 1313
	struct clone_root *cur_clone_root;
	struct btrfs_key found_key;
	struct btrfs_path *tmp_path;
1314
	struct btrfs_extent_item *ei;
1315
	int compressed;
1316 1317 1318 1319 1320 1321
	u32 i;

	tmp_path = alloc_path_for_send();
	if (!tmp_path)
		return -ENOMEM;

1322 1323 1324
	/* We only use this path under the commit sem */
	tmp_path->need_commit_sem = 0;

1325
	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1326 1327 1328 1329 1330
	if (!backref_ctx) {
		ret = -ENOMEM;
		goto out;
	}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	if (data_offset >= ino_size) {
		/*
		 * There may be extents that lie behind the file's size.
		 * I at least had this in combination with snapshotting while
		 * writing large files.
		 */
		ret = 0;
		goto out;
	}

	fi = btrfs_item_ptr(eb, path->slots[0],
			struct btrfs_file_extent_item);
	extent_type = btrfs_file_extent_type(eb, fi);
	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
		ret = -ENOENT;
		goto out;
	}
1348
	compressed = btrfs_file_extent_compression(eb, fi);
1349 1350

	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1351 1352
	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
	if (disk_byte == 0) {
1353 1354 1355
		ret = -ENOENT;
		goto out;
	}
1356
	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1357

1358 1359
	down_read(&fs_info->commit_root_sem);
	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1360
				  &found_key, &flags);
1361
	up_read(&fs_info->commit_root_sem);
1362 1363 1364

	if (ret < 0)
		goto out;
1365
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1366 1367 1368 1369
		ret = -EIO;
		goto out;
	}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
			    struct btrfs_extent_item);
	/*
	 * Backreference walking (iterate_extent_inodes() below) is currently
	 * too expensive when an extent has a large number of references, both
	 * in time spent and used memory. So for now just fallback to write
	 * operations instead of clone operations when an extent has more than
	 * a certain amount of references.
	 */
	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
		ret = -ENOENT;
		goto out;
	}
	btrfs_release_path(tmp_path);

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Setup the clone roots.
	 */
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		cur_clone_root = sctx->clone_roots + i;
		cur_clone_root->ino = (u64)-1;
		cur_clone_root->offset = 0;
		cur_clone_root->found_refs = 0;
	}

1395 1396 1397 1398 1399 1400
	backref_ctx->sctx = sctx;
	backref_ctx->found = 0;
	backref_ctx->cur_objectid = ino;
	backref_ctx->cur_offset = data_offset;
	backref_ctx->found_itself = 0;
	backref_ctx->extent_len = num_bytes;
1401 1402 1403 1404 1405 1406 1407

	/*
	 * The last extent of a file may be too large due to page alignment.
	 * We need to adjust extent_len in this case so that the checks in
	 * __iterate_backrefs work.
	 */
	if (data_offset + num_bytes >= ino_size)
1408
		backref_ctx->extent_len = ino_size - data_offset;
1409 1410 1411 1412

	/*
	 * Now collect all backrefs.
	 */
1413 1414 1415 1416
	if (compressed == BTRFS_COMPRESS_NONE)
		extent_item_pos = logical - found_key.objectid;
	else
		extent_item_pos = 0;
1417 1418
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
				    extent_item_pos, 1, __iterate_backrefs,
1419
				    backref_ctx, false);
1420

1421 1422 1423
	if (ret < 0)
		goto out;

1424
	if (!backref_ctx->found_itself) {
1425 1426
		/* found a bug in backref code? */
		ret = -EIO;
1427
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1428
			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1429
			  ino, data_offset, disk_byte, found_key.objectid);
1430 1431 1432
		goto out;
	}

1433 1434 1435
	btrfs_debug(fs_info,
		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
		    data_offset, ino, num_bytes, logical);
1436

1437
	if (!backref_ctx->found)
1438
		btrfs_debug(fs_info, "no clones found");
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	cur_clone_root = NULL;
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		if (sctx->clone_roots[i].found_refs) {
			if (!cur_clone_root)
				cur_clone_root = sctx->clone_roots + i;
			else if (sctx->clone_roots[i].root == sctx->send_root)
				/* prefer clones from send_root over others */
				cur_clone_root = sctx->clone_roots + i;
		}

	}

	if (cur_clone_root) {
		*found = cur_clone_root;
		ret = 0;
	} else {
		ret = -ENOENT;
	}

out:
	btrfs_free_path(tmp_path);
1461
	kfree(backref_ctx);
1462 1463 1464
	return ret;
}

1465
static int read_symlink(struct btrfs_root *root,
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			u64 ino,
			struct fs_path *dest)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_file_extent_item *ei;
	u8 type;
	u8 compression;
	unsigned long off;
	int len;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (ret) {
		/*
		 * An empty symlink inode. Can happen in rare error paths when
		 * creating a symlink (transaction committed before the inode
		 * eviction handler removed the symlink inode items and a crash
		 * happened in between or the subvol was snapshoted in between).
		 * Print an informative message to dmesg/syslog so that the user
		 * can delete the symlink.
		 */
		btrfs_err(root->fs_info,
			  "Found empty symlink inode %llu at root %llu",
			  ino, root->root_key.objectid);
		ret = -EIO;
		goto out;
	}
1503 1504 1505 1506 1507 1508 1509 1510 1511

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
	compression = btrfs_file_extent_compression(path->nodes[0], ei);
	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
	BUG_ON(compression);

	off = btrfs_file_extent_inline_start(ei);
1512
	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Helper function to generate a file name that is unique in the root of
 * send_root and parent_root. This is used to generate names for orphan inodes.
 */
static int gen_unique_name(struct send_ctx *sctx,
			   u64 ino, u64 gen,
			   struct fs_path *dest)
{
	int ret = 0;
	struct btrfs_path *path;
	struct btrfs_dir_item *di;
	char tmp[64];
	int len;
	u64 idx = 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	while (1) {
1541
		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1542
				ino, gen, idx);
1543
		ASSERT(len < sizeof(tmp));
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}

		if (!sctx->parent_root) {
			/* unique */
			ret = 0;
			break;
		}

		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}
		/* unique */
		break;
	}

	ret = fs_path_add(dest, tmp, strlen(tmp));

out:
	btrfs_free_path(path);
	return ret;
}

enum inode_state {
	inode_state_no_change,
	inode_state_will_create,
	inode_state_did_create,
	inode_state_will_delete,
	inode_state_did_delete,
};

static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;
	int left_ret;
	int right_ret;
	u64 left_gen;
	u64 right_gen;

	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1606
			NULL, NULL);
1607 1608 1609 1610 1611 1612 1613 1614
	if (ret < 0 && ret != -ENOENT)
		goto out;
	left_ret = ret;

	if (!sctx->parent_root) {
		right_ret = -ENOENT;
	} else {
		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1615
				NULL, NULL, NULL, NULL);
1616 1617 1618 1619 1620 1621
		if (ret < 0 && ret != -ENOENT)
			goto out;
		right_ret = ret;
	}

	if (!left_ret && !right_ret) {
1622
		if (left_gen == gen && right_gen == gen) {
1623
			ret = inode_state_no_change;
1624
		} else if (left_gen == gen) {
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else  {
			ret = -ENOENT;
		}
	} else if (!left_ret) {
		if (left_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else {
			ret = -ENOENT;
		}
	} else if (!right_ret) {
		if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else {
			ret = -ENOENT;
		}
	} else {
		ret = -ENOENT;
	}

out:
	return ret;
}

static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;

1667 1668 1669
	if (ino == BTRFS_FIRST_FREE_OBJECTID)
		return 1;

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	ret = get_cur_inode_state(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (ret == inode_state_no_change ||
	    ret == inode_state_did_create ||
	    ret == inode_state_will_delete)
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

/*
 * Helper function to lookup a dir item in a dir.
 */
static int lookup_dir_item_inode(struct btrfs_root *root,
				 u64 dir, const char *name, int name_len,
				 u64 *found_inode,
				 u8 *found_type)
{
	int ret = 0;
	struct btrfs_dir_item *di;
	struct btrfs_key key;
	struct btrfs_path *path;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	di = btrfs_lookup_dir_item(NULL, root, path,
			dir, name, name_len, 0);
1704 1705
	if (IS_ERR_OR_NULL(di)) {
		ret = di ? PTR_ERR(di) : -ENOENT;
1706 1707 1708
		goto out;
	}
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1709 1710 1711 1712
	if (key.type == BTRFS_ROOT_ITEM_KEY) {
		ret = -ENOENT;
		goto out;
	}
1713 1714 1715 1716 1717 1718 1719 1720
	*found_inode = key.objectid;
	*found_type = btrfs_dir_type(path->nodes[0], di);

out:
	btrfs_free_path(path);
	return ret;
}

1721 1722 1723 1724
/*
 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
 * generation of the parent dir and the name of the dir entry.
 */
1725
static int get_first_ref(struct btrfs_root *root, u64 ino,
1726 1727 1728 1729 1730 1731 1732
			 u64 *dir, u64 *dir_gen, struct fs_path *name)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	int len;
1733
	u64 parent_dir;
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (!ret)
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				path->slots[0]);
1749 1750 1751
	if (ret || found_key.objectid != ino ||
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1752 1753 1754 1755
		ret = -ENOENT;
		goto out;
	}

1756
	if (found_key.type == BTRFS_INODE_REF_KEY) {
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		struct btrfs_inode_ref *iref;
		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_inode_ref);
		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
						     (unsigned long)(iref + 1),
						     len);
		parent_dir = found_key.offset;
	} else {
		struct btrfs_inode_extref *extref;
		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
					struct btrfs_inode_extref);
		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
					(unsigned long)&extref->name, len);
		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
	}
1774 1775 1776 1777
	if (ret < 0)
		goto out;
	btrfs_release_path(path);

1778 1779 1780 1781 1782 1783
	if (dir_gen) {
		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0)
			goto out;
	}
1784

1785
	*dir = parent_dir;
1786 1787 1788 1789 1790 1791

out:
	btrfs_free_path(path);
	return ret;
}

1792
static int is_first_ref(struct btrfs_root *root,
1793 1794 1795 1796 1797 1798 1799
			u64 ino, u64 dir,
			const char *name, int name_len)
{
	int ret;
	struct fs_path *tmp_name;
	u64 tmp_dir;

1800
	tmp_name = fs_path_alloc();
1801 1802 1803
	if (!tmp_name)
		return -ENOMEM;

1804
	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1805 1806 1807
	if (ret < 0)
		goto out;

1808
	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1809 1810 1811 1812
		ret = 0;
		goto out;
	}

1813
	ret = !memcmp(tmp_name->start, name, name_len);
1814 1815

out:
1816
	fs_path_free(tmp_name);
1817 1818 1819
	return ret;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
/*
 * Used by process_recorded_refs to determine if a new ref would overwrite an
 * already existing ref. In case it detects an overwrite, it returns the
 * inode/gen in who_ino/who_gen.
 * When an overwrite is detected, process_recorded_refs does proper orphanizing
 * to make sure later references to the overwritten inode are possible.
 * Orphanizing is however only required for the first ref of an inode.
 * process_recorded_refs does an additional is_first_ref check to see if
 * orphanizing is really required.
 */
1830 1831
static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
			      const char *name, int name_len,
1832
			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1833 1834
{
	int ret = 0;
1835
	u64 gen;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	u64 other_inode = 0;
	u8 other_type = 0;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1846 1847
	/*
	 * If we have a parent root we need to verify that the parent dir was
1848
	 * not deleted and then re-created, if it was then we have no overwrite
1849 1850
	 * and we can just unlink this entry.
	 */
1851
	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1864 1865 1866 1867 1868 1869 1870 1871 1872
	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
			&other_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

1873 1874 1875 1876 1877
	/*
	 * Check if the overwritten ref was already processed. If yes, the ref
	 * was already unlinked/moved, so we can safely assume that we will not
	 * overwrite anything at this point in time.
	 */
1878 1879
	if (other_inode > sctx->send_progress ||
	    is_waiting_for_move(sctx, other_inode)) {
1880
		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1881
				who_gen, who_mode, NULL, NULL, NULL);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		if (ret < 0)
			goto out;

		ret = 1;
		*who_ino = other_inode;
	} else {
		ret = 0;
	}

out:
	return ret;
}

1895 1896 1897 1898 1899 1900 1901
/*
 * Checks if the ref was overwritten by an already processed inode. This is
 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
 * thus the orphan name needs be used.
 * process_recorded_refs also uses it to avoid unlinking of refs that were
 * overwritten.
 */
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static int did_overwrite_ref(struct send_ctx *sctx,
			    u64 dir, u64 dir_gen,
			    u64 ino, u64 ino_gen,
			    const char *name, int name_len)
{
	int ret = 0;
	u64 gen;
	u64 ow_inode;
	u8 other_type;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	/* check if the ref was overwritten by another ref */
	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
			&ow_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		/* was never and will never be overwritten */
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1944
			NULL, NULL);
1945 1946 1947 1948 1949 1950 1951 1952
	if (ret < 0)
		goto out;

	if (ow_inode == ino && gen == ino_gen) {
		ret = 0;
		goto out;
	}

1953 1954 1955
	/*
	 * We know that it is or will be overwritten. Check this now.
	 * The current inode being processed might have been the one that caused
1956 1957
	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
	 * the current inode being processed.
1958
	 */
1959 1960 1961
	if ((ow_inode < sctx->send_progress) ||
	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
	     gen == sctx->cur_inode_gen))
1962 1963 1964 1965 1966 1967 1968 1969
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

1970 1971 1972 1973 1974
/*
 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
 * that got overwritten. This is used by process_recorded_refs to determine
 * if it has to use the path as returned by get_cur_path or the orphan name.
 */
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 dir;
	u64 dir_gen;

	if (!sctx->parent_root)
		goto out;

1985
	name = fs_path_alloc();
1986 1987 1988
	if (!name)
		return -ENOMEM;

1989
	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1990 1991 1992 1993 1994 1995 1996
	if (ret < 0)
		goto out;

	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
			name->start, fs_path_len(name));

out:
1997
	fs_path_free(name);
1998 1999 2000
	return ret;
}

2001 2002 2003 2004
/*
 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
 * so we need to do some special handling in case we have clashes. This function
 * takes care of this with the help of name_cache_entry::radix_list.
2005
 * In case of error, nce is kfreed.
2006
 */
2007 2008 2009 2010
static int name_cache_insert(struct send_ctx *sctx,
			     struct name_cache_entry *nce)
{
	int ret = 0;
2011 2012 2013 2014 2015
	struct list_head *nce_head;

	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
	if (!nce_head) {
2016
		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2017 2018
		if (!nce_head) {
			kfree(nce);
2019
			return -ENOMEM;
2020
		}
2021
		INIT_LIST_HEAD(nce_head);
2022

2023
		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2024 2025 2026
		if (ret < 0) {
			kfree(nce_head);
			kfree(nce);
2027
			return ret;
2028
		}
2029
	}
2030
	list_add_tail(&nce->radix_list, nce_head);
2031 2032 2033 2034 2035 2036 2037 2038 2039
	list_add_tail(&nce->list, &sctx->name_cache_list);
	sctx->name_cache_size++;

	return ret;
}

static void name_cache_delete(struct send_ctx *sctx,
			      struct name_cache_entry *nce)
{
2040
	struct list_head *nce_head;
2041

2042 2043
	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
2044 2045 2046 2047 2048
	if (!nce_head) {
		btrfs_err(sctx->send_root->fs_info,
	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
			nce->ino, sctx->name_cache_size);
	}
2049

2050
	list_del(&nce->radix_list);
2051 2052
	list_del(&nce->list);
	sctx->name_cache_size--;
2053

2054 2055 2056 2057
	/*
	 * We may not get to the final release of nce_head if the lookup fails
	 */
	if (nce_head && list_empty(nce_head)) {
2058 2059 2060
		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
		kfree(nce_head);
	}
2061 2062 2063 2064 2065
}

static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
						    u64 ino, u64 gen)
{
2066 2067
	struct list_head *nce_head;
	struct name_cache_entry *cur;
2068

2069 2070
	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
	if (!nce_head)
2071 2072
		return NULL;

2073 2074 2075 2076
	list_for_each_entry(cur, nce_head, radix_list) {
		if (cur->ino == ino && cur->gen == gen)
			return cur;
	}
2077 2078 2079
	return NULL;
}

2080 2081 2082 2083
/*
 * Removes the entry from the list and adds it back to the end. This marks the
 * entry as recently used so that name_cache_clean_unused does not remove it.
 */
2084 2085 2086 2087 2088 2089
static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
{
	list_del(&nce->list);
	list_add_tail(&nce->list, &sctx->name_cache_list);
}

2090 2091 2092
/*
 * Remove some entries from the beginning of name_cache_list.
 */
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static void name_cache_clean_unused(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
		return;

	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
		name_cache_delete(sctx, nce);
		kfree(nce);
	}
}

static void name_cache_free(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

2112 2113 2114
	while (!list_empty(&sctx->name_cache_list)) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
2115
		name_cache_delete(sctx, nce);
2116
		kfree(nce);
2117 2118 2119
	}
}

2120 2121 2122 2123 2124 2125 2126 2127
/*
 * Used by get_cur_path for each ref up to the root.
 * Returns 0 if it succeeded.
 * Returns 1 if the inode is not existent or got overwritten. In that case, the
 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
 * Returns <0 in case of error.
 */
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
static int __get_cur_name_and_parent(struct send_ctx *sctx,
				     u64 ino, u64 gen,
				     u64 *parent_ino,
				     u64 *parent_gen,
				     struct fs_path *dest)
{
	int ret;
	int nce_ret;
	struct name_cache_entry *nce = NULL;

2138 2139 2140 2141 2142
	/*
	 * First check if we already did a call to this function with the same
	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
	 * return the cached result.
	 */
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	nce = name_cache_search(sctx, ino, gen);
	if (nce) {
		if (ino < sctx->send_progress && nce->need_later_update) {
			name_cache_delete(sctx, nce);
			kfree(nce);
			nce = NULL;
		} else {
			name_cache_used(sctx, nce);
			*parent_ino = nce->parent_ino;
			*parent_gen = nce->parent_gen;
			ret = fs_path_add(dest, nce->name, nce->name_len);
			if (ret < 0)
				goto out;
			ret = nce->ret;
			goto out;
		}
	}

2161 2162 2163 2164 2165
	/*
	 * If the inode is not existent yet, add the orphan name and return 1.
	 * This should only happen for the parent dir that we determine in
	 * __record_new_ref
	 */
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	ret = is_inode_existent(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (!ret) {
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
		goto out_cache;
	}

2178 2179 2180 2181
	/*
	 * Depending on whether the inode was already processed or not, use
	 * send_root or parent_root for ref lookup.
	 */
2182
	if (ino < sctx->send_progress)
2183 2184
		ret = get_first_ref(sctx->send_root, ino,
				    parent_ino, parent_gen, dest);
2185
	else
2186 2187
		ret = get_first_ref(sctx->parent_root, ino,
				    parent_ino, parent_gen, dest);
2188 2189 2190
	if (ret < 0)
		goto out;

2191 2192 2193 2194
	/*
	 * Check if the ref was overwritten by an inode's ref that was processed
	 * earlier. If yes, treat as orphan and return 1.
	 */
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
			dest->start, dest->end - dest->start);
	if (ret < 0)
		goto out;
	if (ret) {
		fs_path_reset(dest);
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
	}

out_cache:
2208 2209 2210
	/*
	 * Store the result of the lookup in the name cache.
	 */
2211
	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	if (!nce) {
		ret = -ENOMEM;
		goto out;
	}

	nce->ino = ino;
	nce->gen = gen;
	nce->parent_ino = *parent_ino;
	nce->parent_gen = *parent_gen;
	nce->name_len = fs_path_len(dest);
	nce->ret = ret;
	strcpy(nce->name, dest->start);

	if (ino < sctx->send_progress)
		nce->need_later_update = 0;
	else
		nce->need_later_update = 1;

	nce_ret = name_cache_insert(sctx, nce);
	if (nce_ret < 0)
		ret = nce_ret;
	name_cache_clean_unused(sctx);

out:
	return ret;
}

/*
 * Magic happens here. This function returns the first ref to an inode as it
 * would look like while receiving the stream at this point in time.
 * We walk the path up to the root. For every inode in between, we check if it
 * was already processed/sent. If yes, we continue with the parent as found
 * in send_root. If not, we continue with the parent as found in parent_root.
 * If we encounter an inode that was deleted at this point in time, we use the
 * inodes "orphan" name instead of the real name and stop. Same with new inodes
 * that were not created yet and overwritten inodes/refs.
 *
2249
 * When do we have orphan inodes:
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
 * 1. When an inode is freshly created and thus no valid refs are available yet
 * 2. When a directory lost all it's refs (deleted) but still has dir items
 *    inside which were not processed yet (pending for move/delete). If anyone
 *    tried to get the path to the dir items, it would get a path inside that
 *    orphan directory.
 * 3. When an inode is moved around or gets new links, it may overwrite the ref
 *    of an unprocessed inode. If in that case the first ref would be
 *    overwritten, the overwritten inode gets "orphanized". Later when we
 *    process this overwritten inode, it is restored at a new place by moving
 *    the orphan inode.
 *
 * sctx->send_progress tells this function at which point in time receiving
 * would be.
 */
static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
			struct fs_path *dest)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	int stop = 0;

2273
	name = fs_path_alloc();
2274 2275 2276 2277 2278 2279 2280 2281 2282
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}

	dest->reversed = 1;
	fs_path_reset(dest);

	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2283 2284
		struct waiting_dir_move *wdm;

2285 2286
		fs_path_reset(name);

2287
		if (is_waiting_for_rm(sctx, ino, gen)) {
2288 2289 2290 2291 2292 2293 2294
			ret = gen_unique_name(sctx, ino, gen, name);
			if (ret < 0)
				goto out;
			ret = fs_path_add_path(dest, name);
			break;
		}

2295 2296 2297 2298 2299
		wdm = get_waiting_dir_move(sctx, ino);
		if (wdm && wdm->orphanized) {
			ret = gen_unique_name(sctx, ino, gen, name);
			stop = 1;
		} else if (wdm) {
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret)
				stop = 1;
		}

2310 2311
		if (ret < 0)
			goto out;
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321
		ret = fs_path_add_path(dest, name);
		if (ret < 0)
			goto out;

		ino = parent_inode;
		gen = parent_gen;
	}

out:
2322
	fs_path_free(name);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	if (!ret)
		fs_path_unreverse(dest);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
 */
static int send_subvol_begin(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_root *parent_root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root_ref *ref;
	struct extent_buffer *leaf;
	char *name = NULL;
	int namelen;

2343
	path = btrfs_alloc_path();
2344 2345 2346
	if (!path)
		return -ENOMEM;

2347
	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2348 2349 2350 2351 2352
	if (!name) {
		btrfs_free_path(path);
		return -ENOMEM;
	}

2353
	key.objectid = send_root->root_key.objectid;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	key.type = BTRFS_ROOT_BACKREF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
				&key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2369
	    key.objectid != send_root->root_key.objectid) {
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		ret = -ENOENT;
		goto out;
	}
	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
	namelen = btrfs_root_ref_name_len(leaf, ref);
	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
	btrfs_release_path(path);

	if (parent_root) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
		if (ret < 0)
			goto out;
	} else {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
		if (ret < 0)
			goto out;
	}

	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2389 2390 2391 2392 2393 2394 2395 2396

	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			    sctx->send_root->root_item.received_uuid);
	else
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			    sctx->send_root->root_item.uuid);

2397
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2398
		    btrfs_root_ctransid(&sctx->send_root->root_item));
2399
	if (parent_root) {
2400 2401 2402 2403 2404 2405
		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				     parent_root->root_item.received_uuid);
		else
			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				     parent_root->root_item.uuid);
2406
		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2407
			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	}

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	btrfs_free_path(path);
	kfree(name);
	return ret;
}

static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
{
2421
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2422 2423 2424
	int ret = 0;
	struct fs_path *p;

2425
	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2426

2427
	p = fs_path_alloc();
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2445
	fs_path_free(p);
2446 2447 2448 2449 2450
	return ret;
}

static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
{
2451
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2452 2453 2454
	int ret = 0;
	struct fs_path *p;

2455
	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2456

2457
	p = fs_path_alloc();
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2475
	fs_path_free(p);
2476 2477 2478 2479 2480
	return ret;
}

static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
{
2481
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2482 2483 2484
	int ret = 0;
	struct fs_path *p;

2485 2486
	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
		    ino, uid, gid);
2487

2488
	p = fs_path_alloc();
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2507
	fs_path_free(p);
2508 2509 2510 2511 2512
	return ret;
}

static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
{
2513
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2514 2515 2516 2517 2518 2519 2520 2521
	int ret = 0;
	struct fs_path *p = NULL;
	struct btrfs_inode_item *ii;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	struct btrfs_key key;
	int slot;

2522
	btrfs_debug(fs_info, "send_utimes %llu", ino);
2523

2524
	p = fs_path_alloc();
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (!p)
		return -ENOMEM;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2538 2539
	if (ret > 0)
		ret = -ENOENT;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	if (ret < 0)
		goto out;

	eb = path->nodes[0];
	slot = path->slots[0];
	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);

	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2555 2556 2557
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2558
	/* TODO Add otime support when the otime patches get into upstream */
2559 2560 2561 2562 2563

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2564
	fs_path_free(p);
2565 2566 2567 2568 2569 2570 2571 2572 2573
	btrfs_free_path(path);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
 * a valid path yet because we did not process the refs yet. So, the inode
 * is created as orphan.
 */
2574
static int send_create_inode(struct send_ctx *sctx, u64 ino)
2575
{
2576
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2577 2578 2579
	int ret = 0;
	struct fs_path *p;
	int cmd;
2580
	u64 gen;
2581
	u64 mode;
2582
	u64 rdev;
2583

2584
	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2585

2586
	p = fs_path_alloc();
2587 2588 2589
	if (!p)
		return -ENOMEM;

L
Liu Bo 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	if (ino != sctx->cur_ino) {
		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
				     NULL, NULL, &rdev);
		if (ret < 0)
			goto out;
	} else {
		gen = sctx->cur_inode_gen;
		mode = sctx->cur_inode_mode;
		rdev = sctx->cur_inode_rdev;
	}
2600

2601
	if (S_ISREG(mode)) {
2602
		cmd = BTRFS_SEND_C_MKFILE;
2603
	} else if (S_ISDIR(mode)) {
2604
		cmd = BTRFS_SEND_C_MKDIR;
2605
	} else if (S_ISLNK(mode)) {
2606
		cmd = BTRFS_SEND_C_SYMLINK;
2607
	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2608
		cmd = BTRFS_SEND_C_MKNOD;
2609
	} else if (S_ISFIFO(mode)) {
2610
		cmd = BTRFS_SEND_C_MKFIFO;
2611
	} else if (S_ISSOCK(mode)) {
2612
		cmd = BTRFS_SEND_C_MKSOCK;
2613
	} else {
2614
		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2615
				(int)(mode & S_IFMT));
2616
		ret = -EOPNOTSUPP;
2617 2618 2619 2620 2621 2622 2623
		goto out;
	}

	ret = begin_cmd(sctx, cmd);
	if (ret < 0)
		goto out;

2624
	ret = gen_unique_name(sctx, ino, gen, p);
2625 2626 2627 2628
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2629
	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2630 2631 2632

	if (S_ISLNK(mode)) {
		fs_path_reset(p);
2633
		ret = read_symlink(sctx->send_root, ino, p);
2634 2635 2636 2637 2638
		if (ret < 0)
			goto out;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2639 2640
		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2641 2642 2643 2644 2645 2646 2647 2648 2649
	}

	ret = send_cmd(sctx);
	if (ret < 0)
		goto out;


tlv_put_failure:
out:
2650
	fs_path_free(p);
2651 2652 2653
	return ret;
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
/*
 * We need some special handling for inodes that get processed before the parent
 * directory got created. See process_recorded_refs for details.
 * This function does the check if we already created the dir out of order.
 */
static int did_create_dir(struct send_ctx *sctx, u64 dir)
{
	int ret = 0;
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key di_key;
	struct extent_buffer *eb;
	struct btrfs_dir_item *di;
	int slot;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2679 2680 2681 2682
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

2683
	while (1) {
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		eb = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(sctx->send_root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
2695
		}
2696 2697 2698

		btrfs_item_key_to_cpu(eb, &found_key, slot);
		if (found_key.objectid != key.objectid ||
2699 2700 2701 2702 2703 2704 2705 2706
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

2707 2708
		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
		    di_key.objectid < sctx->send_progress) {
2709 2710 2711 2712
			ret = 1;
			goto out;
		}

2713
		path->slots[0]++;
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	}

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Only creates the inode if it is:
 * 1. Not a directory
 * 2. Or a directory which was not created already due to out of order
 *    directories. See did_create_dir and process_recorded_refs for details.
 */
static int send_create_inode_if_needed(struct send_ctx *sctx)
{
	int ret;

	if (S_ISDIR(sctx->cur_inode_mode)) {
		ret = did_create_dir(sctx, sctx->cur_ino);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
	}

	ret = send_create_inode(sctx, sctx->cur_ino);
	if (ret < 0)
		goto out;

out:
	return ret;
}

2749 2750 2751 2752 2753 2754 2755 2756 2757
struct recorded_ref {
	struct list_head list;
	char *name;
	struct fs_path *full_path;
	u64 dir;
	u64 dir_gen;
	int name_len;
};

2758 2759 2760 2761 2762 2763 2764
static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
{
	ref->full_path = path;
	ref->name = (char *)kbasename(ref->full_path->start);
	ref->name_len = ref->full_path->end - ref->name;
}

2765 2766 2767 2768 2769
/*
 * We need to process new refs before deleted refs, but compare_tree gives us
 * everything mixed. So we first record all refs and later process them.
 * This function is a helper to record one ref.
 */
2770
static int __record_ref(struct list_head *head, u64 dir,
2771 2772 2773 2774
		      u64 dir_gen, struct fs_path *path)
{
	struct recorded_ref *ref;

2775
	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2776 2777 2778 2779 2780
	if (!ref)
		return -ENOMEM;

	ref->dir = dir;
	ref->dir_gen = dir_gen;
2781
	set_ref_path(ref, path);
2782 2783 2784 2785
	list_add_tail(&ref->list, head);
	return 0;
}

2786 2787 2788 2789
static int dup_ref(struct recorded_ref *ref, struct list_head *list)
{
	struct recorded_ref *new;

2790
	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	if (!new)
		return -ENOMEM;

	new->dir = ref->dir;
	new->dir_gen = ref->dir_gen;
	new->full_path = NULL;
	INIT_LIST_HEAD(&new->list);
	list_add_tail(&new->list, list);
	return 0;
}

2802
static void __free_recorded_refs(struct list_head *head)
2803 2804 2805
{
	struct recorded_ref *cur;

2806 2807
	while (!list_empty(head)) {
		cur = list_entry(head->next, struct recorded_ref, list);
2808
		fs_path_free(cur->full_path);
2809
		list_del(&cur->list);
2810 2811 2812 2813 2814 2815
		kfree(cur);
	}
}

static void free_recorded_refs(struct send_ctx *sctx)
{
2816 2817
	__free_recorded_refs(&sctx->new_refs);
	__free_recorded_refs(&sctx->deleted_refs);
2818 2819 2820
}

/*
2821
 * Renames/moves a file/dir to its orphan name. Used when the first
2822 2823 2824 2825 2826 2827 2828 2829 2830
 * ref of an unprocessed inode gets overwritten and for all non empty
 * directories.
 */
static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
			  struct fs_path *path)
{
	int ret;
	struct fs_path *orphan;

2831
	orphan = fs_path_alloc();
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	if (!orphan)
		return -ENOMEM;

	ret = gen_unique_name(sctx, ino, gen, orphan);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, path, orphan);

out:
2842
	fs_path_free(orphan);
2843 2844 2845
	return ret;
}

2846 2847
static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
						   u64 dir_ino, u64 dir_gen)
2848 2849 2850 2851 2852 2853 2854 2855
{
	struct rb_node **p = &sctx->orphan_dirs.rb_node;
	struct rb_node *parent = NULL;
	struct orphan_dir_info *entry, *odi;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct orphan_dir_info, node);
2856
		if (dir_ino < entry->ino)
2857
			p = &(*p)->rb_left;
2858
		else if (dir_ino > entry->ino)
2859
			p = &(*p)->rb_right;
2860 2861 2862 2863 2864
		else if (dir_gen < entry->gen)
			p = &(*p)->rb_left;
		else if (dir_gen > entry->gen)
			p = &(*p)->rb_right;
		else
2865 2866 2867
			return entry;
	}

2868 2869 2870 2871
	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
	if (!odi)
		return ERR_PTR(-ENOMEM);
	odi->ino = dir_ino;
2872
	odi->gen = dir_gen;
2873
	odi->last_dir_index_offset = 0;
2874

2875 2876 2877 2878 2879
	rb_link_node(&odi->node, parent, p);
	rb_insert_color(&odi->node, &sctx->orphan_dirs);
	return odi;
}

2880 2881
static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
						   u64 dir_ino, u64 gen)
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
{
	struct rb_node *n = sctx->orphan_dirs.rb_node;
	struct orphan_dir_info *entry;

	while (n) {
		entry = rb_entry(n, struct orphan_dir_info, node);
		if (dir_ino < entry->ino)
			n = n->rb_left;
		else if (dir_ino > entry->ino)
			n = n->rb_right;
2892 2893 2894 2895
		else if (gen < entry->gen)
			n = n->rb_left;
		else if (gen > entry->gen)
			n = n->rb_right;
2896 2897 2898 2899 2900 2901
		else
			return entry;
	}
	return NULL;
}

2902
static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2903
{
2904
	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

	return odi != NULL;
}

static void free_orphan_dir_info(struct send_ctx *sctx,
				 struct orphan_dir_info *odi)
{
	if (!odi)
		return;
	rb_erase(&odi->node, &sctx->orphan_dirs);
	kfree(odi);
}

2918 2919 2920 2921 2922
/*
 * Returns 1 if a directory can be removed at this point in time.
 * We check this by iterating all dir items and checking if the inode behind
 * the dir item was already processed.
 */
2923 2924
static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
		     u64 send_progress)
2925 2926 2927 2928 2929 2930 2931 2932
{
	int ret = 0;
	struct btrfs_root *root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key loc;
	struct btrfs_dir_item *di;
2933
	struct orphan_dir_info *odi = NULL;
2934

2935 2936 2937 2938 2939 2940
	/*
	 * Don't try to rmdir the top/root subvolume dir.
	 */
	if (dir == BTRFS_FIRST_FREE_OBJECTID)
		return 0;

2941 2942 2943 2944 2945 2946 2947
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2948

2949
	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2950 2951 2952
	if (odi)
		key.offset = odi->last_dir_index_offset;

2953 2954 2955
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
2956 2957

	while (1) {
2958 2959
		struct waiting_dir_move *dm;

2960 2961 2962 2963 2964 2965 2966
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
2967
		}
2968 2969 2970 2971
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type)
2972 2973 2974 2975 2976 2977
			break;

		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
				struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);

2978 2979
		dm = get_waiting_dir_move(sctx, loc.objectid);
		if (dm) {
2980
			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2981 2982 2983 2984 2985
			if (IS_ERR(odi)) {
				ret = PTR_ERR(odi);
				goto out;
			}
			odi->gen = dir_gen;
2986
			odi->last_dir_index_offset = found_key.offset;
2987
			dm->rmdir_ino = dir;
2988
			dm->rmdir_gen = dir_gen;
2989 2990 2991 2992
			ret = 0;
			goto out;
		}

2993
		if (loc.objectid > send_progress) {
2994
			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2995 2996 2997 2998 2999 3000
			if (IS_ERR(odi)) {
				ret = PTR_ERR(odi);
				goto out;
			}
			odi->gen = dir_gen;
			odi->last_dir_index_offset = found_key.offset;
3001 3002 3003 3004
			ret = 0;
			goto out;
		}

3005
		path->slots[0]++;
3006
	}
3007
	free_orphan_dir_info(sctx, odi);
3008 3009 3010 3011 3012 3013 3014 3015

	ret = 1;

out:
	btrfs_free_path(path);
	return ret;
}

3016 3017
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
{
3018
	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3019

3020
	return entry != NULL;
3021 3022
}

3023
static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3024 3025 3026 3027 3028
{
	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
	struct rb_node *parent = NULL;
	struct waiting_dir_move *entry, *dm;

3029
	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3030 3031 3032
	if (!dm)
		return -ENOMEM;
	dm->ino = ino;
3033
	dm->rmdir_ino = 0;
3034
	dm->rmdir_gen = 0;
3035
	dm->orphanized = orphanized;
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct waiting_dir_move, node);
		if (ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			kfree(dm);
			return -EEXIST;
		}
	}

	rb_link_node(&dm->node, parent, p);
	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
	return 0;
}

3055 3056
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3057 3058 3059 3060 3061 3062
{
	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
	struct waiting_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct waiting_dir_move, node);
3063
		if (ino < entry->ino)
3064
			n = n->rb_left;
3065
		else if (ino > entry->ino)
3066
			n = n->rb_right;
3067 3068
		else
			return entry;
3069
	}
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	return NULL;
}

static void free_waiting_dir_move(struct send_ctx *sctx,
				  struct waiting_dir_move *dm)
{
	if (!dm)
		return;
	rb_erase(&dm->node, &sctx->waiting_dir_moves);
	kfree(dm);
3080 3081
}

3082 3083 3084
static int add_pending_dir_move(struct send_ctx *sctx,
				u64 ino,
				u64 ino_gen,
3085 3086
				u64 parent_ino,
				struct list_head *new_refs,
3087 3088
				struct list_head *deleted_refs,
				const bool is_orphan)
3089 3090 3091
{
	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
	struct rb_node *parent = NULL;
C
Chris Mason 已提交
3092
	struct pending_dir_move *entry = NULL, *pm;
3093 3094 3095 3096
	struct recorded_ref *cur;
	int exists = 0;
	int ret;

3097
	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3098 3099 3100
	if (!pm)
		return -ENOMEM;
	pm->parent_ino = parent_ino;
3101 3102
	pm->ino = ino;
	pm->gen = ino_gen;
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	INIT_LIST_HEAD(&pm->list);
	INIT_LIST_HEAD(&pm->update_refs);
	RB_CLEAR_NODE(&pm->node);

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino) {
			p = &(*p)->rb_left;
		} else if (parent_ino > entry->parent_ino) {
			p = &(*p)->rb_right;
		} else {
			exists = 1;
			break;
		}
	}

3120
	list_for_each_entry(cur, deleted_refs, list) {
3121 3122 3123 3124
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}
3125
	list_for_each_entry(cur, new_refs, list) {
3126 3127 3128 3129 3130
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}

3131
	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	if (ret)
		goto out;

	if (exists) {
		list_add_tail(&pm->list, &entry->list);
	} else {
		rb_link_node(&pm->node, parent, p);
		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
	}
	ret = 0;
out:
	if (ret) {
		__free_recorded_refs(&pm->update_refs);
		kfree(pm);
	}
	return ret;
}

static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
						      u64 parent_ino)
{
	struct rb_node *n = sctx->pending_dir_moves.rb_node;
	struct pending_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino)
			n = n->rb_left;
		else if (parent_ino > entry->parent_ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
static int path_loop(struct send_ctx *sctx, struct fs_path *name,
		     u64 ino, u64 gen, u64 *ancestor_ino)
{
	int ret = 0;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	u64 start_ino = ino;

	*ancestor_ino = 0;
	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
		fs_path_reset(name);

3180
		if (is_waiting_for_rm(sctx, ino, gen))
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
			break;
		if (is_waiting_for_move(sctx, ino)) {
			if (*ancestor_ino == 0)
				*ancestor_ino = ino;
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret > 0) {
				ret = 0;
				break;
			}
		}
		if (ret < 0)
			break;
		if (parent_inode == start_ino) {
			ret = 1;
			if (*ancestor_ino == 0)
				*ancestor_ino = ino;
			break;
		}
		ino = parent_inode;
		gen = parent_gen;
	}
	return ret;
}

3210 3211 3212 3213
static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
{
	struct fs_path *from_path = NULL;
	struct fs_path *to_path = NULL;
3214
	struct fs_path *name = NULL;
3215 3216
	u64 orig_progress = sctx->send_progress;
	struct recorded_ref *cur;
3217
	u64 parent_ino, parent_gen;
3218 3219
	struct waiting_dir_move *dm = NULL;
	u64 rmdir_ino = 0;
3220
	u64 rmdir_gen;
3221 3222
	u64 ancestor;
	bool is_orphan;
3223 3224
	int ret;

3225
	name = fs_path_alloc();
3226
	from_path = fs_path_alloc();
3227 3228 3229 3230
	if (!name || !from_path) {
		ret = -ENOMEM;
		goto out;
	}
3231

3232 3233 3234
	dm = get_waiting_dir_move(sctx, pm->ino);
	ASSERT(dm);
	rmdir_ino = dm->rmdir_ino;
3235
	rmdir_gen = dm->rmdir_gen;
3236
	is_orphan = dm->orphanized;
3237
	free_waiting_dir_move(sctx, dm);
3238

3239
	if (is_orphan) {
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		ret = gen_unique_name(sctx, pm->ino,
				      pm->gen, from_path);
	} else {
		ret = get_first_ref(sctx->parent_root, pm->ino,
				    &parent_ino, &parent_gen, name);
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, parent_ino, parent_gen,
				   from_path);
		if (ret < 0)
			goto out;
		ret = fs_path_add_path(from_path, name);
	}
3253 3254
	if (ret < 0)
		goto out;
3255

3256
	sctx->send_progress = sctx->cur_ino + 1;
3257
	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3258 3259
	if (ret < 0)
		goto out;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	if (ret) {
		LIST_HEAD(deleted_refs);
		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
					   &pm->update_refs, &deleted_refs,
					   is_orphan);
		if (ret < 0)
			goto out;
		if (rmdir_ino) {
			dm = get_waiting_dir_move(sctx, pm->ino);
			ASSERT(dm);
			dm->rmdir_ino = rmdir_ino;
3272
			dm->rmdir_gen = rmdir_gen;
3273 3274 3275
		}
		goto out;
	}
3276 3277
	fs_path_reset(name);
	to_path = name;
3278
	name = NULL;
3279 3280 3281 3282 3283 3284 3285 3286
	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, from_path, to_path);
	if (ret < 0)
		goto out;

3287 3288
	if (rmdir_ino) {
		struct orphan_dir_info *odi;
3289
		u64 gen;
3290

3291
		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3292 3293 3294 3295
		if (!odi) {
			/* already deleted */
			goto finish;
		}
3296 3297 3298
		gen = odi->gen;

		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		if (ret < 0)
			goto out;
		if (!ret)
			goto finish;

		name = fs_path_alloc();
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
3309
		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3310 3311 3312 3313 3314 3315 3316 3317
		if (ret < 0)
			goto out;
		ret = send_rmdir(sctx, name);
		if (ret < 0)
			goto out;
	}

finish:
3318 3319 3320 3321 3322 3323 3324 3325 3326
	ret = send_utimes(sctx, pm->ino, pm->gen);
	if (ret < 0)
		goto out;

	/*
	 * After rename/move, need to update the utimes of both new parent(s)
	 * and old parent(s).
	 */
	list_for_each_entry(cur, &pm->update_refs, list) {
3327 3328 3329 3330 3331 3332 3333
		/*
		 * The parent inode might have been deleted in the send snapshot
		 */
		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
				     NULL, NULL, NULL, NULL, NULL);
		if (ret == -ENOENT) {
			ret = 0;
3334
			continue;
3335 3336 3337 3338
		}
		if (ret < 0)
			goto out;

3339 3340 3341 3342 3343 3344
		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
	}

out:
3345
	fs_path_free(name);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	fs_path_free(from_path);
	fs_path_free(to_path);
	sctx->send_progress = orig_progress;

	return ret;
}

static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
{
	if (!list_empty(&m->list))
		list_del(&m->list);
	if (!RB_EMPTY_NODE(&m->node))
		rb_erase(&m->node, &sctx->pending_dir_moves);
	__free_recorded_refs(&m->update_refs);
	kfree(m);
}

3363 3364
static void tail_append_pending_moves(struct send_ctx *sctx,
				      struct pending_dir_move *moves,
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
				      struct list_head *stack)
{
	if (list_empty(&moves->list)) {
		list_add_tail(&moves->list, stack);
	} else {
		LIST_HEAD(list);
		list_splice_init(&moves->list, &list);
		list_add_tail(&moves->list, stack);
		list_splice_tail(&list, stack);
	}
3375 3376 3377 3378
	if (!RB_EMPTY_NODE(&moves->node)) {
		rb_erase(&moves->node, &sctx->pending_dir_moves);
		RB_CLEAR_NODE(&moves->node);
	}
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
}

static int apply_children_dir_moves(struct send_ctx *sctx)
{
	struct pending_dir_move *pm;
	struct list_head stack;
	u64 parent_ino = sctx->cur_ino;
	int ret = 0;

	pm = get_pending_dir_moves(sctx, parent_ino);
	if (!pm)
		return 0;

	INIT_LIST_HEAD(&stack);
3393
	tail_append_pending_moves(sctx, pm, &stack);
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		parent_ino = pm->ino;
		ret = apply_dir_move(sctx, pm);
		free_pending_move(sctx, pm);
		if (ret)
			goto out;
		pm = get_pending_dir_moves(sctx, parent_ino);
		if (pm)
3404
			tail_append_pending_moves(sctx, pm, &stack);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	}
	return 0;

out:
	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		free_pending_move(sctx, pm);
	}
	return ret;
}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
/*
 * We might need to delay a directory rename even when no ancestor directory
 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
 * renamed. This happens when we rename a directory to the old name (the name
 * in the parent root) of some other unrelated directory that got its rename
 * delayed due to some ancestor with higher number that got renamed.
 *
 * Example:
 *
 * Parent snapshot:
 * .                                       (ino 256)
 * |---- a/                                (ino 257)
 * |     |---- file                        (ino 260)
 * |
 * |---- b/                                (ino 258)
 * |---- c/                                (ino 259)
 *
 * Send snapshot:
 * .                                       (ino 256)
 * |---- a/                                (ino 258)
 * |---- x/                                (ino 259)
 *       |---- y/                          (ino 257)
 *             |----- file                 (ino 260)
 *
 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
 * must issue is:
 *
 * 1 - rename 259 from 'c' to 'x'
 * 2 - rename 257 from 'a' to 'x/y'
 * 3 - rename 258 from 'b' to 'a'
 *
 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
 * be done right away and < 0 on error.
 */
static int wait_for_dest_dir_move(struct send_ctx *sctx,
				  struct recorded_ref *parent_ref,
				  const bool is_orphan)
{
3456
	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3457 3458 3459 3460 3461 3462 3463
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key di_key;
	struct btrfs_dir_item *di;
	u64 left_gen;
	u64 right_gen;
	int ret = 0;
3464
	struct waiting_dir_move *wdm;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
		return 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = parent_ref->dir;
	key.type = BTRFS_DIR_ITEM_KEY;
	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);

	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
	if (ret < 0) {
		goto out;
	} else if (ret > 0) {
		ret = 0;
		goto out;
	}

3485 3486
	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
				       parent_ref->name_len);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	if (!di) {
		ret = 0;
		goto out;
	}
	/*
	 * di_key.objectid has the number of the inode that has a dentry in the
	 * parent directory with the same name that sctx->cur_ino is being
	 * renamed to. We need to check if that inode is in the send root as
	 * well and if it is currently marked as an inode with a pending rename,
	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
	 * that it happens after that other inode is renamed.
	 */
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
			     &left_gen, NULL, NULL, NULL, NULL);
	if (ret < 0)
		goto out;
	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
			     &right_gen, NULL, NULL, NULL, NULL);
	if (ret < 0) {
		if (ret == -ENOENT)
			ret = 0;
		goto out;
	}

	/* Different inode, no need to delay the rename of sctx->cur_ino */
	if (right_gen != left_gen) {
		ret = 0;
		goto out;
	}

3523 3524
	wdm = get_waiting_dir_move(sctx, di_key.objectid);
	if (wdm && !wdm->orphanized) {
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
		ret = add_pending_dir_move(sctx,
					   sctx->cur_ino,
					   sctx->cur_inode_gen,
					   di_key.objectid,
					   &sctx->new_refs,
					   &sctx->deleted_refs,
					   is_orphan);
		if (!ret)
			ret = 1;
	}
out:
	btrfs_free_path(path);
	return ret;
}

3540
/*
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
 * Check if inode ino2, or any of its ancestors, is inode ino1.
 * Return 1 if true, 0 if false and < 0 on error.
 */
static int check_ino_in_path(struct btrfs_root *root,
			     const u64 ino1,
			     const u64 ino1_gen,
			     const u64 ino2,
			     const u64 ino2_gen,
			     struct fs_path *fs_path)
{
	u64 ino = ino2;

	if (ino1 == ino2)
		return ino1_gen == ino2_gen;

	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
		u64 parent;
		u64 parent_gen;
		int ret;

		fs_path_reset(fs_path);
		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
		if (ret < 0)
			return ret;
		if (parent == ino1)
			return parent_gen == ino1_gen;
		ino = parent;
	}
	return 0;
}

/*
 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
 * possible path (in case ino2 is not a directory and has multiple hard links).
3575 3576 3577 3578 3579 3580 3581 3582
 * Return 1 if true, 0 if false and < 0 on error.
 */
static int is_ancestor(struct btrfs_root *root,
		       const u64 ino1,
		       const u64 ino1_gen,
		       const u64 ino2,
		       struct fs_path *fs_path)
{
3583
	bool free_fs_path = false;
3584
	int ret = 0;
3585 3586
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
3587 3588 3589 3590 3591

	if (!fs_path) {
		fs_path = fs_path_alloc();
		if (!fs_path)
			return -ENOMEM;
3592
		free_fs_path = true;
3593
	}
3594

3595 3596 3597 3598 3599
	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	key.objectid = ino2;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		u32 cur_offset = 0;
		u32 item_size;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			if (ret > 0)
				break;
			continue;
3622
		}
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid != ino2)
			break;
		if (key.type != BTRFS_INODE_REF_KEY &&
		    key.type != BTRFS_INODE_EXTREF_KEY)
			break;

		item_size = btrfs_item_size_nr(leaf, slot);
		while (cur_offset < item_size) {
			u64 parent;
			u64 parent_gen;

			if (key.type == BTRFS_INODE_EXTREF_KEY) {
				unsigned long ptr;
				struct btrfs_inode_extref *extref;

				ptr = btrfs_item_ptr_offset(leaf, slot);
				extref = (struct btrfs_inode_extref *)
					(ptr + cur_offset);
				parent = btrfs_inode_extref_parent(leaf,
								   extref);
				cur_offset += sizeof(*extref);
				cur_offset += btrfs_inode_extref_name_len(leaf,
								  extref);
			} else {
				parent = key.offset;
				cur_offset = item_size;
			}

			ret = get_inode_info(root, parent, NULL, &parent_gen,
					     NULL, NULL, NULL, NULL);
			if (ret < 0)
				goto out;
			ret = check_ino_in_path(root, ino1, ino1_gen,
						parent, parent_gen, fs_path);
			if (ret)
				goto out;
3661
		}
3662
		path->slots[0]++;
3663
	}
3664
	ret = 0;
3665
 out:
3666 3667
	btrfs_free_path(path);
	if (free_fs_path)
3668 3669
		fs_path_free(fs_path);
	return ret;
3670 3671
}

3672
static int wait_for_parent_move(struct send_ctx *sctx,
3673 3674
				struct recorded_ref *parent_ref,
				const bool is_orphan)
3675
{
3676
	int ret = 0;
3677
	u64 ino = parent_ref->dir;
3678
	u64 ino_gen = parent_ref->dir_gen;
3679 3680 3681 3682 3683 3684
	u64 parent_ino_before, parent_ino_after;
	struct fs_path *path_before = NULL;
	struct fs_path *path_after = NULL;
	int len1, len2;

	path_after = fs_path_alloc();
3685 3686
	path_before = fs_path_alloc();
	if (!path_after || !path_before) {
3687 3688 3689 3690
		ret = -ENOMEM;
		goto out;
	}

3691
	/*
3692 3693 3694
	 * Our current directory inode may not yet be renamed/moved because some
	 * ancestor (immediate or not) has to be renamed/moved first. So find if
	 * such ancestor exists and make sure our own rename/move happens after
3695 3696
	 * that ancestor is processed to avoid path build infinite loops (done
	 * at get_cur_path()).
3697
	 */
3698
	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3699 3700
		u64 parent_ino_after_gen;

3701
		if (is_waiting_for_move(sctx, ino)) {
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
			/*
			 * If the current inode is an ancestor of ino in the
			 * parent root, we need to delay the rename of the
			 * current inode, otherwise don't delayed the rename
			 * because we can end up with a circular dependency
			 * of renames, resulting in some directories never
			 * getting the respective rename operations issued in
			 * the send stream or getting into infinite path build
			 * loops.
			 */
			ret = is_ancestor(sctx->parent_root,
					  sctx->cur_ino, sctx->cur_inode_gen,
					  ino, path_before);
3715 3716
			if (ret)
				break;
3717
		}
3718 3719 3720 3721 3722

		fs_path_reset(path_before);
		fs_path_reset(path_after);

		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3723
				    &parent_ino_after_gen, path_after);
3724 3725 3726 3727
		if (ret < 0)
			goto out;
		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
				    NULL, path_before);
3728
		if (ret < 0 && ret != -ENOENT) {
3729
			goto out;
3730
		} else if (ret == -ENOENT) {
3731
			ret = 0;
3732
			break;
3733 3734 3735 3736
		}

		len1 = fs_path_len(path_before);
		len2 = fs_path_len(path_after);
3737 3738 3739
		if (ino > sctx->cur_ino &&
		    (parent_ino_before != parent_ino_after || len1 != len2 ||
		     memcmp(path_before->start, path_after->start, len1))) {
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
			u64 parent_ino_gen;

			ret = get_inode_info(sctx->parent_root, ino, NULL,
					     &parent_ino_gen, NULL, NULL, NULL,
					     NULL);
			if (ret < 0)
				goto out;
			if (ino_gen == parent_ino_gen) {
				ret = 1;
				break;
			}
3751 3752
		}
		ino = parent_ino_after;
3753
		ino_gen = parent_ino_after_gen;
3754 3755
	}

3756 3757 3758 3759
out:
	fs_path_free(path_before);
	fs_path_free(path_after);

3760 3761 3762 3763 3764 3765
	if (ret == 1) {
		ret = add_pending_dir_move(sctx,
					   sctx->cur_ino,
					   sctx->cur_inode_gen,
					   ino,
					   &sctx->new_refs,
3766
					   &sctx->deleted_refs,
3767
					   is_orphan);
3768 3769 3770 3771
		if (!ret)
			ret = 1;
	}

3772 3773 3774
	return ret;
}

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
{
	int ret;
	struct fs_path *new_path;

	/*
	 * Our reference's name member points to its full_path member string, so
	 * we use here a new path.
	 */
	new_path = fs_path_alloc();
	if (!new_path)
		return -ENOMEM;

	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
	if (ret < 0) {
		fs_path_free(new_path);
		return ret;
	}
	ret = fs_path_add(new_path, ref->name, ref->name_len);
	if (ret < 0) {
		fs_path_free(new_path);
		return ret;
	}

	fs_path_free(ref->full_path);
	set_ref_path(ref, new_path);

	return 0;
}

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
/*
 * When processing the new references for an inode we may orphanize an existing
 * directory inode because its old name conflicts with one of the new references
 * of the current inode. Later, when processing another new reference of our
 * inode, we might need to orphanize another inode, but the path we have in the
 * reference reflects the pre-orphanization name of the directory we previously
 * orphanized. For example:
 *
 * parent snapshot looks like:
 *
 * .                                     (ino 256)
 * |----- f1                             (ino 257)
 * |----- f2                             (ino 258)
 * |----- d1/                            (ino 259)
 *        |----- d2/                     (ino 260)
 *
 * send snapshot looks like:
 *
 * .                                     (ino 256)
 * |----- d1                             (ino 258)
 * |----- f2/                            (ino 259)
 *        |----- f2_link/                (ino 260)
 *        |       |----- f1              (ino 257)
 *        |
 *        |----- d2                      (ino 258)
 *
 * When processing inode 257 we compute the name for inode 259 as "d1", and we
 * cache it in the name cache. Later when we start processing inode 258, when
 * collecting all its new references we set a full path of "d1/d2" for its new
 * reference with name "d2". When we start processing the new references we
 * start by processing the new reference with name "d1", and this results in
 * orphanizing inode 259, since its old reference causes a conflict. Then we
 * move on the next new reference, with name "d2", and we find out we must
 * orphanize inode 260, as its old reference conflicts with ours - but for the
 * orphanization we use a source path corresponding to the path we stored in the
 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
 * receiver fail since the path component "d1/" no longer exists, it was renamed
 * to "o259-6-0/" when processing the previous new reference. So in this case we
 * must recompute the path in the new reference and use it for the new
 * orphanization operation.
 */
static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
{
	char *name;
	int ret;

	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
	if (!name)
		return -ENOMEM;

	fs_path_reset(ref->full_path);
	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
	if (ret < 0)
		goto out;

	ret = fs_path_add(ref->full_path, name, ref->name_len);
	if (ret < 0)
		goto out;

	/* Update the reference's base name pointer. */
	set_ref_path(ref, ref->full_path);
out:
	kfree(name);
	return ret;
}

3871 3872 3873
/*
 * This does all the move/link/unlink/rmdir magic.
 */
3874
static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3875
{
3876
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3877 3878
	int ret = 0;
	struct recorded_ref *cur;
3879
	struct recorded_ref *cur2;
3880
	struct list_head check_dirs;
3881
	struct fs_path *valid_path = NULL;
3882
	u64 ow_inode = 0;
3883
	u64 ow_gen;
3884
	u64 ow_mode;
3885 3886
	int did_overwrite = 0;
	int is_orphan = 0;
3887
	u64 last_dir_ino_rm = 0;
3888
	bool can_rename = true;
3889
	bool orphanized_dir = false;
3890
	bool orphanized_ancestor = false;
3891

3892
	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3893

3894 3895 3896 3897 3898
	/*
	 * This should never happen as the root dir always has the same ref
	 * which is always '..'
	 */
	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3899
	INIT_LIST_HEAD(&check_dirs);
3900

3901
	valid_path = fs_path_alloc();
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	if (!valid_path) {
		ret = -ENOMEM;
		goto out;
	}

	/*
	 * First, check if the first ref of the current inode was overwritten
	 * before. If yes, we know that the current inode was already orphanized
	 * and thus use the orphan name. If not, we can use get_cur_path to
	 * get the path of the first ref as it would like while receiving at
	 * this point in time.
	 * New inodes are always orphan at the beginning, so force to use the
	 * orphan name in this case.
	 * The first ref is stored in valid_path and will be updated if it
	 * gets moved around.
	 */
	if (!sctx->cur_inode_new) {
		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
				sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
		if (ret)
			did_overwrite = 1;
	}
	if (sctx->cur_inode_new || did_overwrite) {
		ret = gen_unique_name(sctx, sctx->cur_ino,
				sctx->cur_inode_gen, valid_path);
		if (ret < 0)
			goto out;
		is_orphan = 1;
	} else {
		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				valid_path);
		if (ret < 0)
			goto out;
	}

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	/*
	 * Before doing any rename and link operations, do a first pass on the
	 * new references to orphanize any unprocessed inodes that may have a
	 * reference that conflicts with one of the new references of the current
	 * inode. This needs to happen first because a new reference may conflict
	 * with the old reference of a parent directory, so we must make sure
	 * that the path used for link and rename commands don't use an
	 * orphanized name when an ancestor was not yet orphanized.
	 *
	 * Example:
	 *
	 * Parent snapshot:
	 *
	 * .                                                      (ino 256)
	 * |----- testdir/                                        (ino 259)
	 * |          |----- a                                    (ino 257)
	 * |
	 * |----- b                                               (ino 258)
	 *
	 * Send snapshot:
	 *
	 * .                                                      (ino 256)
	 * |----- testdir_2/                                      (ino 259)
	 * |          |----- a                                    (ino 260)
	 * |
	 * |----- testdir                                         (ino 257)
	 * |----- b                                               (ino 257)
	 * |----- b2                                              (ino 258)
	 *
	 * Processing the new reference for inode 257 with name "b" may happen
	 * before processing the new reference with name "testdir". If so, we
	 * must make sure that by the time we send a link command to create the
	 * hard link "b", inode 259 was already orphanized, since the generated
	 * path in "valid_path" already contains the orphanized name for 259.
	 * We are processing inode 257, so only later when processing 259 we do
	 * the rename operation to change its temporary (orphanized) name to
	 * "testdir_2".
	 */
3977
	list_for_each_entry(cur, &sctx->new_refs, list) {
3978 3979 3980
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
3981 3982
		if (ret == inode_state_will_create)
			continue;
3983

3984
		/*
3985 3986 3987 3988
		 * Check if this new ref would overwrite the first ref of another
		 * unprocessed inode. If yes, orphanize the overwritten inode.
		 * If we find an overwritten ref that is not the first ref,
		 * simply unlink it.
3989 3990 3991
		 */
		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
				cur->name, cur->name_len,
3992
				&ow_inode, &ow_gen, &ow_mode);
3993 3994 3995
		if (ret < 0)
			goto out;
		if (ret) {
3996 3997 3998
			ret = is_first_ref(sctx->parent_root,
					   ow_inode, cur->dir, cur->name,
					   cur->name_len);
3999 4000 4001
			if (ret < 0)
				goto out;
			if (ret) {
4002
				struct name_cache_entry *nce;
4003
				struct waiting_dir_move *wdm;
4004

4005 4006 4007 4008 4009 4010
				if (orphanized_dir) {
					ret = refresh_ref_path(sctx, cur);
					if (ret < 0)
						goto out;
				}

4011 4012 4013 4014
				ret = orphanize_inode(sctx, ow_inode, ow_gen,
						cur->full_path);
				if (ret < 0)
					goto out;
4015 4016
				if (S_ISDIR(ow_mode))
					orphanized_dir = true;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

				/*
				 * If ow_inode has its rename operation delayed
				 * make sure that its orphanized name is used in
				 * the source path when performing its rename
				 * operation.
				 */
				if (is_waiting_for_move(sctx, ow_inode)) {
					wdm = get_waiting_dir_move(sctx,
								   ow_inode);
					ASSERT(wdm);
					wdm->orphanized = true;
				}

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
				/*
				 * Make sure we clear our orphanized inode's
				 * name from the name cache. This is because the
				 * inode ow_inode might be an ancestor of some
				 * other inode that will be orphanized as well
				 * later and has an inode number greater than
				 * sctx->send_progress. We need to prevent
				 * future name lookups from using the old name
				 * and get instead the orphan name.
				 */
				nce = name_cache_search(sctx, ow_inode, ow_gen);
				if (nce) {
					name_cache_delete(sctx, nce);
					kfree(nce);
				}
4046 4047 4048 4049 4050 4051 4052 4053

				/*
				 * ow_inode might currently be an ancestor of
				 * cur_ino, therefore compute valid_path (the
				 * current path of cur_ino) again because it
				 * might contain the pre-orphanization name of
				 * ow_inode, which is no longer valid.
				 */
4054 4055 4056 4057
				ret = is_ancestor(sctx->parent_root,
						  ow_inode, ow_gen,
						  sctx->cur_ino, NULL);
				if (ret > 0) {
4058
					orphanized_ancestor = true;
4059 4060 4061 4062 4063
					fs_path_reset(valid_path);
					ret = get_cur_path(sctx, sctx->cur_ino,
							   sctx->cur_inode_gen,
							   valid_path);
				}
4064 4065
				if (ret < 0)
					goto out;
4066 4067 4068 4069 4070 4071 4072
			} else {
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
			}
		}

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	}

	list_for_each_entry(cur, &sctx->new_refs, list) {
		/*
		 * We may have refs where the parent directory does not exist
		 * yet. This happens if the parent directories inum is higher
		 * than the current inum. To handle this case, we create the
		 * parent directory out of order. But we need to check if this
		 * did already happen before due to other refs in the same dir.
		 */
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
		if (ret == inode_state_will_create) {
			ret = 0;
			/*
			 * First check if any of the current inodes refs did
			 * already create the dir.
			 */
			list_for_each_entry(cur2, &sctx->new_refs, list) {
				if (cur == cur2)
					break;
				if (cur2->dir == cur->dir) {
					ret = 1;
					break;
				}
			}

			/*
			 * If that did not happen, check if a previous inode
			 * did already create the dir.
			 */
			if (!ret)
				ret = did_create_dir(sctx, cur->dir);
			if (ret < 0)
				goto out;
			if (!ret) {
				ret = send_create_inode(sctx, cur->dir);
				if (ret < 0)
					goto out;
			}
		}

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
			if (ret < 0)
				goto out;
			if (ret == 1) {
				can_rename = false;
				*pending_move = 1;
			}
		}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
		    can_rename) {
			ret = wait_for_parent_move(sctx, cur, is_orphan);
			if (ret < 0)
				goto out;
			if (ret == 1) {
				can_rename = false;
				*pending_move = 1;
			}
		}

4137 4138 4139 4140 4141
		/*
		 * link/move the ref to the new place. If we have an orphan
		 * inode, move it and update valid_path. If not, link or move
		 * it depending on the inode mode.
		 */
4142
		if (is_orphan && can_rename) {
4143 4144 4145 4146 4147 4148 4149
			ret = send_rename(sctx, valid_path, cur->full_path);
			if (ret < 0)
				goto out;
			is_orphan = 0;
			ret = fs_path_copy(valid_path, cur->full_path);
			if (ret < 0)
				goto out;
4150
		} else if (can_rename) {
4151 4152 4153 4154 4155 4156
			if (S_ISDIR(sctx->cur_inode_mode)) {
				/*
				 * Dirs can't be linked, so move it. For moved
				 * dirs, we always have one new and one deleted
				 * ref. The deleted ref is ignored later.
				 */
4157 4158 4159 4160 4161
				ret = send_rename(sctx, valid_path,
						  cur->full_path);
				if (!ret)
					ret = fs_path_copy(valid_path,
							   cur->full_path);
4162 4163 4164
				if (ret < 0)
					goto out;
			} else {
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
				/*
				 * We might have previously orphanized an inode
				 * which is an ancestor of our current inode,
				 * so our reference's full path, which was
				 * computed before any such orphanizations, must
				 * be updated.
				 */
				if (orphanized_dir) {
					ret = update_ref_path(sctx, cur);
					if (ret < 0)
						goto out;
				}
4177 4178 4179 4180 4181 4182
				ret = send_link(sctx, cur->full_path,
						valid_path);
				if (ret < 0)
					goto out;
			}
		}
4183
		ret = dup_ref(cur, &check_dirs);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		if (ret < 0)
			goto out;
	}

	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
		/*
		 * Check if we can already rmdir the directory. If not,
		 * orphanize it. For every dir item inside that gets deleted
		 * later, we do this check again and rmdir it then if possible.
		 * See the use of check_dirs for more details.
		 */
4195 4196
		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				sctx->cur_ino);
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		if (ret < 0)
			goto out;
		if (ret) {
			ret = send_rmdir(sctx, valid_path);
			if (ret < 0)
				goto out;
		} else if (!is_orphan) {
			ret = orphanize_inode(sctx, sctx->cur_ino,
					sctx->cur_inode_gen, valid_path);
			if (ret < 0)
				goto out;
			is_orphan = 1;
		}

		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4212
			ret = dup_ref(cur, &check_dirs);
4213 4214 4215
			if (ret < 0)
				goto out;
		}
4216 4217 4218 4219 4220 4221 4222
	} else if (S_ISDIR(sctx->cur_inode_mode) &&
		   !list_empty(&sctx->deleted_refs)) {
		/*
		 * We have a moved dir. Add the old parent to check_dirs
		 */
		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
				list);
4223
		ret = dup_ref(cur, &check_dirs);
4224 4225
		if (ret < 0)
			goto out;
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
		/*
		 * We have a non dir inode. Go through all deleted refs and
		 * unlink them if they were not already overwritten by other
		 * inodes.
		 */
		list_for_each_entry(cur, &sctx->deleted_refs, list) {
			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino, sctx->cur_inode_gen,
					cur->name, cur->name_len);
			if (ret < 0)
				goto out;
			if (!ret) {
4239 4240 4241 4242 4243 4244 4245 4246
				/*
				 * If we orphanized any ancestor before, we need
				 * to recompute the full path for deleted names,
				 * since any such path was computed before we
				 * processed any references and orphanized any
				 * ancestor inode.
				 */
				if (orphanized_ancestor) {
4247 4248
					ret = update_ref_path(sctx, cur);
					if (ret < 0)
4249 4250
						goto out;
				}
4251 4252 4253
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
4254
			}
4255
			ret = dup_ref(cur, &check_dirs);
4256 4257 4258 4259 4260 4261 4262
			if (ret < 0)
				goto out;
		}
		/*
		 * If the inode is still orphan, unlink the orphan. This may
		 * happen when a previous inode did overwrite the first ref
		 * of this inode and no new refs were added for the current
4263 4264 4265
		 * inode. Unlinking does not mean that the inode is deleted in
		 * all cases. There may still be links to this inode in other
		 * places.
4266
		 */
4267
		if (is_orphan) {
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
			ret = send_unlink(sctx, valid_path);
			if (ret < 0)
				goto out;
		}
	}

	/*
	 * We did collect all parent dirs where cur_inode was once located. We
	 * now go through all these dirs and check if they are pending for
	 * deletion and if it's finally possible to perform the rmdir now.
	 * We also update the inode stats of the parent dirs here.
	 */
4280
	list_for_each_entry(cur, &check_dirs, list) {
4281 4282 4283 4284 4285
		/*
		 * In case we had refs into dirs that were not processed yet,
		 * we don't need to do the utime and rmdir logic for these dirs.
		 * The dir will be processed later.
		 */
4286
		if (cur->dir > sctx->cur_ino)
4287 4288
			continue;

4289
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4290 4291 4292 4293 4294 4295
		if (ret < 0)
			goto out;

		if (ret == inode_state_did_create ||
		    ret == inode_state_no_change) {
			/* TODO delayed utimes */
4296
			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4297 4298
			if (ret < 0)
				goto out;
4299 4300
		} else if (ret == inode_state_did_delete &&
			   cur->dir != last_dir_ino_rm) {
4301 4302
			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino);
4303 4304 4305
			if (ret < 0)
				goto out;
			if (ret) {
4306 4307
				ret = get_cur_path(sctx, cur->dir,
						   cur->dir_gen, valid_path);
4308 4309 4310 4311 4312
				if (ret < 0)
					goto out;
				ret = send_rmdir(sctx, valid_path);
				if (ret < 0)
					goto out;
4313
				last_dir_ino_rm = cur->dir;
4314 4315 4316 4317 4318 4319 4320
			}
		}
	}

	ret = 0;

out:
4321
	__free_recorded_refs(&check_dirs);
4322
	free_recorded_refs(sctx);
4323
	fs_path_free(valid_path);
4324 4325 4326
	return ret;
}

4327 4328
static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
		      void *ctx, struct list_head *refs)
4329 4330 4331 4332 4333 4334
{
	int ret = 0;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
	u64 gen;

4335
	p = fs_path_alloc();
4336 4337 4338
	if (!p)
		return -ENOMEM;

4339
	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4340
			NULL, NULL);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, dir, gen, p);
	if (ret < 0)
		goto out;
	ret = fs_path_add_path(p, name);
	if (ret < 0)
		goto out;

4351
	ret = __record_ref(refs, dir, gen, p);
4352 4353 4354

out:
	if (ret)
4355
		fs_path_free(p);
4356 4357 4358
	return ret;
}

4359 4360 4361 4362 4363
static int __record_new_ref(int num, u64 dir, int index,
			    struct fs_path *name,
			    void *ctx)
{
	struct send_ctx *sctx = ctx;
4364
	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4365 4366 4367
}


4368 4369 4370 4371 4372
static int __record_deleted_ref(int num, u64 dir, int index,
				struct fs_path *name,
				void *ctx)
{
	struct send_ctx *sctx = ctx;
4373 4374
	return record_ref(sctx->parent_root, dir, name, ctx,
			  &sctx->deleted_refs);
4375 4376 4377 4378 4379 4380
}

static int record_new_ref(struct send_ctx *sctx)
{
	int ret;

4381 4382
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
				sctx->cmp_key, 0, __record_new_ref, sctx);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

static int record_deleted_ref(struct send_ctx *sctx)
{
	int ret;

4395 4396
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

struct find_ref_ctx {
	u64 dir;
4407 4408
	u64 dir_gen;
	struct btrfs_root *root;
4409 4410 4411 4412 4413 4414 4415 4416 4417
	struct fs_path *name;
	int found_idx;
};

static int __find_iref(int num, u64 dir, int index,
		       struct fs_path *name,
		       void *ctx_)
{
	struct find_ref_ctx *ctx = ctx_;
4418 4419
	u64 dir_gen;
	int ret;
4420 4421 4422

	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		/*
		 * To avoid doing extra lookups we'll only do this if everything
		 * else matches.
		 */
		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret)
			return ret;
		if (dir_gen != ctx->dir_gen)
			return 0;
4433 4434 4435 4436 4437 4438
		ctx->found_idx = num;
		return 1;
	}
	return 0;
}

4439
static int find_iref(struct btrfs_root *root,
4440 4441
		     struct btrfs_path *path,
		     struct btrfs_key *key,
4442
		     u64 dir, u64 dir_gen, struct fs_path *name)
4443 4444 4445 4446 4447 4448
{
	int ret;
	struct find_ref_ctx ctx;

	ctx.dir = dir;
	ctx.name = name;
4449
	ctx.dir_gen = dir_gen;
4450
	ctx.found_idx = -1;
4451
	ctx.root = root;
4452

4453
	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;

	return ctx.found_idx;
}

static int __record_changed_new_ref(int num, u64 dir, int index,
				    struct fs_path *name,
				    void *ctx)
{
4467
	u64 dir_gen;
4468 4469 4470
	int ret;
	struct send_ctx *sctx = ctx;

4471 4472 4473 4474 4475
	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

4476
	ret = find_iref(sctx->parent_root, sctx->right_path,
4477
			sctx->cmp_key, dir, dir_gen, name);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	if (ret == -ENOENT)
		ret = __record_new_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int __record_changed_deleted_ref(int num, u64 dir, int index,
					struct fs_path *name,
					void *ctx)
{
4490
	u64 dir_gen;
4491 4492 4493
	int ret;
	struct send_ctx *sctx = ctx;

4494 4495 4496 4497 4498
	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

4499
	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4500
			dir, dir_gen, name);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	if (ret == -ENOENT)
		ret = __record_deleted_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int record_changed_ref(struct send_ctx *sctx)
{
	int ret = 0;

4513
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4514 4515 4516
			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
	if (ret < 0)
		goto out;
4517
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

/*
 * Record and process all refs at once. Needed when an inode changes the
 * generation number, which means that it was deleted and recreated.
 */
static int process_all_refs(struct send_ctx *sctx,
			    enum btrfs_compare_tree_result cmd)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;
	iterate_inode_ref_t cb;
4542
	int pending_move = 0;
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	if (cmd == BTRFS_COMPARE_TREE_NEW) {
		root = sctx->send_root;
		cb = __record_new_ref;
	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
		root = sctx->parent_root;
		cb = __record_deleted_ref;
	} else {
4555 4556 4557 4558
		btrfs_err(sctx->send_root->fs_info,
				"Wrong command %d in process_all_refs", cmd);
		ret = -EINVAL;
		goto out;
4559 4560 4561 4562 4563
	}

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
4564 4565 4566
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4567

4568
	while (1) {
4569 4570
		eb = path->nodes[0];
		slot = path->slots[0];
4571 4572 4573 4574 4575 4576 4577 4578 4579
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

4580 4581 4582
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
4583 4584
		    (found_key.type != BTRFS_INODE_REF_KEY &&
		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4585 4586
			break;

4587
		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4588 4589 4590
		if (ret < 0)
			goto out;

4591
		path->slots[0]++;
4592
	}
4593
	btrfs_release_path(path);
4594

4595 4596 4597 4598 4599
	/*
	 * We don't actually care about pending_move as we are simply
	 * re-creating this inode and will be rename'ing it into place once we
	 * rename the parent directory.
	 */
4600
	ret = process_recorded_refs(sctx, &pending_move);
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
out:
	btrfs_free_path(path);
	return ret;
}

static int send_set_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len,
			  const char *data, int data_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int send_remove_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int __process_new_xattr(int num, struct btrfs_key *di_key,
			       const char *name, int name_len,
			       const char *data, int data_len,
			       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
4656
	struct posix_acl_xattr_header dummy_acl;
4657

4658 4659 4660 4661
	/* Capabilities are emitted by finish_inode_if_needed */
	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
		return 0;

4662
	p = fs_path_alloc();
4663 4664 4665 4666
	if (!p)
		return -ENOMEM;

	/*
4667
	 * This hack is needed because empty acls are stored as zero byte
4668
	 * data in xattrs. Problem with that is, that receiving these zero byte
4669
	 * acls will fail later. To fix this, we send a dummy acl list that
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	 * only contains the version number and no entries.
	 */
	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
		if (data_len == 0) {
			dummy_acl.a_version =
					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
			data = (char *)&dummy_acl;
			data_len = sizeof(dummy_acl);
		}
	}

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);

out:
4689
	fs_path_free(p);
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	return ret;
}

static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
				   const char *name, int name_len,
				   const char *data, int data_len,
				   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;

4702
	p = fs_path_alloc();
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	if (!p)
		return -ENOMEM;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_remove_xattr(sctx, p, name, name_len);

out:
4713
	fs_path_free(p);
4714 4715 4716 4717 4718 4719 4720
	return ret;
}

static int process_new_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4721
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4722
			       __process_new_xattr, sctx);
4723 4724 4725 4726 4727 4728

	return ret;
}

static int process_deleted_xattr(struct send_ctx *sctx)
{
4729
	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4730
				__process_deleted_xattr, sctx);
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
}

struct find_xattr_ctx {
	const char *name;
	int name_len;
	int found_idx;
	char *found_data;
	int found_data_len;
};

static int __find_xattr(int num, struct btrfs_key *di_key,
			const char *name, int name_len,
			const char *data, int data_len,
			u8 type, void *vctx)
{
	struct find_xattr_ctx *ctx = vctx;

	if (name_len == ctx->name_len &&
	    strncmp(name, ctx->name, name_len) == 0) {
		ctx->found_idx = num;
		ctx->found_data_len = data_len;
4752
		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4753 4754 4755 4756 4757 4758 4759
		if (!ctx->found_data)
			return -ENOMEM;
		return 1;
	}
	return 0;
}

4760
static int find_xattr(struct btrfs_root *root,
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		      struct btrfs_path *path,
		      struct btrfs_key *key,
		      const char *name, int name_len,
		      char **data, int *data_len)
{
	int ret;
	struct find_xattr_ctx ctx;

	ctx.name = name;
	ctx.name_len = name_len;
	ctx.found_idx = -1;
	ctx.found_data = NULL;
	ctx.found_data_len = 0;

4775
	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;
	if (data) {
		*data = ctx.found_data;
		*data_len = ctx.found_data_len;
	} else {
		kfree(ctx.found_data);
	}
	return ctx.found_idx;
}


static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
				       const char *name, int name_len,
				       const char *data, int data_len,
				       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	char *found_data = NULL;
	int found_data_len  = 0;

4801 4802 4803
	ret = find_xattr(sctx->parent_root, sctx->right_path,
			 sctx->cmp_key, name, name_len, &found_data,
			 &found_data_len);
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	if (ret == -ENOENT) {
		ret = __process_new_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	} else if (ret >= 0) {
		if (data_len != found_data_len ||
		    memcmp(data, found_data, data_len)) {
			ret = __process_new_xattr(num, di_key, name, name_len,
					data, data_len, type, ctx);
		} else {
			ret = 0;
		}
	}

	kfree(found_data);
	return ret;
}

static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
					   const char *name, int name_len,
					   const char *data, int data_len,
					   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;

4829 4830
	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
			 name, name_len, NULL, NULL);
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	if (ret == -ENOENT)
		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	else if (ret >= 0)
		ret = 0;

	return ret;
}

static int process_changed_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4844
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4845
			__process_changed_new_xattr, sctx);
4846 4847
	if (ret < 0)
		goto out;
4848
	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4849
			__process_changed_deleted_xattr, sctx);
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873

out:
	return ret;
}

static int process_all_new_xattrs(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	root = sctx->send_root;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;
4874 4875 4876
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4877

4878
	while (1) {
4879 4880
		eb = path->nodes[0];
		slot = path->slots[0];
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}
4891

4892
		btrfs_item_key_to_cpu(eb, &found_key, slot);
4893 4894 4895 4896 4897 4898
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

4899
		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4900 4901 4902
		if (ret < 0)
			goto out;

4903
		path->slots[0]++;
4904 4905 4906 4907 4908 4909 4910
	}

out:
	btrfs_free_path(path);
	return ret;
}

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
static inline u64 max_send_read_size(const struct send_ctx *sctx)
{
	return sctx->send_max_size - SZ_16K;
}

static int put_data_header(struct send_ctx *sctx, u32 len)
{
	struct btrfs_tlv_header *hdr;

	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
		return -EOVERFLOW;
	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
	put_unaligned_le16(len, &hdr->tlv_len);
	sctx->send_size += sizeof(*hdr);
	return 0;
}

static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
J
Josef Bacik 已提交
4930 4931 4932 4933 4934
{
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct inode *inode;
	struct page *page;
4935
	pgoff_t index = offset >> PAGE_SHIFT;
J
Josef Bacik 已提交
4936
	pgoff_t last_index;
4937
	unsigned pg_offset = offset_in_page(offset);
4938 4939 4940 4941 4942
	int ret;

	ret = put_data_header(sctx, len);
	if (ret)
		return ret;
J
Josef Bacik 已提交
4943

D
David Sterba 已提交
4944
	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
J
Josef Bacik 已提交
4945 4946 4947
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4948
	last_index = (offset + len - 1) >> PAGE_SHIFT;
L
Liu Bo 已提交
4949 4950 4951 4952 4953

	/* initial readahead */
	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
	file_ra_state_init(&sctx->ra, inode->i_mapping);

J
Josef Bacik 已提交
4954 4955
	while (index <= last_index) {
		unsigned cur_len = min_t(unsigned, len,
4956
					 PAGE_SIZE - pg_offset);
4957 4958

		page = find_lock_page(inode->i_mapping, index);
J
Josef Bacik 已提交
4959
		if (!page) {
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
				NULL, index, last_index + 1 - index);

			page = find_or_create_page(inode->i_mapping, index,
					GFP_KERNEL);
			if (!page) {
				ret = -ENOMEM;
				break;
			}
		}

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
				NULL, page, index, last_index + 1 - index);
J
Josef Bacik 已提交
4974 4975 4976 4977 4978 4979 4980
		}

		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
4981
				put_page(page);
J
Josef Bacik 已提交
4982 4983 4984 4985 4986
				ret = -EIO;
				break;
			}
		}

4987 4988
		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
				 pg_offset, cur_len);
J
Josef Bacik 已提交
4989
		unlock_page(page);
4990
		put_page(page);
J
Josef Bacik 已提交
4991 4992 4993
		index++;
		pg_offset = 0;
		len -= cur_len;
4994
		sctx->send_size += cur_len;
J
Josef Bacik 已提交
4995 4996 4997 4998 4999
	}
	iput(inode);
	return ret;
}

5000 5001 5002 5003 5004 5005
/*
 * Read some bytes from the current inode/file and send a write command to
 * user space.
 */
static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
{
5006
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5007 5008 5009
	int ret = 0;
	struct fs_path *p;

5010
	p = fs_path_alloc();
5011 5012 5013
	if (!p)
		return -ENOMEM;

5014
	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5026 5027 5028
	ret = put_file_data(sctx, offset, len);
	if (ret < 0)
		goto out;
5029 5030 5031 5032 5033

	ret = send_cmd(sctx);

tlv_put_failure:
out:
5034
	fs_path_free(p);
5035
	return ret;
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
}

/*
 * Send a clone command to user space.
 */
static int send_clone(struct send_ctx *sctx,
		      u64 offset, u32 len,
		      struct clone_root *clone_root)
{
	int ret = 0;
	struct fs_path *p;
	u64 gen;

5049 5050
	btrfs_debug(sctx->send_root->fs_info,
		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5051 5052
		    offset, len, clone_root->root->root_key.objectid,
		    clone_root->ino, clone_root->offset);
5053

5054
	p = fs_path_alloc();
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);

5070
	if (clone_root->root == sctx->send_root) {
5071
		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5072
				&gen, NULL, NULL, NULL, NULL);
5073 5074 5075 5076
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, clone_root->ino, gen, p);
	} else {
5077
		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5078 5079 5080 5081
	}
	if (ret < 0)
		goto out;

5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
	/*
	 * If the parent we're using has a received_uuid set then use that as
	 * our clone source as that is what we will look for when doing a
	 * receive.
	 *
	 * This covers the case that we create a snapshot off of a received
	 * subvolume and then use that as the parent and try to receive on a
	 * different host.
	 */
	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
			     clone_root->root->root_item.received_uuid);
	else
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
			     clone_root->root->root_item.uuid);
5097
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5098
		    btrfs_root_ctransid(&clone_root->root->root_item));
5099 5100 5101 5102 5103 5104 5105 5106
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
			clone_root->offset);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
5107
	fs_path_free(p);
5108 5109 5110
	return ret;
}

5111 5112 5113 5114 5115 5116 5117 5118 5119
/*
 * Send an update extent command to user space.
 */
static int send_update_extent(struct send_ctx *sctx,
			      u64 offset, u32 len)
{
	int ret = 0;
	struct fs_path *p;

5120
	p = fs_path_alloc();
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
5140
	fs_path_free(p);
5141 5142 5143
	return ret;
}

5144 5145 5146
static int send_hole(struct send_ctx *sctx, u64 end)
{
	struct fs_path *p = NULL;
5147
	u64 read_size = max_send_read_size(sctx);
5148 5149 5150
	u64 offset = sctx->cur_inode_last_extent;
	int ret = 0;

5151 5152 5153 5154 5155 5156 5157 5158 5159
	/*
	 * A hole that starts at EOF or beyond it. Since we do not yet support
	 * fallocate (for extent preallocation and hole punching), sending a
	 * write of zeroes starting at EOF or beyond would later require issuing
	 * a truncate operation which would undo the write and achieve nothing.
	 */
	if (offset >= sctx->cur_inode_size)
		return 0;

5160 5161 5162 5163 5164 5165
	/*
	 * Don't go beyond the inode's i_size due to prealloc extents that start
	 * after the i_size.
	 */
	end = min_t(u64, end, sctx->cur_inode_size);

5166 5167 5168
	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
		return send_update_extent(sctx, offset, end - offset);

5169 5170 5171
	p = fs_path_alloc();
	if (!p)
		return -ENOMEM;
5172 5173 5174
	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto tlv_put_failure;
5175
	while (offset < end) {
5176
		u64 len = min(end - offset, read_size);
5177 5178 5179 5180 5181 5182

		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
		if (ret < 0)
			break;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5183 5184 5185 5186 5187
		ret = put_data_header(sctx, len);
		if (ret < 0)
			break;
		memset(sctx->send_buf + sctx->send_size, 0, len);
		sctx->send_size += len;
5188 5189 5190 5191 5192
		ret = send_cmd(sctx);
		if (ret < 0)
			break;
		offset += len;
	}
5193
	sctx->cur_inode_next_write_offset = offset;
5194 5195 5196 5197 5198
tlv_put_failure:
	fs_path_free(p);
	return ret;
}

5199 5200 5201 5202
static int send_extent_data(struct send_ctx *sctx,
			    const u64 offset,
			    const u64 len)
{
5203
	u64 read_size = max_send_read_size(sctx);
5204 5205 5206 5207 5208 5209
	u64 sent = 0;

	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
		return send_update_extent(sctx, offset, len);

	while (sent < len) {
5210
		u64 size = min(len - sent, read_size);
5211 5212 5213 5214 5215
		int ret;

		ret = send_write(sctx, offset + sent, size);
		if (ret < 0)
			return ret;
5216
		sent += size;
5217 5218 5219 5220
	}
	return 0;
}

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
/*
 * Search for a capability xattr related to sctx->cur_ino. If the capability is
 * found, call send_set_xattr function to emit it.
 *
 * Return 0 if there isn't a capability, or when the capability was emitted
 * successfully, or < 0 if an error occurred.
 */
static int send_capabilities(struct send_ctx *sctx)
{
	struct fs_path *fspath = NULL;
	struct btrfs_path *path;
	struct btrfs_dir_item *di;
	struct extent_buffer *leaf;
	unsigned long data_ptr;
	char *buf = NULL;
	int buf_len;
	int ret = 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
	if (!di) {
		/* There is no xattr for this inode */
		goto out;
	} else if (IS_ERR(di)) {
		ret = PTR_ERR(di);
		goto out;
	}

	leaf = path->nodes[0];
	buf_len = btrfs_dir_data_len(leaf, di);

	fspath = fs_path_alloc();
	buf = kmalloc(buf_len, GFP_KERNEL);
	if (!fspath || !buf) {
		ret = -ENOMEM;
		goto out;
	}

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
	if (ret < 0)
		goto out;

	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
	read_extent_buffer(leaf, buf, data_ptr, buf_len);

	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
			strlen(XATTR_NAME_CAPS), buf, buf_len);
out:
	kfree(buf);
	fs_path_free(fspath);
	btrfs_free_path(path);
	return ret;
}

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
static int clone_range(struct send_ctx *sctx,
		       struct clone_root *clone_root,
		       const u64 disk_byte,
		       u64 data_offset,
		       u64 offset,
		       u64 len)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;
5289
	u64 clone_src_i_size = 0;
5290

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	/*
	 * Prevent cloning from a zero offset with a length matching the sector
	 * size because in some scenarios this will make the receiver fail.
	 *
	 * For example, if in the source filesystem the extent at offset 0
	 * has a length of sectorsize and it was written using direct IO, then
	 * it can never be an inline extent (even if compression is enabled).
	 * Then this extent can be cloned in the original filesystem to a non
	 * zero file offset, but it may not be possible to clone in the
	 * destination filesystem because it can be inlined due to compression
	 * on the destination filesystem (as the receiver's write operations are
	 * always done using buffered IO). The same happens when the original
	 * filesystem does not have compression enabled but the destination
	 * filesystem has.
	 */
	if (clone_root->offset == 0 &&
	    len == sctx->send_root->fs_info->sectorsize)
		return send_extent_data(sctx, offset, len);

5310 5311 5312 5313
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

R
Robbie Ko 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	/*
	 * There are inodes that have extents that lie behind its i_size. Don't
	 * accept clones from these extents.
	 */
	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
	btrfs_release_path(path);
	if (ret < 0)
		goto out;

5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	/*
	 * We can't send a clone operation for the entire range if we find
	 * extent items in the respective range in the source file that
	 * refer to different extents or if we find holes.
	 * So check for that and do a mix of clone and regular write/copy
	 * operations if needed.
	 *
	 * Example:
	 *
	 * mkfs.btrfs -f /dev/sda
	 * mount /dev/sda /mnt
	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
	 * cp --reflink=always /mnt/foo /mnt/bar
	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
	 * btrfs subvolume snapshot -r /mnt /mnt/snap
	 *
	 * If when we send the snapshot and we are processing file bar (which
	 * has a higher inode number than foo) we blindly send a clone operation
	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
	 * a file bar that matches the content of file foo - iow, doesn't match
	 * the content from bar in the original filesystem.
	 */
	key.objectid = clone_root->ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = clone_root->offset;
	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0 && path->slots[0] > 0) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
		if (key.objectid == clone_root->ino &&
		    key.type == BTRFS_EXTENT_DATA_KEY)
			path->slots[0]--;
	}

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_file_extent_item *ei;
		u8 type;
		u64 ext_len;
		u64 clone_len;
R
Robbie Ko 已提交
5366
		u64 clone_data_offset;
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(clone_root->root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);

		/*
		 * We might have an implicit trailing hole (NO_HOLES feature
		 * enabled). We deal with it after leaving this loop.
		 */
		if (key.objectid != clone_root->ino ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(leaf, ei);
		if (type == BTRFS_FILE_EXTENT_INLINE) {
5390
			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5391
			ext_len = PAGE_ALIGN(ext_len);
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
		} else {
			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
		}

		if (key.offset + ext_len <= clone_root->offset)
			goto next;

		if (key.offset > clone_root->offset) {
			/* Implicit hole, NO_HOLES feature enabled. */
			u64 hole_len = key.offset - clone_root->offset;

			if (hole_len > len)
				hole_len = len;
			ret = send_extent_data(sctx, offset, hole_len);
			if (ret < 0)
				goto out;

			len -= hole_len;
			if (len == 0)
				break;
			offset += hole_len;
			clone_root->offset += hole_len;
			data_offset += hole_len;
		}

		if (key.offset >= clone_root->offset + len)
			break;

R
Robbie Ko 已提交
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
		if (key.offset >= clone_src_i_size)
			break;

		if (key.offset + ext_len > clone_src_i_size)
			ext_len = clone_src_i_size - key.offset;

		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
			clone_root->offset = key.offset;
			if (clone_data_offset < data_offset &&
				clone_data_offset + ext_len > data_offset) {
				u64 extent_offset;

				extent_offset = data_offset - clone_data_offset;
				ext_len -= extent_offset;
				clone_data_offset += extent_offset;
				clone_root->offset += extent_offset;
			}
		}

5440 5441 5442
		clone_len = min_t(u64, ext_len, len);

		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
		    clone_data_offset == data_offset) {
			const u64 src_end = clone_root->offset + clone_len;
			const u64 sectorsize = SZ_64K;

			/*
			 * We can't clone the last block, when its size is not
			 * sector size aligned, into the middle of a file. If we
			 * do so, the receiver will get a failure (-EINVAL) when
			 * trying to clone or will silently corrupt the data in
			 * the destination file if it's on a kernel without the
			 * fix introduced by commit ac765f83f1397646
			 * ("Btrfs: fix data corruption due to cloning of eof
			 * block).
			 *
			 * So issue a clone of the aligned down range plus a
			 * regular write for the eof block, if we hit that case.
			 *
			 * Also, we use the maximum possible sector size, 64K,
			 * because we don't know what's the sector size of the
			 * filesystem that receives the stream, so we have to
			 * assume the largest possible sector size.
			 */
			if (src_end == clone_src_i_size &&
			    !IS_ALIGNED(src_end, sectorsize) &&
			    offset + clone_len < sctx->cur_inode_size) {
				u64 slen;

				slen = ALIGN_DOWN(src_end - clone_root->offset,
						  sectorsize);
				if (slen > 0) {
					ret = send_clone(sctx, offset, slen,
							 clone_root);
					if (ret < 0)
						goto out;
				}
				ret = send_extent_data(sctx, offset + slen,
						       clone_len - slen);
			} else {
				ret = send_clone(sctx, offset, clone_len,
						 clone_root);
			}
		} else {
5485
			ret = send_extent_data(sctx, offset, clone_len);
5486
		}
5487 5488 5489 5490 5491 5492 5493 5494 5495

		if (ret < 0)
			goto out;

		len -= clone_len;
		if (len == 0)
			break;
		offset += clone_len;
		clone_root->offset += clone_len;
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510

		/*
		 * If we are cloning from the file we are currently processing,
		 * and using the send root as the clone root, we must stop once
		 * the current clone offset reaches the current eof of the file
		 * at the receiver, otherwise we would issue an invalid clone
		 * operation (source range going beyond eof) and cause the
		 * receiver to fail. So if we reach the current eof, bail out
		 * and fallback to a regular write.
		 */
		if (clone_root->root == sctx->send_root &&
		    clone_root->ino == sctx->cur_ino &&
		    clone_root->offset >= sctx->cur_inode_next_write_offset)
			break;

5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		data_offset += clone_len;
next:
		path->slots[0]++;
	}

	if (len > 0)
		ret = send_extent_data(sctx, offset, len);
	else
		ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

5525 5526 5527 5528 5529 5530 5531
static int send_write_or_clone(struct send_ctx *sctx,
			       struct btrfs_path *path,
			       struct btrfs_key *key,
			       struct clone_root *clone_root)
{
	int ret = 0;
	u64 offset = key->offset;
5532
	u64 end;
5533
	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5534

5535 5536 5537
	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
	if (offset >= end)
		return 0;
5538

5539 5540
	if (clone_root && IS_ALIGNED(end, bs)) {
		struct btrfs_file_extent_item *ei;
5541 5542 5543
		u64 disk_byte;
		u64 data_offset;

5544 5545
		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_file_extent_item);
5546 5547 5548
		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5549
				  offset, end - offset);
5550
	} else {
5551
		ret = send_extent_data(sctx, offset, end - offset);
5552
	}
5553
	sctx->cur_inode_next_write_offset = end;
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	return ret;
}

static int is_extent_unchanged(struct send_ctx *sctx,
			       struct btrfs_path *left_path,
			       struct btrfs_key *ekey)
{
	int ret = 0;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_key found_key;
	struct btrfs_file_extent_item *ei;
	u64 left_disknr;
	u64 right_disknr;
	u64 left_offset;
	u64 right_offset;
	u64 left_offset_fixed;
	u64 left_len;
	u64 right_len;
5575 5576
	u64 left_gen;
	u64 right_gen;
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
	u8 left_type;
	u8 right_type;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	eb = left_path->nodes[0];
	slot = left_path->slots[0];
	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	left_type = btrfs_file_extent_type(eb, ei);

	if (left_type != BTRFS_FILE_EXTENT_REG) {
		ret = 0;
		goto out;
	}
5593 5594 5595 5596
	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
	left_len = btrfs_file_extent_num_bytes(eb, ei);
	left_offset = btrfs_file_extent_offset(eb, ei);
	left_gen = btrfs_file_extent_generation(eb, ei);
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

	/*
	 * Following comments will refer to these graphics. L is the left
	 * extents which we are checking at the moment. 1-8 are the right
	 * extents that we iterate.
	 *
	 *       |-----L-----|
	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
	 *
	 *       |-----L-----|
	 * |--1--|-2b-|...(same as above)
	 *
	 * Alternative situation. Happens on files where extents got split.
	 *       |-----L-----|
	 * |-----------7-----------|-6-|
	 *
	 * Alternative situation. Happens on files which got larger.
	 *       |-----L-----|
	 * |-8-|
	 * Nothing follows after 8.
	 */

	key.objectid = ekey->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = ekey->offset;
	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

	/*
	 * Handle special case where the right side has no extents at all.
	 */
	eb = path->nodes[0];
	slot = path->slots[0];
	btrfs_item_key_to_cpu(eb, &found_key, slot);
	if (found_key.objectid != key.objectid ||
	    found_key.type != key.type) {
5638 5639
		/* If we're a hole then just pretend nothing changed */
		ret = (left_disknr) ? 0 : 1;
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
		goto out;
	}

	/*
	 * We're now on 2a, 2b or 7.
	 */
	key = found_key;
	while (key.offset < ekey->offset + left_len) {
		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		right_type = btrfs_file_extent_type(eb, ei);
5650 5651
		if (right_type != BTRFS_FILE_EXTENT_REG &&
		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5652 5653 5654 5655
			ret = 0;
			goto out;
		}

5656
		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5657
			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5658 5659 5660 5661
			right_len = PAGE_ALIGN(right_len);
		} else {
			right_len = btrfs_file_extent_num_bytes(eb, ei);
		}
5662

5663 5664 5665 5666
		/*
		 * Are we at extent 8? If yes, we know the extent is changed.
		 * This may only happen on the first iteration.
		 */
5667
		if (found_key.offset + right_len <= ekey->offset) {
5668 5669
			/* If we're a hole just pretend nothing changed */
			ret = (left_disknr) ? 0 : 1;
5670 5671 5672
			goto out;
		}

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
		/*
		 * We just wanted to see if when we have an inline extent, what
		 * follows it is a regular extent (wanted to check the above
		 * condition for inline extents too). This should normally not
		 * happen but it's possible for example when we have an inline
		 * compressed extent representing data with a size matching
		 * the page size (currently the same as sector size).
		 */
		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
			ret = 0;
			goto out;
		}

5686 5687 5688 5689
		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
		right_offset = btrfs_file_extent_offset(eb, ei);
		right_gen = btrfs_file_extent_generation(eb, ei);

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
		left_offset_fixed = left_offset;
		if (key.offset < ekey->offset) {
			/* Fix the right offset for 2a and 7. */
			right_offset += ekey->offset - key.offset;
		} else {
			/* Fix the left offset for all behind 2a and 2b */
			left_offset_fixed += key.offset - ekey->offset;
		}

		/*
		 * Check if we have the same extent.
		 */
5702
		if (left_disknr != right_disknr ||
5703 5704
		    left_offset_fixed != right_offset ||
		    left_gen != right_gen) {
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
			ret = 0;
			goto out;
		}

		/*
		 * Go to the next extent.
		 */
		ret = btrfs_next_item(sctx->parent_root, path);
		if (ret < 0)
			goto out;
		if (!ret) {
			eb = path->nodes[0];
			slot = path->slots[0];
			btrfs_item_key_to_cpu(eb, &found_key, slot);
		}
		if (ret || found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			key.offset += right_len;
			break;
5724 5725 5726 5727
		}
		if (found_key.offset != key.offset + right_len) {
			ret = 0;
			goto out;
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
		}
		key = found_key;
	}

	/*
	 * We're now behind the left extent (treat as unchanged) or at the end
	 * of the right side (treat as changed).
	 */
	if (key.offset >= ekey->offset + left_len)
		ret = 1;
	else
		ret = 0;


out:
	btrfs_free_path(path);
	return ret;
}

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
static int get_last_extent(struct send_ctx *sctx, u64 offset)
{
	struct btrfs_path *path;
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_key key;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	sctx->cur_inode_last_extent = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = offset;
	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
	if (ret < 0)
		goto out;
	ret = 0;
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
		goto out;

5771
	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5772 5773 5774 5775 5776
out:
	btrfs_free_path(path);
	return ret;
}

5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
static int range_is_hole_in_parent(struct send_ctx *sctx,
				   const u64 start,
				   const u64 end)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root *root = sctx->parent_root;
	u64 search_start = start;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = search_start;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0 && path->slots[0] > 0)
		path->slots[0]--;

	while (search_start < end) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_file_extent_item *fi;
		u64 extent_end;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid < sctx->cur_ino ||
		    key.type < BTRFS_EXTENT_DATA_KEY)
			goto next;
		if (key.objectid > sctx->cur_ino ||
		    key.type > BTRFS_EXTENT_DATA_KEY ||
		    key.offset >= end)
			break;

		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5825
		extent_end = btrfs_file_extent_end(path);
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
		if (extent_end <= start)
			goto next;
		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
			search_start = extent_end;
			goto next;
		}
		ret = 0;
		goto out;
next:
		path->slots[0]++;
	}
	ret = 1;
out:
	btrfs_free_path(path);
	return ret;
}

5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
			   struct btrfs_key *key)
{
	int ret = 0;

	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
		return 0;

	if (sctx->cur_inode_last_extent == (u64)-1) {
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
	if (path->slots[0] == 0 &&
	    sctx->cur_inode_last_extent < key->offset) {
		/*
		 * We might have skipped entire leafs that contained only
		 * file extent items for our current inode. These leafs have
		 * a generation number smaller (older) than the one in the
		 * current leaf and the leaf our last extent came from, and
		 * are located between these 2 leafs.
		 */
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
	if (sctx->cur_inode_last_extent < key->offset) {
		ret = range_is_hole_in_parent(sctx,
					      sctx->cur_inode_last_extent,
					      key->offset);
		if (ret < 0)
			return ret;
		else if (ret == 0)
			ret = send_hole(sctx, key->offset);
		else
			ret = 0;
	}
5882
	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5883 5884 5885
	return ret;
}

5886 5887 5888 5889 5890
static int process_extent(struct send_ctx *sctx,
			  struct btrfs_path *path,
			  struct btrfs_key *key)
{
	struct clone_root *found_clone = NULL;
5891
	int ret = 0;
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901

	if (S_ISLNK(sctx->cur_inode_mode))
		return 0;

	if (sctx->parent_root && !sctx->cur_inode_new) {
		ret = is_extent_unchanged(sctx, path, key);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
5902
			goto out_hole;
5903
		}
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
	} else {
		struct btrfs_file_extent_item *ei;
		u8 type;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(path->nodes[0], ei);
		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
		    type == BTRFS_FILE_EXTENT_REG) {
			/*
			 * The send spec does not have a prealloc command yet,
			 * so just leave a hole for prealloc'ed extents until
			 * we have enough commands queued up to justify rev'ing
			 * the send spec.
			 */
			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
				ret = 0;
				goto out;
			}

			/* Have a hole, just skip it. */
			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
				ret = 0;
				goto out;
			}
		}
5930 5931 5932 5933 5934 5935 5936 5937
	}

	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
			sctx->cur_inode_size, &found_clone);
	if (ret != -ENOENT && ret < 0)
		goto out;

	ret = send_write_or_clone(sctx, path, key, found_clone);
5938 5939 5940 5941
	if (ret)
		goto out;
out_hole:
	ret = maybe_send_hole(sctx, path, key);
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
out:
	return ret;
}

static int process_all_extents(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	root = sctx->send_root;
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
5964 5965 5966
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
5967

5968
	while (1) {
5969 5970
		eb = path->nodes[0];
		slot = path->slots[0];
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		ret = process_extent(sctx, path, &found_key);
		if (ret < 0)
			goto out;

5995
		path->slots[0]++;
5996 5997 5998 5999 6000 6001 6002
	}

out:
	btrfs_free_path(path);
	return ret;
}

6003 6004 6005
static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
					   int *pending_move,
					   int *refs_processed)
6006 6007 6008 6009 6010 6011
{
	int ret = 0;

	if (sctx->cur_ino == 0)
		goto out;
	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6012
	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6013 6014 6015 6016
		goto out;
	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
		goto out;

6017
	ret = process_recorded_refs(sctx, pending_move);
6018 6019 6020
	if (ret < 0)
		goto out;

6021
	*refs_processed = 1;
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
out:
	return ret;
}

static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
{
	int ret = 0;
	u64 left_mode;
	u64 left_uid;
	u64 left_gid;
	u64 right_mode;
	u64 right_uid;
	u64 right_gid;
	int need_chmod = 0;
	int need_chown = 0;
6037
	int need_truncate = 1;
6038 6039
	int pending_move = 0;
	int refs_processed = 0;
6040

6041 6042 6043
	if (sctx->ignore_cur_inode)
		return 0;

6044 6045
	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
					      &refs_processed);
6046 6047 6048
	if (ret < 0)
		goto out;

6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
	/*
	 * We have processed the refs and thus need to advance send_progress.
	 * Now, calls to get_cur_xxx will take the updated refs of the current
	 * inode into account.
	 *
	 * On the other hand, if our current inode is a directory and couldn't
	 * be moved/renamed because its parent was renamed/moved too and it has
	 * a higher inode number, we can only move/rename our current inode
	 * after we moved/renamed its parent. Therefore in this case operate on
	 * the old path (pre move/rename) of our current inode, and the
	 * move/rename will be performed later.
	 */
	if (refs_processed && !pending_move)
		sctx->send_progress = sctx->cur_ino + 1;

6064 6065 6066 6067 6068 6069
	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
		goto out;
	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
		goto out;

	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6070
			&left_mode, &left_uid, &left_gid, NULL);
6071 6072 6073
	if (ret < 0)
		goto out;

6074 6075 6076
	if (!sctx->parent_root || sctx->cur_inode_new) {
		need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode))
6077
			need_chmod = 1;
6078 6079
		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
			need_truncate = 0;
6080
	} else {
6081 6082
		u64 old_size;

6083
		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6084
				&old_size, NULL, &right_mode, &right_uid,
6085 6086 6087
				&right_gid, NULL);
		if (ret < 0)
			goto out;
6088

6089 6090 6091 6092
		if (left_uid != right_uid || left_gid != right_gid)
			need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
			need_chmod = 1;
6093 6094 6095 6096
		if ((old_size == sctx->cur_inode_size) ||
		    (sctx->cur_inode_size > old_size &&
		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
			need_truncate = 0;
6097 6098 6099
	}

	if (S_ISREG(sctx->cur_inode_mode)) {
6100
		if (need_send_hole(sctx)) {
6101 6102 6103
			if (sctx->cur_inode_last_extent == (u64)-1 ||
			    sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
				ret = get_last_extent(sctx, (u64)-1);
				if (ret)
					goto out;
			}
			if (sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
				ret = send_hole(sctx, sctx->cur_inode_size);
				if (ret)
					goto out;
			}
		}
6115 6116 6117 6118 6119 6120 6121
		if (need_truncate) {
			ret = send_truncate(sctx, sctx->cur_ino,
					    sctx->cur_inode_gen,
					    sctx->cur_inode_size);
			if (ret < 0)
				goto out;
		}
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
	}

	if (need_chown) {
		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_uid, left_gid);
		if (ret < 0)
			goto out;
	}
	if (need_chmod) {
		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_mode);
		if (ret < 0)
			goto out;
	}

6137 6138 6139 6140
	ret = send_capabilities(sctx);
	if (ret < 0)
		goto out;

6141
	/*
6142 6143
	 * If other directory inodes depended on our current directory
	 * inode's move/rename, now do their move/rename operations.
6144
	 */
6145 6146 6147 6148
	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
		ret = apply_children_dir_moves(sctx);
		if (ret)
			goto out;
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
		/*
		 * Need to send that every time, no matter if it actually
		 * changed between the two trees as we have done changes to
		 * the inode before. If our inode is a directory and it's
		 * waiting to be moved/renamed, we will send its utimes when
		 * it's moved/renamed, therefore we don't need to do it here.
		 */
		sctx->send_progress = sctx->cur_ino + 1;
		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
6160 6161
	}

6162 6163 6164 6165
out:
	return ret;
}

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
struct parent_paths_ctx {
	struct list_head *refs;
	struct send_ctx *sctx;
};

static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
			     void *ctx)
{
	struct parent_paths_ctx *ppctx = ctx;

	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
			  ppctx->refs);
}

/*
 * Issue unlink operations for all paths of the current inode found in the
 * parent snapshot.
 */
static int btrfs_unlink_all_paths(struct send_ctx *sctx)
{
	LIST_HEAD(deleted_refs);
	struct btrfs_path *path;
	struct btrfs_key key;
	struct parent_paths_ctx ctx;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	ctx.refs = &deleted_refs;
	ctx.sctx = sctx;

	while (true) {
		struct extent_buffer *eb = path->nodes[0];
		int slot = path->slots[0];

		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(sctx->parent_root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.objectid != sctx->cur_ino)
			break;
		if (key.type != BTRFS_INODE_REF_KEY &&
		    key.type != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
					record_parent_ref, &ctx);
		if (ret < 0)
			goto out;

		path->slots[0]++;
	}

	while (!list_empty(&deleted_refs)) {
		struct recorded_ref *ref;

		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
		ret = send_unlink(sctx, ref->full_path);
		if (ret < 0)
			goto out;
		fs_path_free(ref->full_path);
		list_del(&ref->list);
		kfree(ref);
	}
	ret = 0;
out:
	btrfs_free_path(path);
	if (ret)
		__free_recorded_refs(&deleted_refs);
	return ret;
}

6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
static int changed_inode(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;
	struct btrfs_key *key = sctx->cmp_key;
	struct btrfs_inode_item *left_ii = NULL;
	struct btrfs_inode_item *right_ii = NULL;
	u64 left_gen = 0;
	u64 right_gen = 0;

	sctx->cur_ino = key->objectid;
	sctx->cur_inode_new_gen = 0;
6265
	sctx->cur_inode_last_extent = (u64)-1;
6266
	sctx->cur_inode_next_write_offset = 0;
6267
	sctx->ignore_cur_inode = false;
6268 6269 6270 6271 6272 6273

	/*
	 * Set send_progress to current inode. This will tell all get_cur_xxx
	 * functions that the current inode's refs are not updated yet. Later,
	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
	 */
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
	sctx->send_progress = sctx->cur_ino;

	if (result == BTRFS_COMPARE_TREE_NEW ||
	    result == BTRFS_COMPARE_TREE_CHANGED) {
		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
				sctx->left_path->slots[0],
				struct btrfs_inode_item);
		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
				left_ii);
	} else {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);
		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
	}
	if (result == BTRFS_COMPARE_TREE_CHANGED) {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);

		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
6297 6298 6299 6300 6301 6302 6303 6304

		/*
		 * The cur_ino = root dir case is special here. We can't treat
		 * the inode as deleted+reused because it would generate a
		 * stream that tries to delete/mkdir the root dir.
		 */
		if (left_gen != right_gen &&
		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6305 6306 6307
			sctx->cur_inode_new_gen = 1;
	}

6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
	/*
	 * Normally we do not find inodes with a link count of zero (orphans)
	 * because the most common case is to create a snapshot and use it
	 * for a send operation. However other less common use cases involve
	 * using a subvolume and send it after turning it to RO mode just
	 * after deleting all hard links of a file while holding an open
	 * file descriptor against it or turning a RO snapshot into RW mode,
	 * keep an open file descriptor against a file, delete it and then
	 * turn the snapshot back to RO mode before using it for a send
	 * operation. So if we find such cases, ignore the inode and all its
	 * items completely if it's a new inode, or if it's a changed inode
	 * make sure all its previous paths (from the parent snapshot) are all
	 * unlinked and all other the inode items are ignored.
	 */
	if (result == BTRFS_COMPARE_TREE_NEW ||
	    result == BTRFS_COMPARE_TREE_CHANGED) {
		u32 nlinks;

		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
		if (nlinks == 0) {
			sctx->ignore_cur_inode = true;
			if (result == BTRFS_COMPARE_TREE_CHANGED)
				ret = btrfs_unlink_all_paths(sctx);
			goto out;
		}
	}

6335 6336 6337 6338 6339 6340 6341 6342
	if (result == BTRFS_COMPARE_TREE_NEW) {
		sctx->cur_inode_gen = left_gen;
		sctx->cur_inode_new = 1;
		sctx->cur_inode_deleted = 0;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->left_path->nodes[0], left_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->left_path->nodes[0], left_ii);
L
Liu Bo 已提交
6343 6344
		sctx->cur_inode_rdev = btrfs_inode_rdev(
				sctx->left_path->nodes[0], left_ii);
6345
		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6346
			ret = send_create_inode_if_needed(sctx);
6347 6348 6349 6350 6351 6352 6353 6354 6355
	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
		sctx->cur_inode_gen = right_gen;
		sctx->cur_inode_new = 0;
		sctx->cur_inode_deleted = 1;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->right_path->nodes[0], right_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->right_path->nodes[0], right_ii);
	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6356 6357 6358 6359 6360 6361 6362
		/*
		 * We need to do some special handling in case the inode was
		 * reported as changed with a changed generation number. This
		 * means that the original inode was deleted and new inode
		 * reused the same inum. So we have to treat the old inode as
		 * deleted and the new one as new.
		 */
6363
		if (sctx->cur_inode_new_gen) {
6364 6365 6366
			/*
			 * First, process the inode as if it was deleted.
			 */
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
			sctx->cur_inode_gen = right_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_deleted = 1;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->right_path->nodes[0], right_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->right_path->nodes[0], right_ii);
			ret = process_all_refs(sctx,
					BTRFS_COMPARE_TREE_DELETED);
			if (ret < 0)
				goto out;

6379 6380 6381
			/*
			 * Now process the inode as if it was new.
			 */
6382 6383 6384 6385 6386 6387 6388
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 1;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
L
Liu Bo 已提交
6389 6390
			sctx->cur_inode_rdev = btrfs_inode_rdev(
					sctx->left_path->nodes[0], left_ii);
6391
			ret = send_create_inode_if_needed(sctx);
6392 6393 6394 6395 6396 6397
			if (ret < 0)
				goto out;

			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
			if (ret < 0)
				goto out;
6398 6399 6400 6401 6402
			/*
			 * Advance send_progress now as we did not get into
			 * process_recorded_refs_if_needed in the new_gen case.
			 */
			sctx->send_progress = sctx->cur_ino + 1;
6403 6404 6405 6406 6407

			/*
			 * Now process all extents and xattrs of the inode as if
			 * they were all new.
			 */
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
			ret = process_all_extents(sctx);
			if (ret < 0)
				goto out;
			ret = process_all_new_xattrs(sctx);
			if (ret < 0)
				goto out;
		} else {
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_new_gen = 0;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
		}
	}

out:
	return ret;
}

6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
/*
 * We have to process new refs before deleted refs, but compare_trees gives us
 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
 * first and later process them in process_recorded_refs.
 * For the cur_inode_new_gen case, we skip recording completely because
 * changed_inode did already initiate processing of refs. The reason for this is
 * that in this case, compare_tree actually compares the refs of 2 different
 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
 * refs of the right tree as deleted and all refs of the left tree as new.
 */
6440 6441 6442 6443 6444
static int changed_ref(struct send_ctx *sctx,
		       enum btrfs_compare_tree_result result)
{
	int ret = 0;

6445 6446 6447 6448
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
		inconsistent_snapshot_error(sctx, result, "reference");
		return -EIO;
	}
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462

	if (!sctx->cur_inode_new_gen &&
	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = record_new_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = record_deleted_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = record_changed_ref(sctx);
	}

	return ret;
}

6463 6464 6465 6466 6467
/*
 * Process new/deleted/changed xattrs. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of xattrs. The reason is the same as in changed_ref
 */
6468 6469 6470 6471 6472
static int changed_xattr(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;

6473 6474 6475 6476
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
		inconsistent_snapshot_error(sctx, result, "xattr");
		return -EIO;
	}
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = process_new_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = process_deleted_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = process_changed_xattr(sctx);
	}

	return ret;
}

6490 6491 6492 6493 6494
/*
 * Process new/deleted/changed extents. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of extents. The reason is the same as in changed_ref
 */
6495 6496 6497 6498 6499
static int changed_extent(struct send_ctx *sctx,
			  enum btrfs_compare_tree_result result)
{
	int ret = 0;

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
	/*
	 * We have found an extent item that changed without the inode item
	 * having changed. This can happen either after relocation (where the
	 * disk_bytenr of an extent item is replaced at
	 * relocation.c:replace_file_extents()) or after deduplication into a
	 * file in both the parent and send snapshots (where an extent item can
	 * get modified or replaced with a new one). Note that deduplication
	 * updates the inode item, but it only changes the iversion (sequence
	 * field in the inode item) of the inode, so if a file is deduplicated
	 * the same amount of times in both the parent and send snapshots, its
	 * iversion becames the same in both snapshots, whence the inode item is
	 * the same on both snapshots.
	 */
	if (sctx->cur_ino != sctx->cmp_key->objectid)
		return 0;
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result != BTRFS_COMPARE_TREE_DELETED)
			ret = process_extent(sctx, sctx->left_path,
					sctx->cmp_key);
	}

	return ret;
}

6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
static int dir_changed(struct send_ctx *sctx, u64 dir)
{
	u64 orig_gen, new_gen;
	int ret;

	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
			     NULL, NULL);
	if (ret)
		return ret;

	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

	return (orig_gen != new_gen) ? 1 : 0;
}

static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
			struct btrfs_key *key)
{
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u64 dirid = 0, last_dirid = 0;
	unsigned long ptr;
	u32 item_size;
	u32 cur_offset = 0;
	int ref_name_len;
	int ret = 0;

	/* Easy case, just check this one dirid */
	if (key->type == BTRFS_INODE_REF_KEY) {
		dirid = key->offset;

		ret = dir_changed(sctx, dirid);
		goto out;
	}

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
	while (cur_offset < item_size) {
		extref = (struct btrfs_inode_extref *)(ptr +
						       cur_offset);
		dirid = btrfs_inode_extref_parent(leaf, extref);
		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
		cur_offset += ref_name_len + sizeof(*extref);
		if (dirid == last_dirid)
			continue;
		ret = dir_changed(sctx, dirid);
		if (ret)
			break;
		last_dirid = dirid;
	}
out:
	return ret;
}

6583 6584 6585 6586
/*
 * Updates compare related fields in sctx and simply forwards to the actual
 * changed_xxx functions.
 */
6587
static int changed_cb(struct btrfs_path *left_path,
6588 6589 6590
		      struct btrfs_path *right_path,
		      struct btrfs_key *key,
		      enum btrfs_compare_tree_result result,
6591
		      struct send_ctx *sctx)
6592 6593 6594
{
	int ret = 0;

6595
	if (result == BTRFS_COMPARE_TREE_SAME) {
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
		if (key->type == BTRFS_INODE_REF_KEY ||
		    key->type == BTRFS_INODE_EXTREF_KEY) {
			ret = compare_refs(sctx, left_path, key);
			if (!ret)
				return 0;
			if (ret < 0)
				return ret;
		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
			return maybe_send_hole(sctx, left_path, key);
		} else {
6606
			return 0;
6607
		}
6608 6609 6610 6611
		result = BTRFS_COMPARE_TREE_CHANGED;
		ret = 0;
	}

6612 6613 6614 6615 6616 6617 6618 6619
	sctx->left_path = left_path;
	sctx->right_path = right_path;
	sctx->cmp_key = key;

	ret = finish_inode_if_needed(sctx, 0);
	if (ret < 0)
		goto out;

6620 6621 6622 6623 6624
	/* Ignore non-FS objects */
	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
		goto out;

6625
	if (key->type == BTRFS_INODE_ITEM_KEY) {
6626
		ret = changed_inode(sctx, result);
6627 6628 6629 6630 6631 6632 6633 6634 6635
	} else if (!sctx->ignore_cur_inode) {
		if (key->type == BTRFS_INODE_REF_KEY ||
		    key->type == BTRFS_INODE_EXTREF_KEY)
			ret = changed_ref(sctx, result);
		else if (key->type == BTRFS_XATTR_ITEM_KEY)
			ret = changed_xattr(sctx, result);
		else if (key->type == BTRFS_EXTENT_DATA_KEY)
			ret = changed_extent(sctx, result);
	}
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652

out:
	return ret;
}

static int full_send_tree(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_key key;
	struct btrfs_path *path;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;
6653
	path->reada = READA_FORWARD_ALWAYS;
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667

	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret)
		goto out_finish;

	while (1) {
		eb = path->nodes[0];
		slot = path->slots[0];
6668
		btrfs_item_key_to_cpu(eb, &key, slot);
6669

6670
		ret = changed_cb(path, NULL, &key,
6671
				 BTRFS_COMPARE_TREE_NEW, sctx);
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
		if (ret < 0)
			goto out;

		ret = btrfs_next_item(send_root, path);
		if (ret < 0)
			goto out;
		if (ret) {
			ret  = 0;
			break;
		}
	}

out_finish:
	ret = finish_inode_if_needed(sctx, 1);

out:
	btrfs_free_path(path);
	return ret;
}

6692
static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6693 6694
{
	struct extent_buffer *eb;
6695 6696 6697 6698 6699
	struct extent_buffer *parent = path->nodes[*level];
	int slot = path->slots[*level];
	const int nritems = btrfs_header_nritems(parent);
	u64 reada_max;
	u64 reada_done = 0;
6700 6701

	BUG_ON(*level == 0);
6702
	eb = btrfs_read_node_slot(parent, slot);
6703 6704 6705
	if (IS_ERR(eb))
		return PTR_ERR(eb);

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
	/*
	 * Trigger readahead for the next leaves we will process, so that it is
	 * very likely that when we need them they are already in memory and we
	 * will not block on disk IO. For nodes we only do readahead for one,
	 * since the time window between processing nodes is typically larger.
	 */
	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);

	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
			btrfs_readahead_node_child(parent, slot);
			reada_done += eb->fs_info->nodesize;
		}
	}

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
	path->nodes[*level - 1] = eb;
	path->slots[*level - 1] = 0;
	(*level)--;
	return 0;
}

static int tree_move_next_or_upnext(struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

	while (path->slots[*level] >= nritems) {
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
static int tree_advance(struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
6760 6761
			struct btrfs_key *key,
			u64 reada_min_gen)
6762 6763 6764 6765 6766 6767
{
	int ret;

	if (*level == 0 || !allow_down) {
		ret = tree_move_next_or_upnext(path, level, root_level);
	} else {
6768
		ret = tree_move_down(path, level, reada_min_gen);
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

static int tree_compare_item(struct btrfs_path *left_path,
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
static int btrfs_compare_trees(struct btrfs_root *left_root,
6820
			struct btrfs_root *right_root, struct send_ctx *sctx)
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
{
	struct btrfs_fs_info *fs_info = left_root->fs_info;
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
	u64 left_gen;
	u64 right_gen;
6842
	u64 reada_min_gen;
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
	if (!tmp_buf) {
		ret = -ENOMEM;
		goto out;
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

	down_read(&fs_info->commit_root_sem);
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
6922 6923 6924 6925 6926 6927 6928 6929
	/*
	 * Our right root is the parent root, while the left root is the "send"
	 * root. We know that all new nodes/leaves in the left root must have
	 * a generation greater than the right root's generation, so we trigger
	 * readahead for those nodes and leaves of the left root, as we know we
	 * will need to read them at some point.
	 */
	reada_min_gen = btrfs_header_generation(right_root->commit_root);
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
	up_read(&fs_info->commit_root_sem);

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
6949
		cond_resched();
6950 6951 6952 6953
		if (advance_left && !left_end_reached) {
			ret = tree_advance(left_path, &left_level,
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
6954
					&left_key, reada_min_gen);
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
			if (ret == -1)
				left_end_reached = ADVANCE;
			else if (ret < 0)
				goto out;
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
			ret = tree_advance(right_path, &right_level,
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
6965
					&right_key, reada_min_gen);
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
			if (ret == -1)
				right_end_reached = ADVANCE;
			else if (ret < 0)
				goto out;
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
6981
						sctx);
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
6992
						sctx);
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
7006
						sctx);
7007 7008 7009 7010 7011 7012 7013
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
7014
						sctx);
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
				enum btrfs_compare_tree_result result;

				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
				if (ret)
					result = BTRFS_COMPARE_TREE_CHANGED;
				else
					result = BTRFS_COMPARE_TREE_SAME;
				ret = changed_cb(left_path, right_path,
7029
						 &left_key, result, sctx);
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
	kvfree(tmp_buf);
	return ret;
}

7081 7082 7083 7084
static int send_subvol(struct send_ctx *sctx)
{
	int ret;

7085 7086 7087 7088 7089
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
		ret = send_header(sctx);
		if (ret < 0)
			goto out;
	}
7090 7091 7092 7093 7094 7095

	ret = send_subvol_begin(sctx);
	if (ret < 0)
		goto out;

	if (sctx->parent_root) {
7096
		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
		if (ret < 0)
			goto out;
		ret = finish_inode_if_needed(sctx, 1);
		if (ret < 0)
			goto out;
	} else {
		ret = full_send_tree(sctx);
		if (ret < 0)
			goto out;
	}

out:
	free_recorded_refs(sctx);
	return ret;
}

7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
/*
 * If orphan cleanup did remove any orphans from a root, it means the tree
 * was modified and therefore the commit root is not the same as the current
 * root anymore. This is a problem, because send uses the commit root and
 * therefore can see inode items that don't exist in the current root anymore,
 * and for example make calls to btrfs_iget, which will do tree lookups based
 * on the current root and not on the commit root. Those lookups will fail,
 * returning a -ESTALE error, and making send fail with that error. So make
 * sure a send does not see any orphans we have just removed, and that it will
 * see the same inodes regardless of whether a transaction commit happened
 * before it started (meaning that the commit root will be the same as the
 * current root) or not.
 */
static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
{
	int i;
	struct btrfs_trans_handle *trans = NULL;

again:
	if (sctx->parent_root &&
	    sctx->parent_root->node != sctx->parent_root->commit_root)
		goto commit_trans;

	for (i = 0; i < sctx->clone_roots_cnt; i++)
		if (sctx->clone_roots[i].root->node !=
		    sctx->clone_roots[i].root->commit_root)
			goto commit_trans;

	if (trans)
7142
		return btrfs_end_transaction(trans);
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154

	return 0;

commit_trans:
	/* Use any root, all fs roots will get their commit roots updated. */
	if (!trans) {
		trans = btrfs_join_transaction(sctx->send_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
		goto again;
	}

7155
	return btrfs_commit_transaction(trans);
7156 7157
}

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
/*
 * Make sure any existing dellaloc is flushed for any root used by a send
 * operation so that we do not miss any data and we do not race with writeback
 * finishing and changing a tree while send is using the tree. This could
 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
 * a send operation then uses the subvolume.
 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
 */
static int flush_delalloc_roots(struct send_ctx *sctx)
{
	struct btrfs_root *root = sctx->parent_root;
	int ret;
	int i;

	if (root) {
7173
		ret = btrfs_start_delalloc_snapshot(root, false);
7174 7175 7176 7177 7178 7179 7180
		if (ret)
			return ret;
		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
	}

	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		root = sctx->clone_roots[i].root;
7181
		ret = btrfs_start_delalloc_snapshot(root, false);
7182 7183 7184 7185 7186 7187 7188 7189
		if (ret)
			return ret;
		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
	}

	return 0;
}

7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
{
	spin_lock(&root->root_item_lock);
	root->send_in_progress--;
	/*
	 * Not much left to do, we don't know why it's unbalanced and
	 * can't blindly reset it to 0.
	 */
	if (root->send_in_progress < 0)
		btrfs_err(root->fs_info,
7200
			  "send_in_progress unbalanced %d root %llu",
7201
			  root->send_in_progress, root->root_key.objectid);
7202 7203 7204
	spin_unlock(&root->root_item_lock);
}

7205 7206 7207 7208 7209 7210 7211
static void dedupe_in_progress_warn(const struct btrfs_root *root)
{
	btrfs_warn_rl(root->fs_info,
"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
		      root->root_key.objectid, root->dedupe_in_progress);
}

7212
long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7213 7214
{
	int ret = 0;
7215 7216
	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
	struct btrfs_fs_info *fs_info = send_root->fs_info;
7217 7218 7219 7220
	struct btrfs_root *clone_root;
	struct send_ctx *sctx = NULL;
	u32 i;
	u64 *clone_sources_tmp = NULL;
7221
	int clone_sources_to_rollback = 0;
7222
	size_t alloc_size;
7223
	int sort_clone_roots = 0;
7224 7225 7226 7227

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

7228 7229
	/*
	 * The subvolume must remain read-only during send, protect against
7230
	 * making it RW. This also protects against deletion.
7231 7232
	 */
	spin_lock(&send_root->root_item_lock);
7233 7234 7235 7236 7237
	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
		dedupe_in_progress_warn(send_root);
		spin_unlock(&send_root->root_item_lock);
		return -EAGAIN;
	}
7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
	send_root->send_in_progress++;
	spin_unlock(&send_root->root_item_lock);

	/*
	 * Userspace tools do the checks and warn the user if it's
	 * not RO.
	 */
	if (!btrfs_root_readonly(send_root)) {
		ret = -EPERM;
		goto out;
	}

7250 7251 7252 7253 7254
	/*
	 * Check that we don't overflow at later allocations, we request
	 * clone_sources_count + 1 items, and compare to unsigned long inside
	 * access_ok.
	 */
7255
	if (arg->clone_sources_count >
7256
	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7257 7258 7259 7260
		ret = -EINVAL;
		goto out;
	}

7261
	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7262 7263 7264 7265
		ret = -EINVAL;
		goto out;
	}

7266
	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7267 7268 7269 7270 7271 7272 7273
	if (!sctx) {
		ret = -ENOMEM;
		goto out;
	}

	INIT_LIST_HEAD(&sctx->new_refs);
	INIT_LIST_HEAD(&sctx->deleted_refs);
7274
	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7275 7276
	INIT_LIST_HEAD(&sctx->name_cache_list);

7277 7278
	sctx->flags = arg->flags;

7279
	sctx->send_filp = fget(arg->send_fd);
7280 7281
	if (!sctx->send_filp) {
		ret = -EBADF;
7282 7283 7284 7285
		goto out;
	}

	sctx->send_root = send_root;
7286 7287 7288 7289 7290 7291 7292 7293 7294
	/*
	 * Unlikely but possible, if the subvolume is marked for deletion but
	 * is slow to remove the directory entry, send can still be started
	 */
	if (btrfs_root_dead(sctx->send_root)) {
		ret = -EPERM;
		goto out;
	}

7295 7296 7297
	sctx->clone_roots_cnt = arg->clone_sources_count;

	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7298
	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7299
	if (!sctx->send_buf) {
7300 7301
		ret = -ENOMEM;
		goto out;
7302 7303
	}

7304 7305
	sctx->pending_dir_moves = RB_ROOT;
	sctx->waiting_dir_moves = RB_ROOT;
7306
	sctx->orphan_dirs = RB_ROOT;
7307

7308 7309 7310
	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
				     arg->clone_sources_count + 1,
				     GFP_KERNEL);
7311
	if (!sctx->clone_roots) {
7312 7313
		ret = -ENOMEM;
		goto out;
7314 7315
	}

7316 7317
	alloc_size = array_size(sizeof(*arg->clone_sources),
				arg->clone_sources_count);
7318

7319
	if (arg->clone_sources_count) {
7320
		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7321
		if (!clone_sources_tmp) {
7322 7323
			ret = -ENOMEM;
			goto out;
7324 7325 7326
		}

		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7327
				alloc_size);
7328 7329 7330 7331 7332 7333
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

		for (i = 0; i < arg->clone_sources_count; i++) {
D
David Sterba 已提交
7334 7335
			clone_root = btrfs_get_fs_root(fs_info,
						clone_sources_tmp[i], true);
7336 7337 7338 7339
			if (IS_ERR(clone_root)) {
				ret = PTR_ERR(clone_root);
				goto out;
			}
7340
			spin_lock(&clone_root->root_item_lock);
7341 7342
			if (!btrfs_root_readonly(clone_root) ||
			    btrfs_root_dead(clone_root)) {
7343
				spin_unlock(&clone_root->root_item_lock);
7344
				btrfs_put_root(clone_root);
7345 7346 7347
				ret = -EPERM;
				goto out;
			}
7348 7349 7350
			if (clone_root->dedupe_in_progress) {
				dedupe_in_progress_warn(clone_root);
				spin_unlock(&clone_root->root_item_lock);
7351
				btrfs_put_root(clone_root);
7352 7353 7354
				ret = -EAGAIN;
				goto out;
			}
7355
			clone_root->send_in_progress++;
7356
			spin_unlock(&clone_root->root_item_lock);
7357

7358
			sctx->clone_roots[i].root = clone_root;
7359
			clone_sources_to_rollback = i + 1;
7360
		}
7361
		kvfree(clone_sources_tmp);
7362 7363 7364 7365
		clone_sources_tmp = NULL;
	}

	if (arg->parent_root) {
D
David Sterba 已提交
7366 7367
		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
						      true);
7368 7369
		if (IS_ERR(sctx->parent_root)) {
			ret = PTR_ERR(sctx->parent_root);
7370 7371
			goto out;
		}
7372

7373 7374
		spin_lock(&sctx->parent_root->root_item_lock);
		sctx->parent_root->send_in_progress++;
7375 7376
		if (!btrfs_root_readonly(sctx->parent_root) ||
				btrfs_root_dead(sctx->parent_root)) {
7377 7378 7379 7380
			spin_unlock(&sctx->parent_root->root_item_lock);
			ret = -EPERM;
			goto out;
		}
7381 7382 7383 7384 7385 7386
		if (sctx->parent_root->dedupe_in_progress) {
			dedupe_in_progress_warn(sctx->parent_root);
			spin_unlock(&sctx->parent_root->root_item_lock);
			ret = -EAGAIN;
			goto out;
		}
7387
		spin_unlock(&sctx->parent_root->root_item_lock);
7388 7389 7390 7391 7392 7393 7394
	}

	/*
	 * Clones from send_root are allowed, but only if the clone source
	 * is behind the current send position. This is checked while searching
	 * for possible clone sources.
	 */
7395
	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7396
		btrfs_grab_root(sctx->send_root);
7397 7398 7399 7400 7401

	/* We do a bsearch later */
	sort(sctx->clone_roots, sctx->clone_roots_cnt,
			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
			NULL);
7402
	sort_clone_roots = 1;
7403

7404 7405 7406 7407
	ret = flush_delalloc_roots(sctx);
	if (ret)
		goto out;

7408 7409 7410 7411
	ret = ensure_commit_roots_uptodate(sctx);
	if (ret)
		goto out;

7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
	mutex_lock(&fs_info->balance_mutex);
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
		mutex_unlock(&fs_info->balance_mutex);
		btrfs_warn_rl(fs_info,
		"cannot run send because a balance operation is in progress");
		ret = -EAGAIN;
		goto out;
	}
	fs_info->send_in_progress++;
	mutex_unlock(&fs_info->balance_mutex);

7423
	current->journal_info = BTRFS_SEND_TRANS_STUB;
7424
	ret = send_subvol(sctx);
7425
	current->journal_info = NULL;
7426 7427 7428
	mutex_lock(&fs_info->balance_mutex);
	fs_info->send_in_progress--;
	mutex_unlock(&fs_info->balance_mutex);
7429 7430 7431
	if (ret < 0)
		goto out;

7432 7433 7434 7435 7436 7437 7438 7439
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
		if (ret < 0)
			goto out;
		ret = send_cmd(sctx);
		if (ret < 0)
			goto out;
	}
7440 7441

out:
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
		struct rb_node *n;
		struct pending_dir_move *pm;

		n = rb_first(&sctx->pending_dir_moves);
		pm = rb_entry(n, struct pending_dir_move, node);
		while (!list_empty(&pm->list)) {
			struct pending_dir_move *pm2;

			pm2 = list_first_entry(&pm->list,
					       struct pending_dir_move, list);
			free_pending_move(sctx, pm2);
		}
		free_pending_move(sctx, pm);
	}

	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
		struct rb_node *n;
		struct waiting_dir_move *dm;

		n = rb_first(&sctx->waiting_dir_moves);
		dm = rb_entry(n, struct waiting_dir_move, node);
		rb_erase(&dm->node, &sctx->waiting_dir_moves);
		kfree(dm);
	}

7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
		struct rb_node *n;
		struct orphan_dir_info *odi;

		n = rb_first(&sctx->orphan_dirs);
		odi = rb_entry(n, struct orphan_dir_info, node);
		free_orphan_dir_info(sctx, odi);
	}

7480
	if (sort_clone_roots) {
7481
		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7482 7483
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);
7484
			btrfs_put_root(sctx->clone_roots[i].root);
7485
		}
7486
	} else {
7487
		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7488 7489
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);
7490
			btrfs_put_root(sctx->clone_roots[i].root);
7491
		}
7492 7493 7494

		btrfs_root_dec_send_in_progress(send_root);
	}
7495
	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7496
		btrfs_root_dec_send_in_progress(sctx->parent_root);
7497
		btrfs_put_root(sctx->parent_root);
7498
	}
7499

7500
	kvfree(clone_sources_tmp);
7501 7502 7503 7504 7505

	if (sctx) {
		if (sctx->send_filp)
			fput(sctx->send_filp);

7506
		kvfree(sctx->clone_roots);
7507
		kvfree(sctx->send_buf);
7508 7509 7510 7511 7512 7513 7514 7515

		name_cache_free(sctx);

		kfree(sctx);
	}

	return ret;
}