send.c 158.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright (C) 2012 Alexander Block.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/bsearch.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sort.h>
#include <linux/mount.h>
#include <linux/xattr.h>
#include <linux/posix_acl_xattr.h>
#include <linux/radix-tree.h>
27
#include <linux/vmalloc.h>
A
Andy Shevchenko 已提交
28
#include <linux/string.h>
29
#include <linux/compat.h>
30 31 32

#include "send.h"
#include "backref.h"
33
#include "hash.h"
34 35 36 37
#include "locking.h"
#include "disk-io.h"
#include "btrfs_inode.h"
#include "transaction.h"
38
#include "compression.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

/*
 * A fs_path is a helper to dynamically build path names with unknown size.
 * It reallocates the internal buffer on demand.
 * It allows fast adding of path elements on the right side (normal path) and
 * fast adding to the left side (reversed path). A reversed path can also be
 * unreversed if needed.
 */
struct fs_path {
	union {
		struct {
			char *start;
			char *end;

			char *buf;
54 55
			unsigned short buf_len:15;
			unsigned short reversed:1;
56 57
			char inline_buf[];
		};
58 59 60 61 62 63
		/*
		 * Average path length does not exceed 200 bytes, we'll have
		 * better packing in the slab and higher chance to satisfy
		 * a allocation later during send.
		 */
		char pad[256];
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	};
};
#define FS_PATH_INLINE_SIZE \
	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))


/* reused for each extent */
struct clone_root {
	struct btrfs_root *root;
	u64 ino;
	u64 offset;

	u64 found_refs;
};

#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)

struct send_ctx {
	struct file *send_filp;
	loff_t send_off;
	char *send_buf;
	u32 send_size;
	u32 send_max_size;
	u64 total_send_size;
	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90
	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	struct btrfs_root *send_root;
	struct btrfs_root *parent_root;
	struct clone_root *clone_roots;
	int clone_roots_cnt;

	/* current state of the compare_tree call */
	struct btrfs_path *left_path;
	struct btrfs_path *right_path;
	struct btrfs_key *cmp_key;

	/*
	 * infos of the currently processed inode. In case of deleted inodes,
	 * these are the values from the deleted inode.
	 */
	u64 cur_ino;
	u64 cur_inode_gen;
	int cur_inode_new;
	int cur_inode_new_gen;
	int cur_inode_deleted;
	u64 cur_inode_size;
	u64 cur_inode_mode;
L
Liu Bo 已提交
113
	u64 cur_inode_rdev;
114
	u64 cur_inode_last_extent;
115 116 117 118 119 120 121 122 123 124

	u64 send_progress;

	struct list_head new_refs;
	struct list_head deleted_refs;

	struct radix_tree_root name_cache;
	struct list_head name_cache_list;
	int name_cache_size;

L
Liu Bo 已提交
125 126
	struct file_ra_state ra;

127
	char *read_buf;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

	/*
	 * We process inodes by their increasing order, so if before an
	 * incremental send we reverse the parent/child relationship of
	 * directories such that a directory with a lower inode number was
	 * the parent of a directory with a higher inode number, and the one
	 * becoming the new parent got renamed too, we can't rename/move the
	 * directory with lower inode number when we finish processing it - we
	 * must process the directory with higher inode number first, then
	 * rename/move it and then rename/move the directory with lower inode
	 * number. Example follows.
	 *
	 * Tree state when the first send was performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |
	 *         |
	 *         |-- c           (ino 259)
	 *         |   |-- d       (ino 260)
	 *         |
	 *         |-- c2          (ino 261)
	 *
	 * Tree state when the second (incremental) send is performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |-- c2          (ino 261)
	 *             |-- d2      (ino 260)
	 *                 |-- cc  (ino 259)
	 *
	 * The sequence of steps that lead to the second state was:
	 *
	 * mv /a/b/c/d /a/b/c2/d2
	 * mv /a/b/c /a/b/c2/d2/cc
	 *
	 * "c" has lower inode number, but we can't move it (2nd mv operation)
	 * before we move "d", which has higher inode number.
	 *
	 * So we just memorize which move/rename operations must be performed
	 * later when their respective parent is processed and moved/renamed.
	 */

	/* Indexed by parent directory inode number. */
	struct rb_root pending_dir_moves;

	/*
	 * Reverse index, indexed by the inode number of a directory that
	 * is waiting for the move/rename of its immediate parent before its
	 * own move/rename can be performed.
	 */
	struct rb_root waiting_dir_moves;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	/*
	 * A directory that is going to be rm'ed might have a child directory
	 * which is in the pending directory moves index above. In this case,
	 * the directory can only be removed after the move/rename of its child
	 * is performed. Example:
	 *
	 * Parent snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- c/           (ino 259)
	 *         |   |-- x/       (ino 260)
	 *         |
	 *         |-- y/           (ino 261)
	 *
	 * Send snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- YY/          (ino 261)
	 *              |-- x/      (ino 260)
	 *
	 * Sequence of steps that lead to the send snapshot:
	 * rm -f /a/b/c/foo.txt
	 * mv /a/b/y /a/b/YY
	 * mv /a/b/c/x /a/b/YY
	 * rmdir /a/b/c
	 *
	 * When the child is processed, its move/rename is delayed until its
	 * parent is processed (as explained above), but all other operations
	 * like update utimes, chown, chgrp, etc, are performed and the paths
	 * that it uses for those operations must use the orphanized name of
	 * its parent (the directory we're going to rm later), so we need to
	 * memorize that name.
	 *
	 * Indexed by the inode number of the directory to be deleted.
	 */
	struct rb_root orphan_dirs;
223 224 225 226 227 228 229 230 231 232 233 234 235 236
};

struct pending_dir_move {
	struct rb_node node;
	struct list_head list;
	u64 parent_ino;
	u64 ino;
	u64 gen;
	struct list_head update_refs;
};

struct waiting_dir_move {
	struct rb_node node;
	u64 ino;
237 238 239 240 241 242
	/*
	 * There might be some directory that could not be removed because it
	 * was waiting for this directory inode to be moved first. Therefore
	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
	 */
	u64 rmdir_ino;
243
	bool orphanized;
244 245 246 247 248 249
};

struct orphan_dir_info {
	struct rb_node node;
	u64 ino;
	u64 gen;
250 251 252 253
};

struct name_cache_entry {
	struct list_head list;
254 255 256 257 258 259 260 261 262
	/*
	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
	 * more then one inum would fall into the same entry, we use radix_list
	 * to store the additional entries. radix_list is also used to store
	 * entries where two entries have the same inum but different
	 * generations.
	 */
	struct list_head radix_list;
263 264 265 266 267 268 269 270 271 272
	u64 ino;
	u64 gen;
	u64 parent_ino;
	u64 parent_gen;
	int ret;
	int need_later_update;
	int name_len;
	char name[];
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void inconsistent_snapshot_error(struct send_ctx *sctx,
					enum btrfs_compare_tree_result result,
					const char *what)
{
	const char *result_string;

	switch (result) {
	case BTRFS_COMPARE_TREE_NEW:
		result_string = "new";
		break;
	case BTRFS_COMPARE_TREE_DELETED:
		result_string = "deleted";
		break;
	case BTRFS_COMPARE_TREE_CHANGED:
		result_string = "updated";
		break;
	case BTRFS_COMPARE_TREE_SAME:
		ASSERT(0);
		result_string = "unchanged";
		break;
	default:
		ASSERT(0);
		result_string = "unexpected";
	}

	btrfs_err(sctx->send_root->fs_info,
		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
		  result_string, what, sctx->cmp_key->objectid,
		  sctx->send_root->root_key.objectid,
		  (sctx->parent_root ?
		   sctx->parent_root->root_key.objectid : 0));
}

306 307
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);

308 309 310 311 312
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino);

static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);

313 314 315 316 317 318 319
static int need_send_hole(struct send_ctx *sctx)
{
	return (sctx->parent_root && !sctx->cur_inode_new &&
		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
		S_ISREG(sctx->cur_inode_mode));
}

320 321 322 323 324 325 326 327 328 329 330 331 332
static void fs_path_reset(struct fs_path *p)
{
	if (p->reversed) {
		p->start = p->buf + p->buf_len - 1;
		p->end = p->start;
		*p->start = 0;
	} else {
		p->start = p->buf;
		p->end = p->start;
		*p->start = 0;
	}
}

333
static struct fs_path *fs_path_alloc(void)
334 335 336
{
	struct fs_path *p;

337
	p = kmalloc(sizeof(*p), GFP_KERNEL);
338 339 340 341 342 343 344 345 346
	if (!p)
		return NULL;
	p->reversed = 0;
	p->buf = p->inline_buf;
	p->buf_len = FS_PATH_INLINE_SIZE;
	fs_path_reset(p);
	return p;
}

347
static struct fs_path *fs_path_alloc_reversed(void)
348 349 350
{
	struct fs_path *p;

351
	p = fs_path_alloc();
352 353 354 355 356 357 358
	if (!p)
		return NULL;
	p->reversed = 1;
	fs_path_reset(p);
	return p;
}

359
static void fs_path_free(struct fs_path *p)
360 361 362
{
	if (!p)
		return;
363 364
	if (p->buf != p->inline_buf)
		kfree(p->buf);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	kfree(p);
}

static int fs_path_len(struct fs_path *p)
{
	return p->end - p->start;
}

static int fs_path_ensure_buf(struct fs_path *p, int len)
{
	char *tmp_buf;
	int path_len;
	int old_buf_len;

	len++;

	if (p->buf_len >= len)
		return 0;

384 385 386 387 388
	if (len > PATH_MAX) {
		WARN_ON(1);
		return -ENOMEM;
	}

389 390 391
	path_len = p->end - p->start;
	old_buf_len = p->buf_len;

392 393 394
	/*
	 * First time the inline_buf does not suffice
	 */
395
	if (p->buf == p->inline_buf) {
396
		tmp_buf = kmalloc(len, GFP_KERNEL);
397 398 399
		if (tmp_buf)
			memcpy(tmp_buf, p->buf, old_buf_len);
	} else {
400
		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
401
	}
402 403 404 405 406 407 408 409
	if (!tmp_buf)
		return -ENOMEM;
	p->buf = tmp_buf;
	/*
	 * The real size of the buffer is bigger, this will let the fast path
	 * happen most of the time
	 */
	p->buf_len = ksize(p->buf);
410

411 412 413 414 415 416 417 418 419 420 421 422
	if (p->reversed) {
		tmp_buf = p->buf + old_buf_len - path_len - 1;
		p->end = p->buf + p->buf_len - 1;
		p->start = p->end - path_len;
		memmove(p->start, tmp_buf, path_len + 1);
	} else {
		p->start = p->buf;
		p->end = p->start + path_len;
	}
	return 0;
}

423 424
static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
				   char **prepared)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
{
	int ret;
	int new_len;

	new_len = p->end - p->start + name_len;
	if (p->start != p->end)
		new_len++;
	ret = fs_path_ensure_buf(p, new_len);
	if (ret < 0)
		goto out;

	if (p->reversed) {
		if (p->start != p->end)
			*--p->start = '/';
		p->start -= name_len;
440
		*prepared = p->start;
441 442 443
	} else {
		if (p->start != p->end)
			*p->end++ = '/';
444
		*prepared = p->end;
445 446 447 448 449 450 451 452 453 454 455
		p->end += name_len;
		*p->end = 0;
	}

out:
	return ret;
}

static int fs_path_add(struct fs_path *p, const char *name, int name_len)
{
	int ret;
456
	char *prepared;
457

458
	ret = fs_path_prepare_for_add(p, name_len, &prepared);
459 460
	if (ret < 0)
		goto out;
461
	memcpy(prepared, name, name_len);
462 463 464 465 466 467 468 469

out:
	return ret;
}

static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
{
	int ret;
470
	char *prepared;
471

472
	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
473 474
	if (ret < 0)
		goto out;
475
	memcpy(prepared, p2->start, p2->end - p2->start);
476 477 478 479 480 481 482 483 484 485

out:
	return ret;
}

static int fs_path_add_from_extent_buffer(struct fs_path *p,
					  struct extent_buffer *eb,
					  unsigned long off, int len)
{
	int ret;
486
	char *prepared;
487

488
	ret = fs_path_prepare_for_add(p, len, &prepared);
489 490 491
	if (ret < 0)
		goto out;

492
	read_extent_buffer(eb, prepared, off, len);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

out:
	return ret;
}

static int fs_path_copy(struct fs_path *p, struct fs_path *from)
{
	int ret;

	p->reversed = from->reversed;
	fs_path_reset(p);

	ret = fs_path_add_path(p, from);

	return ret;
}


static void fs_path_unreverse(struct fs_path *p)
{
	char *tmp;
	int len;

	if (!p->reversed)
		return;

	tmp = p->start;
	len = p->end - p->start;
	p->start = p->buf;
	p->end = p->start + len;
	memmove(p->start, tmp, len + 1);
	p->reversed = 0;
}

static struct btrfs_path *alloc_path_for_send(void)
{
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return NULL;
	path->search_commit_root = 1;
	path->skip_locking = 1;
536
	path->need_commit_sem = 1;
537 538 539
	return path;
}

540
static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
541 542 543 544 545
{
	int ret;
	u32 pos = 0;

	while (pos < len) {
546
		ret = kernel_write(filp, buf + pos, len - pos, off);
547 548 549 550 551
		/* TODO handle that correctly */
		/*if (ret == -ERESTARTSYS) {
			continue;
		}*/
		if (ret < 0)
552
			return ret;
553
		if (ret == 0) {
554
			return -EIO;
555 556 557 558
		}
		pos += ret;
	}

559
	return 0;
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
}

static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
{
	struct btrfs_tlv_header *hdr;
	int total_len = sizeof(*hdr) + len;
	int left = sctx->send_max_size - sctx->send_size;

	if (unlikely(left < total_len))
		return -EOVERFLOW;

	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
	hdr->tlv_type = cpu_to_le16(attr);
	hdr->tlv_len = cpu_to_le16(len);
	memcpy(hdr + 1, data, len);
	sctx->send_size += total_len;

	return 0;
}

D
David Sterba 已提交
580 581 582 583 584 585 586
#define TLV_PUT_DEFINE_INT(bits) \
	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
			u##bits attr, u##bits value)			\
	{								\
		__le##bits __tmp = cpu_to_le##bits(value);		\
		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
	}
587

D
David Sterba 已提交
588
TLV_PUT_DEFINE_INT(64)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

static int tlv_put_string(struct send_ctx *sctx, u16 attr,
			  const char *str, int len)
{
	if (len == -1)
		len = strlen(str);
	return tlv_put(sctx, attr, str, len);
}

static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
			const u8 *uuid)
{
	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
}

static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
				  struct extent_buffer *eb,
				  struct btrfs_timespec *ts)
{
	struct btrfs_timespec bts;
	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
	return tlv_put(sctx, attr, &bts, sizeof(bts));
}


#define TLV_PUT(sctx, attrtype, attrlen, data) \
	do { \
		ret = tlv_put(sctx, attrtype, attrlen, data); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_INT(sctx, attrtype, bits, value) \
	do { \
		ret = tlv_put_u##bits(sctx, attrtype, value); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
#define TLV_PUT_STRING(sctx, attrtype, str, len) \
	do { \
		ret = tlv_put_string(sctx, attrtype, str, len); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_PATH(sctx, attrtype, p) \
	do { \
		ret = tlv_put_string(sctx, attrtype, p->start, \
			p->end - p->start); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while(0)
#define TLV_PUT_UUID(sctx, attrtype, uuid) \
	do { \
		ret = tlv_put_uuid(sctx, attrtype, uuid); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
	do { \
		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

static int send_header(struct send_ctx *sctx)
{
	struct btrfs_stream_header hdr;

	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);

665 666
	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
					&sctx->send_off);
667 668 669 670 671 672 673 674 675
}

/*
 * For each command/item we want to send to userspace, we call this function.
 */
static int begin_cmd(struct send_ctx *sctx, int cmd)
{
	struct btrfs_cmd_header *hdr;

676
	if (WARN_ON(!sctx->send_buf))
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		return -EINVAL;

	BUG_ON(sctx->send_size);

	sctx->send_size += sizeof(*hdr);
	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
	hdr->cmd = cpu_to_le16(cmd);

	return 0;
}

static int send_cmd(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_cmd_header *hdr;
	u32 crc;

	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
	hdr->crc = 0;

698
	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 700
	hdr->crc = cpu_to_le32(crc);

701 702
	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
					&sctx->send_off);
703 704 705 706 707 708 709 710 711 712 713 714 715 716

	sctx->total_send_size += sctx->send_size;
	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
	sctx->send_size = 0;

	return ret;
}

/*
 * Sends a move instruction to user space
 */
static int send_rename(struct send_ctx *sctx,
		     struct fs_path *from, struct fs_path *to)
{
717
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
718 719
	int ret;

720
	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a link instruction to user space
 */
static int send_link(struct send_ctx *sctx,
		     struct fs_path *path, struct fs_path *lnk)
{
742
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
743 744
	int ret;

745
	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends an unlink instruction to user space
 */
static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
{
766
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
767 768
	int ret;

769
	btrfs_debug(fs_info, "send_unlink %s", path->start);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a rmdir instruction to user space
 */
static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
{
789
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
790 791
	int ret;

792
	btrfs_debug(fs_info, "send_rmdir %s", path->start);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Helper function to retrieve some fields from an inode item.
 */
810 811 812
static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
			  u64 *gid, u64 *rdev)
813 814 815 816 817 818 819 820 821 822
{
	int ret;
	struct btrfs_inode_item *ii;
	struct btrfs_key key;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret) {
823 824 825
		if (ret > 0)
			ret = -ENOENT;
		return ret;
826 827 828 829 830 831 832 833 834 835 836 837 838 839
	}

	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_inode_item);
	if (size)
		*size = btrfs_inode_size(path->nodes[0], ii);
	if (gen)
		*gen = btrfs_inode_generation(path->nodes[0], ii);
	if (mode)
		*mode = btrfs_inode_mode(path->nodes[0], ii);
	if (uid)
		*uid = btrfs_inode_uid(path->nodes[0], ii);
	if (gid)
		*gid = btrfs_inode_gid(path->nodes[0], ii);
840 841
	if (rdev)
		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	return ret;
}

static int get_inode_info(struct btrfs_root *root,
			  u64 ino, u64 *size, u64 *gen,
			  u64 *mode, u64 *uid, u64 *gid,
			  u64 *rdev)
{
	struct btrfs_path *path;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;
	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
			       rdev);
859 860 861 862 863 864 865 866 867
	btrfs_free_path(path);
	return ret;
}

typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
				   struct fs_path *p,
				   void *ctx);

/*
868 869
 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 * btrfs_inode_extref.
870 871 872
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
873
 * path must point to the INODE_REF or INODE_EXTREF when called.
874
 */
875
static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 877 878
			     struct btrfs_key *found_key, int resolve,
			     iterate_inode_ref_t iterate, void *ctx)
{
879
	struct extent_buffer *eb = path->nodes[0];
880 881
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
882
	struct btrfs_inode_extref *extref;
883 884
	struct btrfs_path *tmp_path;
	struct fs_path *p;
885
	u32 cur = 0;
886
	u32 total;
887
	int slot = path->slots[0];
888 889 890
	u32 name_len;
	char *start;
	int ret = 0;
891
	int num = 0;
892
	int index;
893 894 895 896
	u64 dir;
	unsigned long name_off;
	unsigned long elem_size;
	unsigned long ptr;
897

898
	p = fs_path_alloc_reversed();
899 900 901 902 903
	if (!p)
		return -ENOMEM;

	tmp_path = alloc_path_for_send();
	if (!tmp_path) {
904
		fs_path_free(p);
905 906 907 908
		return -ENOMEM;
	}


909 910 911
	if (found_key->type == BTRFS_INODE_REF_KEY) {
		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
						    struct btrfs_inode_ref);
912
		item = btrfs_item_nr(slot);
913 914 915 916 917 918 919 920
		total = btrfs_item_size(eb, item);
		elem_size = sizeof(*iref);
	} else {
		ptr = btrfs_item_ptr_offset(eb, slot);
		total = btrfs_item_size_nr(eb, slot);
		elem_size = sizeof(*extref);
	}

921 922 923
	while (cur < total) {
		fs_path_reset(p);

924 925 926 927 928 929 930 931 932 933 934 935 936 937
		if (found_key->type == BTRFS_INODE_REF_KEY) {
			iref = (struct btrfs_inode_ref *)(ptr + cur);
			name_len = btrfs_inode_ref_name_len(eb, iref);
			name_off = (unsigned long)(iref + 1);
			index = btrfs_inode_ref_index(eb, iref);
			dir = found_key->offset;
		} else {
			extref = (struct btrfs_inode_extref *)(ptr + cur);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			name_off = (unsigned long)&extref->name;
			index = btrfs_inode_extref_index(eb, extref);
			dir = btrfs_inode_extref_parent(eb, extref);
		}

938
		if (resolve) {
939 940 941
			start = btrfs_ref_to_path(root, tmp_path, name_len,
						  name_off, eb, dir,
						  p->buf, p->buf_len);
942 943 944 945 946 947 948 949 950 951
			if (IS_ERR(start)) {
				ret = PTR_ERR(start);
				goto out;
			}
			if (start < p->buf) {
				/* overflow , try again with larger buffer */
				ret = fs_path_ensure_buf(p,
						p->buf_len + p->buf - start);
				if (ret < 0)
					goto out;
952 953 954 955
				start = btrfs_ref_to_path(root, tmp_path,
							  name_len, name_off,
							  eb, dir,
							  p->buf, p->buf_len);
956 957 958 959 960 961 962 963
				if (IS_ERR(start)) {
					ret = PTR_ERR(start);
					goto out;
				}
				BUG_ON(start < p->buf);
			}
			p->start = start;
		} else {
964 965
			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
							     name_len);
966 967 968 969
			if (ret < 0)
				goto out;
		}

970 971
		cur += elem_size + name_len;
		ret = iterate(num, dir, index, p, ctx);
972 973 974 975 976 977 978
		if (ret)
			goto out;
		num++;
	}

out:
	btrfs_free_path(tmp_path);
979
	fs_path_free(p);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	return ret;
}

typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
				  const char *name, int name_len,
				  const char *data, int data_len,
				  u8 type, void *ctx);

/*
 * Helper function to iterate the entries in ONE btrfs_dir_item.
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
 * path must point to the dir item when called.
 */
995
static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 997 998 999 1000 1001 1002 1003
			    iterate_dir_item_t iterate, void *ctx)
{
	int ret = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_dir_item *di;
	struct btrfs_key di_key;
	char *buf = NULL;
1004
	int buf_len;
1005 1006 1007 1008 1009 1010 1011 1012 1013
	u32 name_len;
	u32 data_len;
	u32 cur;
	u32 len;
	u32 total;
	int slot;
	int num;
	u8 type;

1014 1015 1016 1017 1018 1019 1020
	/*
	 * Start with a small buffer (1 page). If later we end up needing more
	 * space, which can happen for xattrs on a fs with a leaf size greater
	 * then the page size, attempt to increase the buffer. Typically xattr
	 * values are small.
	 */
	buf_len = PATH_MAX;
1021
	buf = kmalloc(buf_len, GFP_KERNEL);
1022 1023 1024 1025 1026 1027 1028
	if (!buf) {
		ret = -ENOMEM;
		goto out;
	}

	eb = path->nodes[0];
	slot = path->slots[0];
1029
	item = btrfs_item_nr(slot);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
	cur = 0;
	len = 0;
	total = btrfs_item_size(eb, item);

	num = 0;
	while (cur < total) {
		name_len = btrfs_dir_name_len(eb, di);
		data_len = btrfs_dir_data_len(eb, di);
		type = btrfs_dir_type(eb, di);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

1042 1043 1044 1045 1046
		if (type == BTRFS_FT_XATTR) {
			if (name_len > XATTR_NAME_MAX) {
				ret = -ENAMETOOLONG;
				goto out;
			}
1047 1048
			if (name_len + data_len >
					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 1050 1051 1052 1053 1054 1055
				ret = -E2BIG;
				goto out;
			}
		} else {
			/*
			 * Path too long
			 */
1056
			if (name_len + data_len > PATH_MAX) {
1057 1058 1059
				ret = -ENAMETOOLONG;
				goto out;
			}
1060 1061
		}

1062 1063 1064 1065 1066 1067
		ret = btrfs_is_name_len_valid(eb, path->slots[0],
			  (unsigned long)(di + 1), name_len + data_len);
		if (!ret) {
			ret = -EIO;
			goto out;
		}
1068 1069 1070 1071 1072 1073 1074
		if (name_len + data_len > buf_len) {
			buf_len = name_len + data_len;
			if (is_vmalloc_addr(buf)) {
				vfree(buf);
				buf = NULL;
			} else {
				char *tmp = krealloc(buf, buf_len,
1075
						GFP_KERNEL | __GFP_NOWARN);
1076 1077 1078 1079 1080 1081

				if (!tmp)
					kfree(buf);
				buf = tmp;
			}
			if (!buf) {
1082
				buf = kvmalloc(buf_len, GFP_KERNEL);
1083 1084 1085 1086 1087 1088 1089
				if (!buf) {
					ret = -ENOMEM;
					goto out;
				}
			}
		}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
				name_len + data_len);

		len = sizeof(*di) + name_len + data_len;
		di = (struct btrfs_dir_item *)((char *)di + len);
		cur += len;

		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
				data_len, type, ctx);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}

		num++;
	}

out:
1110
	kvfree(buf);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	return ret;
}

static int __copy_first_ref(int num, u64 dir, int index,
			    struct fs_path *p, void *ctx)
{
	int ret;
	struct fs_path *pt = ctx;

	ret = fs_path_copy(pt, p);
	if (ret < 0)
		return ret;

	/* we want the first only */
	return 1;
}

/*
 * Retrieve the first path of an inode. If an inode has more then one
 * ref/hardlink, this is ignored.
 */
1132
static int get_inode_path(struct btrfs_root *root,
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
			  u64 ino, struct fs_path *path)
{
	int ret;
	struct btrfs_key key, found_key;
	struct btrfs_path *p;

	p = alloc_path_for_send();
	if (!p)
		return -ENOMEM;

	fs_path_reset(path);

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 1;
		goto out;
	}
	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
	if (found_key.objectid != ino ||
1158 1159
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 1161 1162 1163
		ret = -ENOENT;
		goto out;
	}

1164 1165
	ret = iterate_inode_ref(root, p, &found_key, 1,
				__copy_first_ref, path);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (ret < 0)
		goto out;
	ret = 0;

out:
	btrfs_free_path(p);
	return ret;
}

struct backref_ctx {
	struct send_ctx *sctx;

1178
	struct btrfs_path *path;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	/* number of total found references */
	u64 found;

	/*
	 * used for clones found in send_root. clones found behind cur_objectid
	 * and cur_offset are not considered as allowed clones.
	 */
	u64 cur_objectid;
	u64 cur_offset;

	/* may be truncated in case it's the last extent in a file */
	u64 extent_len;

1192 1193 1194
	/* data offset in the file extent item */
	u64 data_offset;

1195
	/* Just to check for bugs in backref resolving */
1196
	int found_itself;
1197 1198 1199 1200
};

static int __clone_root_cmp_bsearch(const void *key, const void *elt)
{
1201
	u64 root = (u64)(uintptr_t)key;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	struct clone_root *cr = (struct clone_root *)elt;

	if (root < cr->root->objectid)
		return -1;
	if (root > cr->root->objectid)
		return 1;
	return 0;
}

static int __clone_root_cmp_sort(const void *e1, const void *e2)
{
	struct clone_root *cr1 = (struct clone_root *)e1;
	struct clone_root *cr2 = (struct clone_root *)e2;

	if (cr1->root->objectid < cr2->root->objectid)
		return -1;
	if (cr1->root->objectid > cr2->root->objectid)
		return 1;
	return 0;
}

/*
 * Called for every backref that is found for the current extent.
1225
 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226 1227 1228 1229 1230 1231 1232 1233 1234
 */
static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
{
	struct backref_ctx *bctx = ctx_;
	struct clone_root *found;
	int ret;
	u64 i_size;

	/* First check if the root is in the list of accepted clone sources */
1235
	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 1237 1238 1239 1240 1241 1242 1243 1244
			bctx->sctx->clone_roots_cnt,
			sizeof(struct clone_root),
			__clone_root_cmp_bsearch);
	if (!found)
		return 0;

	if (found->root == bctx->sctx->send_root &&
	    ino == bctx->cur_objectid &&
	    offset == bctx->cur_offset) {
1245
		bctx->found_itself = 1;
1246 1247 1248
	}

	/*
1249
	 * There are inodes that have extents that lie behind its i_size. Don't
1250 1251
	 * accept clones from these extents.
	 */
1252 1253 1254
	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
			       NULL, NULL, NULL);
	btrfs_release_path(bctx->path);
1255 1256 1257
	if (ret < 0)
		return ret;

1258
	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		return 0;

	/*
	 * Make sure we don't consider clones from send_root that are
	 * behind the current inode/offset.
	 */
	if (found->root == bctx->sctx->send_root) {
		/*
		 * TODO for the moment we don't accept clones from the inode
		 * that is currently send. We may change this when
		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
		 * file.
		 */
		if (ino >= bctx->cur_objectid)
			return 0;
	}

	bctx->found++;
	found->found_refs++;
	if (ino < found->ino) {
		found->ino = ino;
		found->offset = offset;
	} else if (found->ino == ino) {
		/*
		 * same extent found more then once in the same file.
		 */
		if (found->offset > offset + bctx->extent_len)
			found->offset = offset;
	}

	return 0;
}

/*
1293 1294 1295 1296 1297 1298
 * Given an inode, offset and extent item, it finds a good clone for a clone
 * instruction. Returns -ENOENT when none could be found. The function makes
 * sure that the returned clone is usable at the point where sending is at the
 * moment. This means, that no clones are accepted which lie behind the current
 * inode+offset.
 *
1299 1300 1301 1302 1303 1304 1305 1306
 * path must point to the extent item when called.
 */
static int find_extent_clone(struct send_ctx *sctx,
			     struct btrfs_path *path,
			     u64 ino, u64 data_offset,
			     u64 ino_size,
			     struct clone_root **found)
{
1307
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1308 1309 1310
	int ret;
	int extent_type;
	u64 logical;
1311
	u64 disk_byte;
1312 1313
	u64 num_bytes;
	u64 extent_item_pos;
1314
	u64 flags = 0;
1315 1316
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *eb = path->nodes[0];
1317
	struct backref_ctx *backref_ctx = NULL;
1318 1319 1320
	struct clone_root *cur_clone_root;
	struct btrfs_key found_key;
	struct btrfs_path *tmp_path;
1321
	int compressed;
1322 1323 1324 1325 1326 1327
	u32 i;

	tmp_path = alloc_path_for_send();
	if (!tmp_path)
		return -ENOMEM;

1328 1329 1330
	/* We only use this path under the commit sem */
	tmp_path->need_commit_sem = 0;

1331
	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1332 1333 1334 1335 1336
	if (!backref_ctx) {
		ret = -ENOMEM;
		goto out;
	}

1337 1338
	backref_ctx->path = tmp_path;

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (data_offset >= ino_size) {
		/*
		 * There may be extents that lie behind the file's size.
		 * I at least had this in combination with snapshotting while
		 * writing large files.
		 */
		ret = 0;
		goto out;
	}

	fi = btrfs_item_ptr(eb, path->slots[0],
			struct btrfs_file_extent_item);
	extent_type = btrfs_file_extent_type(eb, fi);
	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
		ret = -ENOENT;
		goto out;
	}
1356
	compressed = btrfs_file_extent_compression(eb, fi);
1357 1358

	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 1360
	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
	if (disk_byte == 0) {
1361 1362 1363
		ret = -ENOENT;
		goto out;
	}
1364
	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1365

1366 1367
	down_read(&fs_info->commit_root_sem);
	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368
				  &found_key, &flags);
1369
	up_read(&fs_info->commit_root_sem);
1370 1371 1372 1373
	btrfs_release_path(tmp_path);

	if (ret < 0)
		goto out;
1374
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		ret = -EIO;
		goto out;
	}

	/*
	 * Setup the clone roots.
	 */
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		cur_clone_root = sctx->clone_roots + i;
		cur_clone_root->ino = (u64)-1;
		cur_clone_root->offset = 0;
		cur_clone_root->found_refs = 0;
	}

1389 1390 1391 1392 1393 1394
	backref_ctx->sctx = sctx;
	backref_ctx->found = 0;
	backref_ctx->cur_objectid = ino;
	backref_ctx->cur_offset = data_offset;
	backref_ctx->found_itself = 0;
	backref_ctx->extent_len = num_bytes;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	/*
	 * For non-compressed extents iterate_extent_inodes() gives us extent
	 * offsets that already take into account the data offset, but not for
	 * compressed extents, since the offset is logical and not relative to
	 * the physical extent locations. We must take this into account to
	 * avoid sending clone offsets that go beyond the source file's size,
	 * which would result in the clone ioctl failing with -EINVAL on the
	 * receiving end.
	 */
	if (compressed == BTRFS_COMPRESS_NONE)
		backref_ctx->data_offset = 0;
	else
		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1408 1409 1410 1411 1412 1413 1414

	/*
	 * The last extent of a file may be too large due to page alignment.
	 * We need to adjust extent_len in this case so that the checks in
	 * __iterate_backrefs work.
	 */
	if (data_offset + num_bytes >= ino_size)
1415
		backref_ctx->extent_len = ino_size - data_offset;
1416 1417 1418 1419

	/*
	 * Now collect all backrefs.
	 */
1420 1421 1422 1423
	if (compressed == BTRFS_COMPRESS_NONE)
		extent_item_pos = logical - found_key.objectid;
	else
		extent_item_pos = 0;
1424 1425
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
				    extent_item_pos, 1, __iterate_backrefs,
1426
				    backref_ctx, false);
1427

1428 1429 1430
	if (ret < 0)
		goto out;

1431
	if (!backref_ctx->found_itself) {
1432 1433
		/* found a bug in backref code? */
		ret = -EIO;
1434
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1435
			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1436
			  ino, data_offset, disk_byte, found_key.objectid);
1437 1438 1439
		goto out;
	}

1440 1441 1442
	btrfs_debug(fs_info,
		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
		    data_offset, ino, num_bytes, logical);
1443

1444
	if (!backref_ctx->found)
1445
		btrfs_debug(fs_info, "no clones found");
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	cur_clone_root = NULL;
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		if (sctx->clone_roots[i].found_refs) {
			if (!cur_clone_root)
				cur_clone_root = sctx->clone_roots + i;
			else if (sctx->clone_roots[i].root == sctx->send_root)
				/* prefer clones from send_root over others */
				cur_clone_root = sctx->clone_roots + i;
		}

	}

	if (cur_clone_root) {
		*found = cur_clone_root;
		ret = 0;
	} else {
		ret = -ENOENT;
	}

out:
	btrfs_free_path(tmp_path);
1468
	kfree(backref_ctx);
1469 1470 1471
	return ret;
}

1472
static int read_symlink(struct btrfs_root *root,
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
			u64 ino,
			struct fs_path *dest)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_file_extent_item *ei;
	u8 type;
	u8 compression;
	unsigned long off;
	int len;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (ret) {
		/*
		 * An empty symlink inode. Can happen in rare error paths when
		 * creating a symlink (transaction committed before the inode
		 * eviction handler removed the symlink inode items and a crash
		 * happened in between or the subvol was snapshoted in between).
		 * Print an informative message to dmesg/syslog so that the user
		 * can delete the symlink.
		 */
		btrfs_err(root->fs_info,
			  "Found empty symlink inode %llu at root %llu",
			  ino, root->root_key.objectid);
		ret = -EIO;
		goto out;
	}
1510 1511 1512 1513 1514 1515 1516 1517 1518

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
	compression = btrfs_file_extent_compression(path->nodes[0], ei);
	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
	BUG_ON(compression);

	off = btrfs_file_extent_inline_start(ei);
1519
	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Helper function to generate a file name that is unique in the root of
 * send_root and parent_root. This is used to generate names for orphan inodes.
 */
static int gen_unique_name(struct send_ctx *sctx,
			   u64 ino, u64 gen,
			   struct fs_path *dest)
{
	int ret = 0;
	struct btrfs_path *path;
	struct btrfs_dir_item *di;
	char tmp[64];
	int len;
	u64 idx = 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	while (1) {
1548
		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1549
				ino, gen, idx);
1550
		ASSERT(len < sizeof(tmp));
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}

		if (!sctx->parent_root) {
			/* unique */
			ret = 0;
			break;
		}

		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}
		/* unique */
		break;
	}

	ret = fs_path_add(dest, tmp, strlen(tmp));

out:
	btrfs_free_path(path);
	return ret;
}

enum inode_state {
	inode_state_no_change,
	inode_state_will_create,
	inode_state_did_create,
	inode_state_will_delete,
	inode_state_did_delete,
};

static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;
	int left_ret;
	int right_ret;
	u64 left_gen;
	u64 right_gen;

	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1613
			NULL, NULL);
1614 1615 1616 1617 1618 1619 1620 1621
	if (ret < 0 && ret != -ENOENT)
		goto out;
	left_ret = ret;

	if (!sctx->parent_root) {
		right_ret = -ENOENT;
	} else {
		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1622
				NULL, NULL, NULL, NULL);
1623 1624 1625 1626 1627 1628
		if (ret < 0 && ret != -ENOENT)
			goto out;
		right_ret = ret;
	}

	if (!left_ret && !right_ret) {
1629
		if (left_gen == gen && right_gen == gen) {
1630
			ret = inode_state_no_change;
1631
		} else if (left_gen == gen) {
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else  {
			ret = -ENOENT;
		}
	} else if (!left_ret) {
		if (left_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else {
			ret = -ENOENT;
		}
	} else if (!right_ret) {
		if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else {
			ret = -ENOENT;
		}
	} else {
		ret = -ENOENT;
	}

out:
	return ret;
}

static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;

1674 1675 1676
	if (ino == BTRFS_FIRST_FREE_OBJECTID)
		return 1;

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	ret = get_cur_inode_state(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (ret == inode_state_no_change ||
	    ret == inode_state_did_create ||
	    ret == inode_state_will_delete)
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

/*
 * Helper function to lookup a dir item in a dir.
 */
static int lookup_dir_item_inode(struct btrfs_root *root,
				 u64 dir, const char *name, int name_len,
				 u64 *found_inode,
				 u8 *found_type)
{
	int ret = 0;
	struct btrfs_dir_item *di;
	struct btrfs_key key;
	struct btrfs_path *path;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	di = btrfs_lookup_dir_item(NULL, root, path,
			dir, name, name_len, 0);
	if (!di) {
		ret = -ENOENT;
		goto out;
	}
	if (IS_ERR(di)) {
		ret = PTR_ERR(di);
		goto out;
	}
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1720 1721 1722 1723
	if (key.type == BTRFS_ROOT_ITEM_KEY) {
		ret = -ENOENT;
		goto out;
	}
1724 1725 1726 1727 1728 1729 1730 1731
	*found_inode = key.objectid;
	*found_type = btrfs_dir_type(path->nodes[0], di);

out:
	btrfs_free_path(path);
	return ret;
}

1732 1733 1734 1735
/*
 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
 * generation of the parent dir and the name of the dir entry.
 */
1736
static int get_first_ref(struct btrfs_root *root, u64 ino,
1737 1738 1739 1740 1741 1742 1743
			 u64 *dir, u64 *dir_gen, struct fs_path *name)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	int len;
1744
	u64 parent_dir;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (!ret)
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				path->slots[0]);
1760 1761 1762
	if (ret || found_key.objectid != ino ||
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1763 1764 1765 1766
		ret = -ENOENT;
		goto out;
	}

1767
	if (found_key.type == BTRFS_INODE_REF_KEY) {
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		struct btrfs_inode_ref *iref;
		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_inode_ref);
		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
						     (unsigned long)(iref + 1),
						     len);
		parent_dir = found_key.offset;
	} else {
		struct btrfs_inode_extref *extref;
		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
					struct btrfs_inode_extref);
		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
					(unsigned long)&extref->name, len);
		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
	}
1785 1786 1787 1788
	if (ret < 0)
		goto out;
	btrfs_release_path(path);

1789 1790 1791 1792 1793 1794
	if (dir_gen) {
		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0)
			goto out;
	}
1795

1796
	*dir = parent_dir;
1797 1798 1799 1800 1801 1802

out:
	btrfs_free_path(path);
	return ret;
}

1803
static int is_first_ref(struct btrfs_root *root,
1804 1805 1806 1807 1808 1809 1810
			u64 ino, u64 dir,
			const char *name, int name_len)
{
	int ret;
	struct fs_path *tmp_name;
	u64 tmp_dir;

1811
	tmp_name = fs_path_alloc();
1812 1813 1814
	if (!tmp_name)
		return -ENOMEM;

1815
	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1816 1817 1818
	if (ret < 0)
		goto out;

1819
	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1820 1821 1822 1823
		ret = 0;
		goto out;
	}

1824
	ret = !memcmp(tmp_name->start, name, name_len);
1825 1826

out:
1827
	fs_path_free(tmp_name);
1828 1829 1830
	return ret;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/*
 * Used by process_recorded_refs to determine if a new ref would overwrite an
 * already existing ref. In case it detects an overwrite, it returns the
 * inode/gen in who_ino/who_gen.
 * When an overwrite is detected, process_recorded_refs does proper orphanizing
 * to make sure later references to the overwritten inode are possible.
 * Orphanizing is however only required for the first ref of an inode.
 * process_recorded_refs does an additional is_first_ref check to see if
 * orphanizing is really required.
 */
1841 1842
static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
			      const char *name, int name_len,
1843
			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1844 1845
{
	int ret = 0;
1846
	u64 gen;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	u64 other_inode = 0;
	u8 other_type = 0;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1857 1858
	/*
	 * If we have a parent root we need to verify that the parent dir was
1859
	 * not deleted and then re-created, if it was then we have no overwrite
1860 1861
	 * and we can just unlink this entry.
	 */
1862
	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1875 1876 1877 1878 1879 1880 1881 1882 1883
	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
			&other_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

1884 1885 1886 1887 1888
	/*
	 * Check if the overwritten ref was already processed. If yes, the ref
	 * was already unlinked/moved, so we can safely assume that we will not
	 * overwrite anything at this point in time.
	 */
1889 1890
	if (other_inode > sctx->send_progress ||
	    is_waiting_for_move(sctx, other_inode)) {
1891
		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1892
				who_gen, who_mode, NULL, NULL, NULL);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		if (ret < 0)
			goto out;

		ret = 1;
		*who_ino = other_inode;
	} else {
		ret = 0;
	}

out:
	return ret;
}

1906 1907 1908 1909 1910 1911 1912
/*
 * Checks if the ref was overwritten by an already processed inode. This is
 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
 * thus the orphan name needs be used.
 * process_recorded_refs also uses it to avoid unlinking of refs that were
 * overwritten.
 */
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static int did_overwrite_ref(struct send_ctx *sctx,
			    u64 dir, u64 dir_gen,
			    u64 ino, u64 ino_gen,
			    const char *name, int name_len)
{
	int ret = 0;
	u64 gen;
	u64 ow_inode;
	u8 other_type;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	/* check if the ref was overwritten by another ref */
	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
			&ow_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		/* was never and will never be overwritten */
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1955
			NULL, NULL);
1956 1957 1958 1959 1960 1961 1962 1963
	if (ret < 0)
		goto out;

	if (ow_inode == ino && gen == ino_gen) {
		ret = 0;
		goto out;
	}

1964 1965 1966
	/*
	 * We know that it is or will be overwritten. Check this now.
	 * The current inode being processed might have been the one that caused
1967 1968
	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
	 * the current inode being processed.
1969
	 */
1970 1971 1972
	if ((ow_inode < sctx->send_progress) ||
	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
	     gen == sctx->cur_inode_gen))
1973 1974 1975 1976 1977 1978 1979 1980
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

1981 1982 1983 1984 1985
/*
 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
 * that got overwritten. This is used by process_recorded_refs to determine
 * if it has to use the path as returned by get_cur_path or the orphan name.
 */
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 dir;
	u64 dir_gen;

	if (!sctx->parent_root)
		goto out;

1996
	name = fs_path_alloc();
1997 1998 1999
	if (!name)
		return -ENOMEM;

2000
	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2001 2002 2003 2004 2005 2006 2007
	if (ret < 0)
		goto out;

	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
			name->start, fs_path_len(name));

out:
2008
	fs_path_free(name);
2009 2010 2011
	return ret;
}

2012 2013 2014 2015
/*
 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
 * so we need to do some special handling in case we have clashes. This function
 * takes care of this with the help of name_cache_entry::radix_list.
2016
 * In case of error, nce is kfreed.
2017
 */
2018 2019 2020 2021
static int name_cache_insert(struct send_ctx *sctx,
			     struct name_cache_entry *nce)
{
	int ret = 0;
2022 2023 2024 2025 2026
	struct list_head *nce_head;

	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
	if (!nce_head) {
2027
		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2028 2029
		if (!nce_head) {
			kfree(nce);
2030
			return -ENOMEM;
2031
		}
2032
		INIT_LIST_HEAD(nce_head);
2033

2034
		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2035 2036 2037
		if (ret < 0) {
			kfree(nce_head);
			kfree(nce);
2038
			return ret;
2039
		}
2040
	}
2041
	list_add_tail(&nce->radix_list, nce_head);
2042 2043 2044 2045 2046 2047 2048 2049 2050
	list_add_tail(&nce->list, &sctx->name_cache_list);
	sctx->name_cache_size++;

	return ret;
}

static void name_cache_delete(struct send_ctx *sctx,
			      struct name_cache_entry *nce)
{
2051
	struct list_head *nce_head;
2052

2053 2054
	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
2055 2056 2057 2058 2059
	if (!nce_head) {
		btrfs_err(sctx->send_root->fs_info,
	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
			nce->ino, sctx->name_cache_size);
	}
2060

2061
	list_del(&nce->radix_list);
2062 2063
	list_del(&nce->list);
	sctx->name_cache_size--;
2064

2065 2066 2067 2068
	/*
	 * We may not get to the final release of nce_head if the lookup fails
	 */
	if (nce_head && list_empty(nce_head)) {
2069 2070 2071
		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
		kfree(nce_head);
	}
2072 2073 2074 2075 2076
}

static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
						    u64 ino, u64 gen)
{
2077 2078
	struct list_head *nce_head;
	struct name_cache_entry *cur;
2079

2080 2081
	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
	if (!nce_head)
2082 2083
		return NULL;

2084 2085 2086 2087
	list_for_each_entry(cur, nce_head, radix_list) {
		if (cur->ino == ino && cur->gen == gen)
			return cur;
	}
2088 2089 2090
	return NULL;
}

2091 2092 2093 2094
/*
 * Removes the entry from the list and adds it back to the end. This marks the
 * entry as recently used so that name_cache_clean_unused does not remove it.
 */
2095 2096 2097 2098 2099 2100
static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
{
	list_del(&nce->list);
	list_add_tail(&nce->list, &sctx->name_cache_list);
}

2101 2102 2103
/*
 * Remove some entries from the beginning of name_cache_list.
 */
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static void name_cache_clean_unused(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
		return;

	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
		name_cache_delete(sctx, nce);
		kfree(nce);
	}
}

static void name_cache_free(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

2123 2124 2125
	while (!list_empty(&sctx->name_cache_list)) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
2126
		name_cache_delete(sctx, nce);
2127
		kfree(nce);
2128 2129 2130
	}
}

2131 2132 2133 2134 2135 2136 2137 2138
/*
 * Used by get_cur_path for each ref up to the root.
 * Returns 0 if it succeeded.
 * Returns 1 if the inode is not existent or got overwritten. In that case, the
 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
 * Returns <0 in case of error.
 */
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
static int __get_cur_name_and_parent(struct send_ctx *sctx,
				     u64 ino, u64 gen,
				     u64 *parent_ino,
				     u64 *parent_gen,
				     struct fs_path *dest)
{
	int ret;
	int nce_ret;
	struct name_cache_entry *nce = NULL;

2149 2150 2151 2152 2153
	/*
	 * First check if we already did a call to this function with the same
	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
	 * return the cached result.
	 */
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	nce = name_cache_search(sctx, ino, gen);
	if (nce) {
		if (ino < sctx->send_progress && nce->need_later_update) {
			name_cache_delete(sctx, nce);
			kfree(nce);
			nce = NULL;
		} else {
			name_cache_used(sctx, nce);
			*parent_ino = nce->parent_ino;
			*parent_gen = nce->parent_gen;
			ret = fs_path_add(dest, nce->name, nce->name_len);
			if (ret < 0)
				goto out;
			ret = nce->ret;
			goto out;
		}
	}

2172 2173 2174 2175 2176
	/*
	 * If the inode is not existent yet, add the orphan name and return 1.
	 * This should only happen for the parent dir that we determine in
	 * __record_new_ref
	 */
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	ret = is_inode_existent(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (!ret) {
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
		goto out_cache;
	}

2189 2190 2191 2192
	/*
	 * Depending on whether the inode was already processed or not, use
	 * send_root or parent_root for ref lookup.
	 */
2193
	if (ino < sctx->send_progress)
2194 2195
		ret = get_first_ref(sctx->send_root, ino,
				    parent_ino, parent_gen, dest);
2196
	else
2197 2198
		ret = get_first_ref(sctx->parent_root, ino,
				    parent_ino, parent_gen, dest);
2199 2200 2201
	if (ret < 0)
		goto out;

2202 2203 2204 2205
	/*
	 * Check if the ref was overwritten by an inode's ref that was processed
	 * earlier. If yes, treat as orphan and return 1.
	 */
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
			dest->start, dest->end - dest->start);
	if (ret < 0)
		goto out;
	if (ret) {
		fs_path_reset(dest);
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
	}

out_cache:
2219 2220 2221
	/*
	 * Store the result of the lookup in the name cache.
	 */
2222
	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	if (!nce) {
		ret = -ENOMEM;
		goto out;
	}

	nce->ino = ino;
	nce->gen = gen;
	nce->parent_ino = *parent_ino;
	nce->parent_gen = *parent_gen;
	nce->name_len = fs_path_len(dest);
	nce->ret = ret;
	strcpy(nce->name, dest->start);

	if (ino < sctx->send_progress)
		nce->need_later_update = 0;
	else
		nce->need_later_update = 1;

	nce_ret = name_cache_insert(sctx, nce);
	if (nce_ret < 0)
		ret = nce_ret;
	name_cache_clean_unused(sctx);

out:
	return ret;
}

/*
 * Magic happens here. This function returns the first ref to an inode as it
 * would look like while receiving the stream at this point in time.
 * We walk the path up to the root. For every inode in between, we check if it
 * was already processed/sent. If yes, we continue with the parent as found
 * in send_root. If not, we continue with the parent as found in parent_root.
 * If we encounter an inode that was deleted at this point in time, we use the
 * inodes "orphan" name instead of the real name and stop. Same with new inodes
 * that were not created yet and overwritten inodes/refs.
 *
 * When do we have have orphan inodes:
 * 1. When an inode is freshly created and thus no valid refs are available yet
 * 2. When a directory lost all it's refs (deleted) but still has dir items
 *    inside which were not processed yet (pending for move/delete). If anyone
 *    tried to get the path to the dir items, it would get a path inside that
 *    orphan directory.
 * 3. When an inode is moved around or gets new links, it may overwrite the ref
 *    of an unprocessed inode. If in that case the first ref would be
 *    overwritten, the overwritten inode gets "orphanized". Later when we
 *    process this overwritten inode, it is restored at a new place by moving
 *    the orphan inode.
 *
 * sctx->send_progress tells this function at which point in time receiving
 * would be.
 */
static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
			struct fs_path *dest)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	int stop = 0;

2284
	name = fs_path_alloc();
2285 2286 2287 2288 2289 2290 2291 2292 2293
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}

	dest->reversed = 1;
	fs_path_reset(dest);

	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2294 2295
		struct waiting_dir_move *wdm;

2296 2297
		fs_path_reset(name);

2298 2299 2300 2301 2302 2303 2304 2305
		if (is_waiting_for_rm(sctx, ino)) {
			ret = gen_unique_name(sctx, ino, gen, name);
			if (ret < 0)
				goto out;
			ret = fs_path_add_path(dest, name);
			break;
		}

2306 2307 2308 2309 2310
		wdm = get_waiting_dir_move(sctx, ino);
		if (wdm && wdm->orphanized) {
			ret = gen_unique_name(sctx, ino, gen, name);
			stop = 1;
		} else if (wdm) {
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret)
				stop = 1;
		}

2321 2322
		if (ret < 0)
			goto out;
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332
		ret = fs_path_add_path(dest, name);
		if (ret < 0)
			goto out;

		ino = parent_inode;
		gen = parent_gen;
	}

out:
2333
	fs_path_free(name);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (!ret)
		fs_path_unreverse(dest);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
 */
static int send_subvol_begin(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_root *parent_root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root_ref *ref;
	struct extent_buffer *leaf;
	char *name = NULL;
	int namelen;

2354
	path = btrfs_alloc_path();
2355 2356 2357
	if (!path)
		return -ENOMEM;

2358
	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	if (!name) {
		btrfs_free_path(path);
		return -ENOMEM;
	}

	key.objectid = send_root->objectid;
	key.type = BTRFS_ROOT_BACKREF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
				&key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
	    key.objectid != send_root->objectid) {
		ret = -ENOENT;
		goto out;
	}
	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
	namelen = btrfs_root_ref_name_len(leaf, ref);
	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
	btrfs_release_path(path);

	if (parent_root) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
		if (ret < 0)
			goto out;
	} else {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
		if (ret < 0)
			goto out;
	}

	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2400 2401 2402 2403 2404 2405 2406 2407

	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			    sctx->send_root->root_item.received_uuid);
	else
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			    sctx->send_root->root_item.uuid);

2408
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2409
		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2410
	if (parent_root) {
2411 2412 2413 2414 2415 2416
		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				     parent_root->root_item.received_uuid);
		else
			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				     parent_root->root_item.uuid);
2417
		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2418
			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	}

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	btrfs_free_path(path);
	kfree(name);
	return ret;
}

static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
{
2432
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2433 2434 2435
	int ret = 0;
	struct fs_path *p;

2436
	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2437

2438
	p = fs_path_alloc();
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2456
	fs_path_free(p);
2457 2458 2459 2460 2461
	return ret;
}

static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
{
2462
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2463 2464 2465
	int ret = 0;
	struct fs_path *p;

2466
	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2467

2468
	p = fs_path_alloc();
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2486
	fs_path_free(p);
2487 2488 2489 2490 2491
	return ret;
}

static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
{
2492
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2493 2494 2495
	int ret = 0;
	struct fs_path *p;

2496 2497
	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
		    ino, uid, gid);
2498

2499
	p = fs_path_alloc();
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2518
	fs_path_free(p);
2519 2520 2521 2522 2523
	return ret;
}

static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
{
2524
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2525 2526 2527 2528 2529 2530 2531 2532
	int ret = 0;
	struct fs_path *p = NULL;
	struct btrfs_inode_item *ii;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	struct btrfs_key key;
	int slot;

2533
	btrfs_debug(fs_info, "send_utimes %llu", ino);
2534

2535
	p = fs_path_alloc();
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	if (!p)
		return -ENOMEM;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2549 2550
	if (ret > 0)
		ret = -ENOENT;
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	if (ret < 0)
		goto out;

	eb = path->nodes[0];
	slot = path->slots[0];
	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);

	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2566 2567 2568
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2569
	/* TODO Add otime support when the otime patches get into upstream */
2570 2571 2572 2573 2574

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2575
	fs_path_free(p);
2576 2577 2578 2579 2580 2581 2582 2583 2584
	btrfs_free_path(path);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
 * a valid path yet because we did not process the refs yet. So, the inode
 * is created as orphan.
 */
2585
static int send_create_inode(struct send_ctx *sctx, u64 ino)
2586
{
2587
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2588 2589 2590
	int ret = 0;
	struct fs_path *p;
	int cmd;
2591
	u64 gen;
2592
	u64 mode;
2593
	u64 rdev;
2594

2595
	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2596

2597
	p = fs_path_alloc();
2598 2599 2600
	if (!p)
		return -ENOMEM;

L
Liu Bo 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	if (ino != sctx->cur_ino) {
		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
				     NULL, NULL, &rdev);
		if (ret < 0)
			goto out;
	} else {
		gen = sctx->cur_inode_gen;
		mode = sctx->cur_inode_mode;
		rdev = sctx->cur_inode_rdev;
	}
2611

2612
	if (S_ISREG(mode)) {
2613
		cmd = BTRFS_SEND_C_MKFILE;
2614
	} else if (S_ISDIR(mode)) {
2615
		cmd = BTRFS_SEND_C_MKDIR;
2616
	} else if (S_ISLNK(mode)) {
2617
		cmd = BTRFS_SEND_C_SYMLINK;
2618
	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2619
		cmd = BTRFS_SEND_C_MKNOD;
2620
	} else if (S_ISFIFO(mode)) {
2621
		cmd = BTRFS_SEND_C_MKFIFO;
2622
	} else if (S_ISSOCK(mode)) {
2623
		cmd = BTRFS_SEND_C_MKSOCK;
2624
	} else {
2625
		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2626
				(int)(mode & S_IFMT));
2627
		ret = -EOPNOTSUPP;
2628 2629 2630 2631 2632 2633 2634
		goto out;
	}

	ret = begin_cmd(sctx, cmd);
	if (ret < 0)
		goto out;

2635
	ret = gen_unique_name(sctx, ino, gen, p);
2636 2637 2638 2639
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2640
	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2641 2642 2643

	if (S_ISLNK(mode)) {
		fs_path_reset(p);
2644
		ret = read_symlink(sctx->send_root, ino, p);
2645 2646 2647 2648 2649
		if (ret < 0)
			goto out;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2650 2651
		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2652 2653 2654 2655 2656 2657 2658 2659 2660
	}

	ret = send_cmd(sctx);
	if (ret < 0)
		goto out;


tlv_put_failure:
out:
2661
	fs_path_free(p);
2662 2663 2664
	return ret;
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/*
 * We need some special handling for inodes that get processed before the parent
 * directory got created. See process_recorded_refs for details.
 * This function does the check if we already created the dir out of order.
 */
static int did_create_dir(struct send_ctx *sctx, u64 dir)
{
	int ret = 0;
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key di_key;
	struct extent_buffer *eb;
	struct btrfs_dir_item *di;
	int slot;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2690 2691 2692 2693
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

2694
	while (1) {
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		eb = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(sctx->send_root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
2706
		}
2707 2708 2709

		btrfs_item_key_to_cpu(eb, &found_key, slot);
		if (found_key.objectid != key.objectid ||
2710 2711 2712 2713 2714 2715 2716 2717
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

2718 2719
		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
		    di_key.objectid < sctx->send_progress) {
2720 2721 2722 2723
			ret = 1;
			goto out;
		}

2724
		path->slots[0]++;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	}

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Only creates the inode if it is:
 * 1. Not a directory
 * 2. Or a directory which was not created already due to out of order
 *    directories. See did_create_dir and process_recorded_refs for details.
 */
static int send_create_inode_if_needed(struct send_ctx *sctx)
{
	int ret;

	if (S_ISDIR(sctx->cur_inode_mode)) {
		ret = did_create_dir(sctx, sctx->cur_ino);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
	}

	ret = send_create_inode(sctx, sctx->cur_ino);
	if (ret < 0)
		goto out;

out:
	return ret;
}

2760 2761 2762 2763 2764 2765 2766 2767 2768
struct recorded_ref {
	struct list_head list;
	char *name;
	struct fs_path *full_path;
	u64 dir;
	u64 dir_gen;
	int name_len;
};

2769 2770 2771 2772 2773 2774 2775
static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
{
	ref->full_path = path;
	ref->name = (char *)kbasename(ref->full_path->start);
	ref->name_len = ref->full_path->end - ref->name;
}

2776 2777 2778 2779 2780
/*
 * We need to process new refs before deleted refs, but compare_tree gives us
 * everything mixed. So we first record all refs and later process them.
 * This function is a helper to record one ref.
 */
2781
static int __record_ref(struct list_head *head, u64 dir,
2782 2783 2784 2785
		      u64 dir_gen, struct fs_path *path)
{
	struct recorded_ref *ref;

2786
	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 2788 2789 2790 2791
	if (!ref)
		return -ENOMEM;

	ref->dir = dir;
	ref->dir_gen = dir_gen;
2792
	set_ref_path(ref, path);
2793 2794 2795 2796
	list_add_tail(&ref->list, head);
	return 0;
}

2797 2798 2799 2800
static int dup_ref(struct recorded_ref *ref, struct list_head *list)
{
	struct recorded_ref *new;

2801
	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
	if (!new)
		return -ENOMEM;

	new->dir = ref->dir;
	new->dir_gen = ref->dir_gen;
	new->full_path = NULL;
	INIT_LIST_HEAD(&new->list);
	list_add_tail(&new->list, list);
	return 0;
}

2813
static void __free_recorded_refs(struct list_head *head)
2814 2815 2816
{
	struct recorded_ref *cur;

2817 2818
	while (!list_empty(head)) {
		cur = list_entry(head->next, struct recorded_ref, list);
2819
		fs_path_free(cur->full_path);
2820
		list_del(&cur->list);
2821 2822 2823 2824 2825 2826
		kfree(cur);
	}
}

static void free_recorded_refs(struct send_ctx *sctx)
{
2827 2828
	__free_recorded_refs(&sctx->new_refs);
	__free_recorded_refs(&sctx->deleted_refs);
2829 2830 2831
}

/*
2832
 * Renames/moves a file/dir to its orphan name. Used when the first
2833 2834 2835 2836 2837 2838 2839 2840 2841
 * ref of an unprocessed inode gets overwritten and for all non empty
 * directories.
 */
static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
			  struct fs_path *path)
{
	int ret;
	struct fs_path *orphan;

2842
	orphan = fs_path_alloc();
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	if (!orphan)
		return -ENOMEM;

	ret = gen_unique_name(sctx, ino, gen, orphan);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, path, orphan);

out:
2853
	fs_path_free(orphan);
2854 2855 2856
	return ret;
}

2857 2858 2859 2860 2861 2862 2863
static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
{
	struct rb_node **p = &sctx->orphan_dirs.rb_node;
	struct rb_node *parent = NULL;
	struct orphan_dir_info *entry, *odi;

2864
	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	if (!odi)
		return ERR_PTR(-ENOMEM);
	odi->ino = dir_ino;
	odi->gen = 0;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct orphan_dir_info, node);
		if (dir_ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (dir_ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			kfree(odi);
			return entry;
		}
	}

	rb_link_node(&odi->node, parent, p);
	rb_insert_color(&odi->node, &sctx->orphan_dirs);
	return odi;
}

static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
{
	struct rb_node *n = sctx->orphan_dirs.rb_node;
	struct orphan_dir_info *entry;

	while (n) {
		entry = rb_entry(n, struct orphan_dir_info, node);
		if (dir_ino < entry->ino)
			n = n->rb_left;
		else if (dir_ino > entry->ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
{
	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);

	return odi != NULL;
}

static void free_orphan_dir_info(struct send_ctx *sctx,
				 struct orphan_dir_info *odi)
{
	if (!odi)
		return;
	rb_erase(&odi->node, &sctx->orphan_dirs);
	kfree(odi);
}

2922 2923 2924 2925 2926
/*
 * Returns 1 if a directory can be removed at this point in time.
 * We check this by iterating all dir items and checking if the inode behind
 * the dir item was already processed.
 */
2927 2928
static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
		     u64 send_progress)
2929 2930 2931 2932 2933 2934 2935 2936 2937
{
	int ret = 0;
	struct btrfs_root *root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key loc;
	struct btrfs_dir_item *di;

2938 2939 2940 2941 2942 2943
	/*
	 * Don't try to rmdir the top/root subvolume dir.
	 */
	if (dir == BTRFS_FIRST_FREE_OBJECTID)
		return 0;

2944 2945 2946 2947 2948 2949 2950
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2951 2952 2953
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
2954 2955

	while (1) {
2956 2957
		struct waiting_dir_move *dm;

2958 2959 2960 2961 2962 2963 2964
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
2965
		}
2966 2967 2968 2969
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type)
2970 2971 2972 2973 2974 2975
			break;

		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
				struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		dm = get_waiting_dir_move(sctx, loc.objectid);
		if (dm) {
			struct orphan_dir_info *odi;

			odi = add_orphan_dir_info(sctx, dir);
			if (IS_ERR(odi)) {
				ret = PTR_ERR(odi);
				goto out;
			}
			odi->gen = dir_gen;
			dm->rmdir_ino = dir;
			ret = 0;
			goto out;
		}

2991
		if (loc.objectid > send_progress) {
2992 2993 2994 2995
			struct orphan_dir_info *odi;

			odi = get_orphan_dir_info(sctx, dir);
			free_orphan_dir_info(sctx, odi);
2996 2997 2998 2999
			ret = 0;
			goto out;
		}

3000
		path->slots[0]++;
3001 3002 3003 3004 3005 3006 3007 3008 3009
	}

	ret = 1;

out:
	btrfs_free_path(path);
	return ret;
}

3010 3011
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
{
3012
	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3013

3014
	return entry != NULL;
3015 3016
}

3017
static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3018 3019 3020 3021 3022
{
	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
	struct rb_node *parent = NULL;
	struct waiting_dir_move *entry, *dm;

3023
	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3024 3025 3026
	if (!dm)
		return -ENOMEM;
	dm->ino = ino;
3027
	dm->rmdir_ino = 0;
3028
	dm->orphanized = orphanized;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct waiting_dir_move, node);
		if (ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			kfree(dm);
			return -EEXIST;
		}
	}

	rb_link_node(&dm->node, parent, p);
	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
	return 0;
}

3048 3049
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3050 3051 3052 3053 3054 3055
{
	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
	struct waiting_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct waiting_dir_move, node);
3056
		if (ino < entry->ino)
3057
			n = n->rb_left;
3058
		else if (ino > entry->ino)
3059
			n = n->rb_right;
3060 3061
		else
			return entry;
3062
	}
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	return NULL;
}

static void free_waiting_dir_move(struct send_ctx *sctx,
				  struct waiting_dir_move *dm)
{
	if (!dm)
		return;
	rb_erase(&dm->node, &sctx->waiting_dir_moves);
	kfree(dm);
3073 3074
}

3075 3076 3077
static int add_pending_dir_move(struct send_ctx *sctx,
				u64 ino,
				u64 ino_gen,
3078 3079
				u64 parent_ino,
				struct list_head *new_refs,
3080 3081
				struct list_head *deleted_refs,
				const bool is_orphan)
3082 3083 3084
{
	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
	struct rb_node *parent = NULL;
C
Chris Mason 已提交
3085
	struct pending_dir_move *entry = NULL, *pm;
3086 3087 3088 3089
	struct recorded_ref *cur;
	int exists = 0;
	int ret;

3090
	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3091 3092 3093
	if (!pm)
		return -ENOMEM;
	pm->parent_ino = parent_ino;
3094 3095
	pm->ino = ino;
	pm->gen = ino_gen;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	INIT_LIST_HEAD(&pm->list);
	INIT_LIST_HEAD(&pm->update_refs);
	RB_CLEAR_NODE(&pm->node);

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino) {
			p = &(*p)->rb_left;
		} else if (parent_ino > entry->parent_ino) {
			p = &(*p)->rb_right;
		} else {
			exists = 1;
			break;
		}
	}

3113
	list_for_each_entry(cur, deleted_refs, list) {
3114 3115 3116 3117
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}
3118
	list_for_each_entry(cur, new_refs, list) {
3119 3120 3121 3122 3123
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}

3124
	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	if (ret)
		goto out;

	if (exists) {
		list_add_tail(&pm->list, &entry->list);
	} else {
		rb_link_node(&pm->node, parent, p);
		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
	}
	ret = 0;
out:
	if (ret) {
		__free_recorded_refs(&pm->update_refs);
		kfree(pm);
	}
	return ret;
}

static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
						      u64 parent_ino)
{
	struct rb_node *n = sctx->pending_dir_moves.rb_node;
	struct pending_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino)
			n = n->rb_left;
		else if (parent_ino > entry->parent_ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
static int path_loop(struct send_ctx *sctx, struct fs_path *name,
		     u64 ino, u64 gen, u64 *ancestor_ino)
{
	int ret = 0;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	u64 start_ino = ino;

	*ancestor_ino = 0;
	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
		fs_path_reset(name);

		if (is_waiting_for_rm(sctx, ino))
			break;
		if (is_waiting_for_move(sctx, ino)) {
			if (*ancestor_ino == 0)
				*ancestor_ino = ino;
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret > 0) {
				ret = 0;
				break;
			}
		}
		if (ret < 0)
			break;
		if (parent_inode == start_ino) {
			ret = 1;
			if (*ancestor_ino == 0)
				*ancestor_ino = ino;
			break;
		}
		ino = parent_inode;
		gen = parent_gen;
	}
	return ret;
}

3203 3204 3205 3206
static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
{
	struct fs_path *from_path = NULL;
	struct fs_path *to_path = NULL;
3207
	struct fs_path *name = NULL;
3208 3209
	u64 orig_progress = sctx->send_progress;
	struct recorded_ref *cur;
3210
	u64 parent_ino, parent_gen;
3211 3212
	struct waiting_dir_move *dm = NULL;
	u64 rmdir_ino = 0;
3213 3214
	u64 ancestor;
	bool is_orphan;
3215 3216
	int ret;

3217
	name = fs_path_alloc();
3218
	from_path = fs_path_alloc();
3219 3220 3221 3222
	if (!name || !from_path) {
		ret = -ENOMEM;
		goto out;
	}
3223

3224 3225 3226
	dm = get_waiting_dir_move(sctx, pm->ino);
	ASSERT(dm);
	rmdir_ino = dm->rmdir_ino;
3227
	is_orphan = dm->orphanized;
3228
	free_waiting_dir_move(sctx, dm);
3229

3230
	if (is_orphan) {
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		ret = gen_unique_name(sctx, pm->ino,
				      pm->gen, from_path);
	} else {
		ret = get_first_ref(sctx->parent_root, pm->ino,
				    &parent_ino, &parent_gen, name);
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, parent_ino, parent_gen,
				   from_path);
		if (ret < 0)
			goto out;
		ret = fs_path_add_path(from_path, name);
	}
3244 3245
	if (ret < 0)
		goto out;
3246

3247
	sctx->send_progress = sctx->cur_ino + 1;
3248
	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3249 3250
	if (ret < 0)
		goto out;
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	if (ret) {
		LIST_HEAD(deleted_refs);
		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
					   &pm->update_refs, &deleted_refs,
					   is_orphan);
		if (ret < 0)
			goto out;
		if (rmdir_ino) {
			dm = get_waiting_dir_move(sctx, pm->ino);
			ASSERT(dm);
			dm->rmdir_ino = rmdir_ino;
		}
		goto out;
	}
3266 3267
	fs_path_reset(name);
	to_path = name;
3268
	name = NULL;
3269 3270 3271 3272 3273 3274 3275 3276
	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, from_path, to_path);
	if (ret < 0)
		goto out;

3277 3278 3279 3280 3281 3282 3283 3284
	if (rmdir_ino) {
		struct orphan_dir_info *odi;

		odi = get_orphan_dir_info(sctx, rmdir_ino);
		if (!odi) {
			/* already deleted */
			goto finish;
		}
3285
		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
		if (ret < 0)
			goto out;
		if (!ret)
			goto finish;

		name = fs_path_alloc();
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
		if (ret < 0)
			goto out;
		ret = send_rmdir(sctx, name);
		if (ret < 0)
			goto out;
		free_orphan_dir_info(sctx, odi);
	}

finish:
3306 3307 3308 3309 3310 3311 3312 3313 3314
	ret = send_utimes(sctx, pm->ino, pm->gen);
	if (ret < 0)
		goto out;

	/*
	 * After rename/move, need to update the utimes of both new parent(s)
	 * and old parent(s).
	 */
	list_for_each_entry(cur, &pm->update_refs, list) {
3315 3316 3317 3318 3319 3320 3321
		/*
		 * The parent inode might have been deleted in the send snapshot
		 */
		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
				     NULL, NULL, NULL, NULL, NULL);
		if (ret == -ENOENT) {
			ret = 0;
3322
			continue;
3323 3324 3325 3326
		}
		if (ret < 0)
			goto out;

3327 3328 3329 3330 3331 3332
		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
	}

out:
3333
	fs_path_free(name);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	fs_path_free(from_path);
	fs_path_free(to_path);
	sctx->send_progress = orig_progress;

	return ret;
}

static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
{
	if (!list_empty(&m->list))
		list_del(&m->list);
	if (!RB_EMPTY_NODE(&m->node))
		rb_erase(&m->node, &sctx->pending_dir_moves);
	__free_recorded_refs(&m->update_refs);
	kfree(m);
}

static void tail_append_pending_moves(struct pending_dir_move *moves,
				      struct list_head *stack)
{
	if (list_empty(&moves->list)) {
		list_add_tail(&moves->list, stack);
	} else {
		LIST_HEAD(list);
		list_splice_init(&moves->list, &list);
		list_add_tail(&moves->list, stack);
		list_splice_tail(&list, stack);
	}
}

static int apply_children_dir_moves(struct send_ctx *sctx)
{
	struct pending_dir_move *pm;
	struct list_head stack;
	u64 parent_ino = sctx->cur_ino;
	int ret = 0;

	pm = get_pending_dir_moves(sctx, parent_ino);
	if (!pm)
		return 0;

	INIT_LIST_HEAD(&stack);
	tail_append_pending_moves(pm, &stack);

	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		parent_ino = pm->ino;
		ret = apply_dir_move(sctx, pm);
		free_pending_move(sctx, pm);
		if (ret)
			goto out;
		pm = get_pending_dir_moves(sctx, parent_ino);
		if (pm)
			tail_append_pending_moves(pm, &stack);
	}
	return 0;

out:
	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		free_pending_move(sctx, pm);
	}
	return ret;
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
/*
 * We might need to delay a directory rename even when no ancestor directory
 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
 * renamed. This happens when we rename a directory to the old name (the name
 * in the parent root) of some other unrelated directory that got its rename
 * delayed due to some ancestor with higher number that got renamed.
 *
 * Example:
 *
 * Parent snapshot:
 * .                                       (ino 256)
 * |---- a/                                (ino 257)
 * |     |---- file                        (ino 260)
 * |
 * |---- b/                                (ino 258)
 * |---- c/                                (ino 259)
 *
 * Send snapshot:
 * .                                       (ino 256)
 * |---- a/                                (ino 258)
 * |---- x/                                (ino 259)
 *       |---- y/                          (ino 257)
 *             |----- file                 (ino 260)
 *
 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
 * must issue is:
 *
 * 1 - rename 259 from 'c' to 'x'
 * 2 - rename 257 from 'a' to 'x/y'
 * 3 - rename 258 from 'b' to 'a'
 *
 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
 * be done right away and < 0 on error.
 */
static int wait_for_dest_dir_move(struct send_ctx *sctx,
				  struct recorded_ref *parent_ref,
				  const bool is_orphan)
{
3439
	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3440 3441 3442 3443 3444 3445 3446
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key di_key;
	struct btrfs_dir_item *di;
	u64 left_gen;
	u64 right_gen;
	int ret = 0;
3447
	struct waiting_dir_move *wdm;
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
		return 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = parent_ref->dir;
	key.type = BTRFS_DIR_ITEM_KEY;
	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);

	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
	if (ret < 0) {
		goto out;
	} else if (ret > 0) {
		ret = 0;
		goto out;
	}

3468 3469
	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
				       parent_ref->name_len);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	if (!di) {
		ret = 0;
		goto out;
	}
	/*
	 * di_key.objectid has the number of the inode that has a dentry in the
	 * parent directory with the same name that sctx->cur_ino is being
	 * renamed to. We need to check if that inode is in the send root as
	 * well and if it is currently marked as an inode with a pending rename,
	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
	 * that it happens after that other inode is renamed.
	 */
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
			     &left_gen, NULL, NULL, NULL, NULL);
	if (ret < 0)
		goto out;
	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
			     &right_gen, NULL, NULL, NULL, NULL);
	if (ret < 0) {
		if (ret == -ENOENT)
			ret = 0;
		goto out;
	}

	/* Different inode, no need to delay the rename of sctx->cur_ino */
	if (right_gen != left_gen) {
		ret = 0;
		goto out;
	}

3506 3507
	wdm = get_waiting_dir_move(sctx, di_key.objectid);
	if (wdm && !wdm->orphanized) {
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
		ret = add_pending_dir_move(sctx,
					   sctx->cur_ino,
					   sctx->cur_inode_gen,
					   di_key.objectid,
					   &sctx->new_refs,
					   &sctx->deleted_refs,
					   is_orphan);
		if (!ret)
			ret = 1;
	}
out:
	btrfs_free_path(path);
	return ret;
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
/*
 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
 * Return 1 if true, 0 if false and < 0 on error.
 */
static int is_ancestor(struct btrfs_root *root,
		       const u64 ino1,
		       const u64 ino1_gen,
		       const u64 ino2,
		       struct fs_path *fs_path)
{
	u64 ino = ino2;
3534 3535 3536 3537 3538 3539 3540 3541 3542
	bool free_path = false;
	int ret = 0;

	if (!fs_path) {
		fs_path = fs_path_alloc();
		if (!fs_path)
			return -ENOMEM;
		free_path = true;
	}
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552

	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
		u64 parent;
		u64 parent_gen;

		fs_path_reset(fs_path);
		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
		if (ret < 0) {
			if (ret == -ENOENT && ino == ino2)
				ret = 0;
3553 3554 3555 3556 3557
			goto out;
		}
		if (parent == ino1) {
			ret = parent_gen == ino1_gen ? 1 : 0;
			goto out;
3558 3559 3560
		}
		ino = parent;
	}
3561 3562 3563 3564
 out:
	if (free_path)
		fs_path_free(fs_path);
	return ret;
3565 3566
}

3567
static int wait_for_parent_move(struct send_ctx *sctx,
3568 3569
				struct recorded_ref *parent_ref,
				const bool is_orphan)
3570
{
3571
	int ret = 0;
3572
	u64 ino = parent_ref->dir;
3573
	u64 ino_gen = parent_ref->dir_gen;
3574 3575 3576 3577 3578 3579
	u64 parent_ino_before, parent_ino_after;
	struct fs_path *path_before = NULL;
	struct fs_path *path_after = NULL;
	int len1, len2;

	path_after = fs_path_alloc();
3580 3581
	path_before = fs_path_alloc();
	if (!path_after || !path_before) {
3582 3583 3584 3585
		ret = -ENOMEM;
		goto out;
	}

3586
	/*
3587 3588 3589
	 * Our current directory inode may not yet be renamed/moved because some
	 * ancestor (immediate or not) has to be renamed/moved first. So find if
	 * such ancestor exists and make sure our own rename/move happens after
3590 3591
	 * that ancestor is processed to avoid path build infinite loops (done
	 * at get_cur_path()).
3592
	 */
3593
	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3594 3595
		u64 parent_ino_after_gen;

3596
		if (is_waiting_for_move(sctx, ino)) {
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
			/*
			 * If the current inode is an ancestor of ino in the
			 * parent root, we need to delay the rename of the
			 * current inode, otherwise don't delayed the rename
			 * because we can end up with a circular dependency
			 * of renames, resulting in some directories never
			 * getting the respective rename operations issued in
			 * the send stream or getting into infinite path build
			 * loops.
			 */
			ret = is_ancestor(sctx->parent_root,
					  sctx->cur_ino, sctx->cur_inode_gen,
					  ino, path_before);
3610 3611
			if (ret)
				break;
3612
		}
3613 3614 3615 3616 3617

		fs_path_reset(path_before);
		fs_path_reset(path_after);

		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3618
				    &parent_ino_after_gen, path_after);
3619 3620 3621 3622
		if (ret < 0)
			goto out;
		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
				    NULL, path_before);
3623
		if (ret < 0 && ret != -ENOENT) {
3624
			goto out;
3625
		} else if (ret == -ENOENT) {
3626
			ret = 0;
3627
			break;
3628 3629 3630 3631
		}

		len1 = fs_path_len(path_before);
		len2 = fs_path_len(path_after);
3632 3633 3634
		if (ino > sctx->cur_ino &&
		    (parent_ino_before != parent_ino_after || len1 != len2 ||
		     memcmp(path_before->start, path_after->start, len1))) {
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
			u64 parent_ino_gen;

			ret = get_inode_info(sctx->parent_root, ino, NULL,
					     &parent_ino_gen, NULL, NULL, NULL,
					     NULL);
			if (ret < 0)
				goto out;
			if (ino_gen == parent_ino_gen) {
				ret = 1;
				break;
			}
3646 3647
		}
		ino = parent_ino_after;
3648
		ino_gen = parent_ino_after_gen;
3649 3650
	}

3651 3652 3653 3654
out:
	fs_path_free(path_before);
	fs_path_free(path_after);

3655 3656 3657 3658 3659 3660
	if (ret == 1) {
		ret = add_pending_dir_move(sctx,
					   sctx->cur_ino,
					   sctx->cur_inode_gen,
					   ino,
					   &sctx->new_refs,
3661
					   &sctx->deleted_refs,
3662
					   is_orphan);
3663 3664 3665 3666
		if (!ret)
			ret = 1;
	}

3667 3668 3669
	return ret;
}

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
{
	int ret;
	struct fs_path *new_path;

	/*
	 * Our reference's name member points to its full_path member string, so
	 * we use here a new path.
	 */
	new_path = fs_path_alloc();
	if (!new_path)
		return -ENOMEM;

	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
	if (ret < 0) {
		fs_path_free(new_path);
		return ret;
	}
	ret = fs_path_add(new_path, ref->name, ref->name_len);
	if (ret < 0) {
		fs_path_free(new_path);
		return ret;
	}

	fs_path_free(ref->full_path);
	set_ref_path(ref, new_path);

	return 0;
}

3700 3701 3702
/*
 * This does all the move/link/unlink/rmdir magic.
 */
3703
static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3704
{
3705
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3706 3707
	int ret = 0;
	struct recorded_ref *cur;
3708
	struct recorded_ref *cur2;
3709
	struct list_head check_dirs;
3710
	struct fs_path *valid_path = NULL;
3711
	u64 ow_inode = 0;
3712
	u64 ow_gen;
3713
	u64 ow_mode;
3714 3715
	int did_overwrite = 0;
	int is_orphan = 0;
3716
	u64 last_dir_ino_rm = 0;
3717
	bool can_rename = true;
3718
	bool orphanized_dir = false;
3719
	bool orphanized_ancestor = false;
3720

3721
	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3722

3723 3724 3725 3726 3727
	/*
	 * This should never happen as the root dir always has the same ref
	 * which is always '..'
	 */
	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3728
	INIT_LIST_HEAD(&check_dirs);
3729

3730
	valid_path = fs_path_alloc();
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	if (!valid_path) {
		ret = -ENOMEM;
		goto out;
	}

	/*
	 * First, check if the first ref of the current inode was overwritten
	 * before. If yes, we know that the current inode was already orphanized
	 * and thus use the orphan name. If not, we can use get_cur_path to
	 * get the path of the first ref as it would like while receiving at
	 * this point in time.
	 * New inodes are always orphan at the beginning, so force to use the
	 * orphan name in this case.
	 * The first ref is stored in valid_path and will be updated if it
	 * gets moved around.
	 */
	if (!sctx->cur_inode_new) {
		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
				sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
		if (ret)
			did_overwrite = 1;
	}
	if (sctx->cur_inode_new || did_overwrite) {
		ret = gen_unique_name(sctx, sctx->cur_ino,
				sctx->cur_inode_gen, valid_path);
		if (ret < 0)
			goto out;
		is_orphan = 1;
	} else {
		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				valid_path);
		if (ret < 0)
			goto out;
	}

	list_for_each_entry(cur, &sctx->new_refs, list) {
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
		/*
		 * We may have refs where the parent directory does not exist
		 * yet. This happens if the parent directories inum is higher
		 * the the current inum. To handle this case, we create the
		 * parent directory out of order. But we need to check if this
		 * did already happen before due to other refs in the same dir.
		 */
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
		if (ret == inode_state_will_create) {
			ret = 0;
			/*
			 * First check if any of the current inodes refs did
			 * already create the dir.
			 */
			list_for_each_entry(cur2, &sctx->new_refs, list) {
				if (cur == cur2)
					break;
				if (cur2->dir == cur->dir) {
					ret = 1;
					break;
				}
			}

			/*
			 * If that did not happen, check if a previous inode
			 * did already create the dir.
			 */
			if (!ret)
				ret = did_create_dir(sctx, cur->dir);
			if (ret < 0)
				goto out;
			if (!ret) {
				ret = send_create_inode(sctx, cur->dir);
				if (ret < 0)
					goto out;
			}
		}

3809 3810 3811 3812 3813 3814 3815 3816
		/*
		 * Check if this new ref would overwrite the first ref of
		 * another unprocessed inode. If yes, orphanize the
		 * overwritten inode. If we find an overwritten ref that is
		 * not the first ref, simply unlink it.
		 */
		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
				cur->name, cur->name_len,
3817
				&ow_inode, &ow_gen, &ow_mode);
3818 3819 3820
		if (ret < 0)
			goto out;
		if (ret) {
3821 3822 3823
			ret = is_first_ref(sctx->parent_root,
					   ow_inode, cur->dir, cur->name,
					   cur->name_len);
3824 3825 3826
			if (ret < 0)
				goto out;
			if (ret) {
3827
				struct name_cache_entry *nce;
3828
				struct waiting_dir_move *wdm;
3829

3830 3831 3832 3833
				ret = orphanize_inode(sctx, ow_inode, ow_gen,
						cur->full_path);
				if (ret < 0)
					goto out;
3834 3835
				if (S_ISDIR(ow_mode))
					orphanized_dir = true;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849

				/*
				 * If ow_inode has its rename operation delayed
				 * make sure that its orphanized name is used in
				 * the source path when performing its rename
				 * operation.
				 */
				if (is_waiting_for_move(sctx, ow_inode)) {
					wdm = get_waiting_dir_move(sctx,
								   ow_inode);
					ASSERT(wdm);
					wdm->orphanized = true;
				}

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
				/*
				 * Make sure we clear our orphanized inode's
				 * name from the name cache. This is because the
				 * inode ow_inode might be an ancestor of some
				 * other inode that will be orphanized as well
				 * later and has an inode number greater than
				 * sctx->send_progress. We need to prevent
				 * future name lookups from using the old name
				 * and get instead the orphan name.
				 */
				nce = name_cache_search(sctx, ow_inode, ow_gen);
				if (nce) {
					name_cache_delete(sctx, nce);
					kfree(nce);
				}
3865 3866 3867 3868 3869 3870 3871 3872

				/*
				 * ow_inode might currently be an ancestor of
				 * cur_ino, therefore compute valid_path (the
				 * current path of cur_ino) again because it
				 * might contain the pre-orphanization name of
				 * ow_inode, which is no longer valid.
				 */
3873 3874 3875 3876
				ret = is_ancestor(sctx->parent_root,
						  ow_inode, ow_gen,
						  sctx->cur_ino, NULL);
				if (ret > 0) {
3877
					orphanized_ancestor = true;
3878 3879 3880 3881 3882
					fs_path_reset(valid_path);
					ret = get_cur_path(sctx, sctx->cur_ino,
							   sctx->cur_inode_gen,
							   valid_path);
				}
3883 3884
				if (ret < 0)
					goto out;
3885 3886 3887 3888 3889 3890 3891
			} else {
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
			}
		}

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
			if (ret < 0)
				goto out;
			if (ret == 1) {
				can_rename = false;
				*pending_move = 1;
			}
		}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
		    can_rename) {
			ret = wait_for_parent_move(sctx, cur, is_orphan);
			if (ret < 0)
				goto out;
			if (ret == 1) {
				can_rename = false;
				*pending_move = 1;
			}
		}

3913 3914 3915 3916 3917
		/*
		 * link/move the ref to the new place. If we have an orphan
		 * inode, move it and update valid_path. If not, link or move
		 * it depending on the inode mode.
		 */
3918
		if (is_orphan && can_rename) {
3919 3920 3921 3922 3923 3924 3925
			ret = send_rename(sctx, valid_path, cur->full_path);
			if (ret < 0)
				goto out;
			is_orphan = 0;
			ret = fs_path_copy(valid_path, cur->full_path);
			if (ret < 0)
				goto out;
3926
		} else if (can_rename) {
3927 3928 3929 3930 3931 3932
			if (S_ISDIR(sctx->cur_inode_mode)) {
				/*
				 * Dirs can't be linked, so move it. For moved
				 * dirs, we always have one new and one deleted
				 * ref. The deleted ref is ignored later.
				 */
3933 3934 3935 3936 3937
				ret = send_rename(sctx, valid_path,
						  cur->full_path);
				if (!ret)
					ret = fs_path_copy(valid_path,
							   cur->full_path);
3938 3939 3940
				if (ret < 0)
					goto out;
			} else {
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
				/*
				 * We might have previously orphanized an inode
				 * which is an ancestor of our current inode,
				 * so our reference's full path, which was
				 * computed before any such orphanizations, must
				 * be updated.
				 */
				if (orphanized_dir) {
					ret = update_ref_path(sctx, cur);
					if (ret < 0)
						goto out;
				}
3953 3954 3955 3956 3957 3958
				ret = send_link(sctx, cur->full_path,
						valid_path);
				if (ret < 0)
					goto out;
			}
		}
3959
		ret = dup_ref(cur, &check_dirs);
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		if (ret < 0)
			goto out;
	}

	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
		/*
		 * Check if we can already rmdir the directory. If not,
		 * orphanize it. For every dir item inside that gets deleted
		 * later, we do this check again and rmdir it then if possible.
		 * See the use of check_dirs for more details.
		 */
3971 3972
		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				sctx->cur_ino);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
		if (ret < 0)
			goto out;
		if (ret) {
			ret = send_rmdir(sctx, valid_path);
			if (ret < 0)
				goto out;
		} else if (!is_orphan) {
			ret = orphanize_inode(sctx, sctx->cur_ino,
					sctx->cur_inode_gen, valid_path);
			if (ret < 0)
				goto out;
			is_orphan = 1;
		}

		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3988
			ret = dup_ref(cur, &check_dirs);
3989 3990 3991
			if (ret < 0)
				goto out;
		}
3992 3993 3994 3995 3996 3997 3998
	} else if (S_ISDIR(sctx->cur_inode_mode) &&
		   !list_empty(&sctx->deleted_refs)) {
		/*
		 * We have a moved dir. Add the old parent to check_dirs
		 */
		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
				list);
3999
		ret = dup_ref(cur, &check_dirs);
4000 4001
		if (ret < 0)
			goto out;
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
		/*
		 * We have a non dir inode. Go through all deleted refs and
		 * unlink them if they were not already overwritten by other
		 * inodes.
		 */
		list_for_each_entry(cur, &sctx->deleted_refs, list) {
			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino, sctx->cur_inode_gen,
					cur->name, cur->name_len);
			if (ret < 0)
				goto out;
			if (!ret) {
4015 4016 4017 4018 4019 4020 4021 4022
				/*
				 * If we orphanized any ancestor before, we need
				 * to recompute the full path for deleted names,
				 * since any such path was computed before we
				 * processed any references and orphanized any
				 * ancestor inode.
				 */
				if (orphanized_ancestor) {
4023 4024
					ret = update_ref_path(sctx, cur);
					if (ret < 0)
4025 4026
						goto out;
				}
4027 4028 4029
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
4030
			}
4031
			ret = dup_ref(cur, &check_dirs);
4032 4033 4034 4035 4036 4037 4038
			if (ret < 0)
				goto out;
		}
		/*
		 * If the inode is still orphan, unlink the orphan. This may
		 * happen when a previous inode did overwrite the first ref
		 * of this inode and no new refs were added for the current
4039 4040 4041
		 * inode. Unlinking does not mean that the inode is deleted in
		 * all cases. There may still be links to this inode in other
		 * places.
4042
		 */
4043
		if (is_orphan) {
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
			ret = send_unlink(sctx, valid_path);
			if (ret < 0)
				goto out;
		}
	}

	/*
	 * We did collect all parent dirs where cur_inode was once located. We
	 * now go through all these dirs and check if they are pending for
	 * deletion and if it's finally possible to perform the rmdir now.
	 * We also update the inode stats of the parent dirs here.
	 */
4056
	list_for_each_entry(cur, &check_dirs, list) {
4057 4058 4059 4060 4061
		/*
		 * In case we had refs into dirs that were not processed yet,
		 * we don't need to do the utime and rmdir logic for these dirs.
		 * The dir will be processed later.
		 */
4062
		if (cur->dir > sctx->cur_ino)
4063 4064
			continue;

4065
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4066 4067 4068 4069 4070 4071
		if (ret < 0)
			goto out;

		if (ret == inode_state_did_create ||
		    ret == inode_state_no_change) {
			/* TODO delayed utimes */
4072
			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4073 4074
			if (ret < 0)
				goto out;
4075 4076
		} else if (ret == inode_state_did_delete &&
			   cur->dir != last_dir_ino_rm) {
4077 4078
			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino);
4079 4080 4081
			if (ret < 0)
				goto out;
			if (ret) {
4082 4083
				ret = get_cur_path(sctx, cur->dir,
						   cur->dir_gen, valid_path);
4084 4085 4086 4087 4088
				if (ret < 0)
					goto out;
				ret = send_rmdir(sctx, valid_path);
				if (ret < 0)
					goto out;
4089
				last_dir_ino_rm = cur->dir;
4090 4091 4092 4093 4094 4095 4096
			}
		}
	}

	ret = 0;

out:
4097
	__free_recorded_refs(&check_dirs);
4098
	free_recorded_refs(sctx);
4099
	fs_path_free(valid_path);
4100 4101 4102
	return ret;
}

4103 4104
static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
		      void *ctx, struct list_head *refs)
4105 4106 4107 4108 4109 4110
{
	int ret = 0;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
	u64 gen;

4111
	p = fs_path_alloc();
4112 4113 4114
	if (!p)
		return -ENOMEM;

4115
	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4116
			NULL, NULL);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, dir, gen, p);
	if (ret < 0)
		goto out;
	ret = fs_path_add_path(p, name);
	if (ret < 0)
		goto out;

4127
	ret = __record_ref(refs, dir, gen, p);
4128 4129 4130

out:
	if (ret)
4131
		fs_path_free(p);
4132 4133 4134
	return ret;
}

4135 4136 4137 4138 4139
static int __record_new_ref(int num, u64 dir, int index,
			    struct fs_path *name,
			    void *ctx)
{
	struct send_ctx *sctx = ctx;
4140
	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4141 4142 4143
}


4144 4145 4146 4147 4148
static int __record_deleted_ref(int num, u64 dir, int index,
				struct fs_path *name,
				void *ctx)
{
	struct send_ctx *sctx = ctx;
4149 4150
	return record_ref(sctx->parent_root, dir, name, ctx,
			  &sctx->deleted_refs);
4151 4152 4153 4154 4155 4156
}

static int record_new_ref(struct send_ctx *sctx)
{
	int ret;

4157 4158
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
				sctx->cmp_key, 0, __record_new_ref, sctx);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

static int record_deleted_ref(struct send_ctx *sctx)
{
	int ret;

4171 4172
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

struct find_ref_ctx {
	u64 dir;
4183 4184
	u64 dir_gen;
	struct btrfs_root *root;
4185 4186 4187 4188 4189 4190 4191 4192 4193
	struct fs_path *name;
	int found_idx;
};

static int __find_iref(int num, u64 dir, int index,
		       struct fs_path *name,
		       void *ctx_)
{
	struct find_ref_ctx *ctx = ctx_;
4194 4195
	u64 dir_gen;
	int ret;
4196 4197 4198

	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
		/*
		 * To avoid doing extra lookups we'll only do this if everything
		 * else matches.
		 */
		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret)
			return ret;
		if (dir_gen != ctx->dir_gen)
			return 0;
4209 4210 4211 4212 4213 4214
		ctx->found_idx = num;
		return 1;
	}
	return 0;
}

4215
static int find_iref(struct btrfs_root *root,
4216 4217
		     struct btrfs_path *path,
		     struct btrfs_key *key,
4218
		     u64 dir, u64 dir_gen, struct fs_path *name)
4219 4220 4221 4222 4223 4224
{
	int ret;
	struct find_ref_ctx ctx;

	ctx.dir = dir;
	ctx.name = name;
4225
	ctx.dir_gen = dir_gen;
4226
	ctx.found_idx = -1;
4227
	ctx.root = root;
4228

4229
	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;

	return ctx.found_idx;
}

static int __record_changed_new_ref(int num, u64 dir, int index,
				    struct fs_path *name,
				    void *ctx)
{
4243
	u64 dir_gen;
4244 4245 4246
	int ret;
	struct send_ctx *sctx = ctx;

4247 4248 4249 4250 4251
	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

4252
	ret = find_iref(sctx->parent_root, sctx->right_path,
4253
			sctx->cmp_key, dir, dir_gen, name);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	if (ret == -ENOENT)
		ret = __record_new_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int __record_changed_deleted_ref(int num, u64 dir, int index,
					struct fs_path *name,
					void *ctx)
{
4266
	u64 dir_gen;
4267 4268 4269
	int ret;
	struct send_ctx *sctx = ctx;

4270 4271 4272 4273 4274
	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

4275
	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4276
			dir, dir_gen, name);
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	if (ret == -ENOENT)
		ret = __record_deleted_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int record_changed_ref(struct send_ctx *sctx)
{
	int ret = 0;

4289
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4290 4291 4292
			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
	if (ret < 0)
		goto out;
4293
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

/*
 * Record and process all refs at once. Needed when an inode changes the
 * generation number, which means that it was deleted and recreated.
 */
static int process_all_refs(struct send_ctx *sctx,
			    enum btrfs_compare_tree_result cmd)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;
	iterate_inode_ref_t cb;
4318
	int pending_move = 0;
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	if (cmd == BTRFS_COMPARE_TREE_NEW) {
		root = sctx->send_root;
		cb = __record_new_ref;
	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
		root = sctx->parent_root;
		cb = __record_deleted_ref;
	} else {
4331 4332 4333 4334
		btrfs_err(sctx->send_root->fs_info,
				"Wrong command %d in process_all_refs", cmd);
		ret = -EINVAL;
		goto out;
4335 4336 4337 4338 4339
	}

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
4340 4341 4342
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4343

4344
	while (1) {
4345 4346
		eb = path->nodes[0];
		slot = path->slots[0];
4347 4348 4349 4350 4351 4352 4353 4354 4355
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

4356 4357 4358
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
4359 4360
		    (found_key.type != BTRFS_INODE_REF_KEY &&
		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4361 4362
			break;

4363
		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4364 4365 4366
		if (ret < 0)
			goto out;

4367
		path->slots[0]++;
4368
	}
4369
	btrfs_release_path(path);
4370

4371 4372 4373 4374 4375
	/*
	 * We don't actually care about pending_move as we are simply
	 * re-creating this inode and will be rename'ing it into place once we
	 * rename the parent directory.
	 */
4376
	ret = process_recorded_refs(sctx, &pending_move);
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
out:
	btrfs_free_path(path);
	return ret;
}

static int send_set_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len,
			  const char *data, int data_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int send_remove_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int __process_new_xattr(int num, struct btrfs_key *di_key,
			       const char *name, int name_len,
			       const char *data, int data_len,
			       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
4432
	struct posix_acl_xattr_header dummy_acl;
4433

4434
	p = fs_path_alloc();
4435 4436 4437 4438
	if (!p)
		return -ENOMEM;

	/*
4439
	 * This hack is needed because empty acls are stored as zero byte
4440
	 * data in xattrs. Problem with that is, that receiving these zero byte
4441
	 * acls will fail later. To fix this, we send a dummy acl list that
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	 * only contains the version number and no entries.
	 */
	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
		if (data_len == 0) {
			dummy_acl.a_version =
					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
			data = (char *)&dummy_acl;
			data_len = sizeof(dummy_acl);
		}
	}

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);

out:
4461
	fs_path_free(p);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
	return ret;
}

static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
				   const char *name, int name_len,
				   const char *data, int data_len,
				   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;

4474
	p = fs_path_alloc();
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
	if (!p)
		return -ENOMEM;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_remove_xattr(sctx, p, name, name_len);

out:
4485
	fs_path_free(p);
4486 4487 4488 4489 4490 4491 4492
	return ret;
}

static int process_new_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4493
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4494
			       __process_new_xattr, sctx);
4495 4496 4497 4498 4499 4500

	return ret;
}

static int process_deleted_xattr(struct send_ctx *sctx)
{
4501
	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4502
				__process_deleted_xattr, sctx);
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
}

struct find_xattr_ctx {
	const char *name;
	int name_len;
	int found_idx;
	char *found_data;
	int found_data_len;
};

static int __find_xattr(int num, struct btrfs_key *di_key,
			const char *name, int name_len,
			const char *data, int data_len,
			u8 type, void *vctx)
{
	struct find_xattr_ctx *ctx = vctx;

	if (name_len == ctx->name_len &&
	    strncmp(name, ctx->name, name_len) == 0) {
		ctx->found_idx = num;
		ctx->found_data_len = data_len;
4524
		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4525 4526 4527 4528 4529 4530 4531
		if (!ctx->found_data)
			return -ENOMEM;
		return 1;
	}
	return 0;
}

4532
static int find_xattr(struct btrfs_root *root,
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
		      struct btrfs_path *path,
		      struct btrfs_key *key,
		      const char *name, int name_len,
		      char **data, int *data_len)
{
	int ret;
	struct find_xattr_ctx ctx;

	ctx.name = name;
	ctx.name_len = name_len;
	ctx.found_idx = -1;
	ctx.found_data = NULL;
	ctx.found_data_len = 0;

4547
	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;
	if (data) {
		*data = ctx.found_data;
		*data_len = ctx.found_data_len;
	} else {
		kfree(ctx.found_data);
	}
	return ctx.found_idx;
}


static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
				       const char *name, int name_len,
				       const char *data, int data_len,
				       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	char *found_data = NULL;
	int found_data_len  = 0;

4573 4574 4575
	ret = find_xattr(sctx->parent_root, sctx->right_path,
			 sctx->cmp_key, name, name_len, &found_data,
			 &found_data_len);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	if (ret == -ENOENT) {
		ret = __process_new_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	} else if (ret >= 0) {
		if (data_len != found_data_len ||
		    memcmp(data, found_data, data_len)) {
			ret = __process_new_xattr(num, di_key, name, name_len,
					data, data_len, type, ctx);
		} else {
			ret = 0;
		}
	}

	kfree(found_data);
	return ret;
}

static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
					   const char *name, int name_len,
					   const char *data, int data_len,
					   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;

4601 4602
	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
			 name, name_len, NULL, NULL);
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	if (ret == -ENOENT)
		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	else if (ret >= 0)
		ret = 0;

	return ret;
}

static int process_changed_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4616
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4617
			__process_changed_new_xattr, sctx);
4618 4619
	if (ret < 0)
		goto out;
4620
	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4621
			__process_changed_deleted_xattr, sctx);
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645

out:
	return ret;
}

static int process_all_new_xattrs(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	root = sctx->send_root;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;
4646 4647 4648
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4649

4650
	while (1) {
4651 4652
		eb = path->nodes[0];
		slot = path->slots[0];
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}
4663

4664
		btrfs_item_key_to_cpu(eb, &found_key, slot);
4665 4666 4667 4668 4669 4670
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

4671
		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4672 4673 4674
		if (ret < 0)
			goto out;

4675
		path->slots[0]++;
4676 4677 4678 4679 4680 4681 4682
	}

out:
	btrfs_free_path(path);
	return ret;
}

J
Josef Bacik 已提交
4683 4684 4685 4686 4687 4688 4689 4690
static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
{
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct inode *inode;
	struct page *page;
	char *addr;
	struct btrfs_key key;
4691
	pgoff_t index = offset >> PAGE_SHIFT;
J
Josef Bacik 已提交
4692
	pgoff_t last_index;
4693
	unsigned pg_offset = offset & ~PAGE_MASK;
J
Josef Bacik 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	ssize_t ret = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	if (offset + len > i_size_read(inode)) {
		if (offset > i_size_read(inode))
			len = 0;
		else
			len = offset - i_size_read(inode);
	}
	if (len == 0)
		goto out;

4713
	last_index = (offset + len - 1) >> PAGE_SHIFT;
L
Liu Bo 已提交
4714 4715 4716 4717 4718

	/* initial readahead */
	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
	file_ra_state_init(&sctx->ra, inode->i_mapping);

J
Josef Bacik 已提交
4719 4720
	while (index <= last_index) {
		unsigned cur_len = min_t(unsigned, len,
4721
					 PAGE_SIZE - pg_offset);
4722 4723

		page = find_lock_page(inode->i_mapping, index);
J
Josef Bacik 已提交
4724
		if (!page) {
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
				NULL, index, last_index + 1 - index);

			page = find_or_create_page(inode->i_mapping, index,
					GFP_KERNEL);
			if (!page) {
				ret = -ENOMEM;
				break;
			}
		}

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
				NULL, page, index, last_index + 1 - index);
J
Josef Bacik 已提交
4739 4740 4741 4742 4743 4744 4745
		}

		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
4746
				put_page(page);
J
Josef Bacik 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755
				ret = -EIO;
				break;
			}
		}

		addr = kmap(page);
		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
		kunmap(page);
		unlock_page(page);
4756
		put_page(page);
J
Josef Bacik 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
		index++;
		pg_offset = 0;
		len -= cur_len;
		ret += cur_len;
	}
out:
	iput(inode);
	return ret;
}

4767 4768 4769 4770 4771 4772
/*
 * Read some bytes from the current inode/file and send a write command to
 * user space.
 */
static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
{
4773
	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4774 4775
	int ret = 0;
	struct fs_path *p;
J
Josef Bacik 已提交
4776
	ssize_t num_read = 0;
4777

4778
	p = fs_path_alloc();
4779 4780 4781
	if (!p)
		return -ENOMEM;

4782
	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4783

J
Josef Bacik 已提交
4784 4785 4786 4787
	num_read = fill_read_buf(sctx, offset, len);
	if (num_read <= 0) {
		if (num_read < 0)
			ret = num_read;
4788
		goto out;
J
Josef Bacik 已提交
4789
	}
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800

	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4801
	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4802 4803 4804 4805 4806

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4807
	fs_path_free(p);
4808 4809
	if (ret < 0)
		return ret;
4810
	return num_read;
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
}

/*
 * Send a clone command to user space.
 */
static int send_clone(struct send_ctx *sctx,
		      u64 offset, u32 len,
		      struct clone_root *clone_root)
{
	int ret = 0;
	struct fs_path *p;
	u64 gen;

4824 4825 4826 4827
	btrfs_debug(sctx->send_root->fs_info,
		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
		    offset, len, clone_root->root->objectid, clone_root->ino,
		    clone_root->offset);
4828

4829
	p = fs_path_alloc();
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);

4845
	if (clone_root->root == sctx->send_root) {
4846
		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4847
				&gen, NULL, NULL, NULL, NULL);
4848 4849 4850 4851
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, clone_root->ino, gen, p);
	} else {
4852
		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4853 4854 4855 4856
	}
	if (ret < 0)
		goto out;

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	/*
	 * If the parent we're using has a received_uuid set then use that as
	 * our clone source as that is what we will look for when doing a
	 * receive.
	 *
	 * This covers the case that we create a snapshot off of a received
	 * subvolume and then use that as the parent and try to receive on a
	 * different host.
	 */
	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
			     clone_root->root->root_item.received_uuid);
	else
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
			     clone_root->root->root_item.uuid);
4872
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4873
		    le64_to_cpu(clone_root->root->root_item.ctransid));
4874 4875 4876 4877 4878 4879 4880 4881
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
			clone_root->offset);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4882
	fs_path_free(p);
4883 4884 4885
	return ret;
}

4886 4887 4888 4889 4890 4891 4892 4893 4894
/*
 * Send an update extent command to user space.
 */
static int send_update_extent(struct send_ctx *sctx,
			      u64 offset, u32 len)
{
	int ret = 0;
	struct fs_path *p;

4895
	p = fs_path_alloc();
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4915
	fs_path_free(p);
4916 4917 4918
	return ret;
}

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
static int send_hole(struct send_ctx *sctx, u64 end)
{
	struct fs_path *p = NULL;
	u64 offset = sctx->cur_inode_last_extent;
	u64 len;
	int ret = 0;

	p = fs_path_alloc();
	if (!p)
		return -ENOMEM;
4929 4930 4931
	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto tlv_put_failure;
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
	while (offset < end) {
		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);

		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
		if (ret < 0)
			break;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
		ret = send_cmd(sctx);
		if (ret < 0)
			break;
		offset += len;
	}
tlv_put_failure:
	fs_path_free(p);
	return ret;
}

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
static int send_extent_data(struct send_ctx *sctx,
			    const u64 offset,
			    const u64 len)
{
	u64 sent = 0;

	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
		return send_update_extent(sctx, offset, len);

	while (sent < len) {
		u64 size = len - sent;
		int ret;

		if (size > BTRFS_SEND_READ_SIZE)
			size = BTRFS_SEND_READ_SIZE;
		ret = send_write(sctx, offset + sent, size);
		if (ret < 0)
			return ret;
		if (!ret)
			break;
		sent += ret;
	}
	return 0;
}

static int clone_range(struct send_ctx *sctx,
		       struct clone_root *clone_root,
		       const u64 disk_byte,
		       u64 data_offset,
		       u64 offset,
		       u64 len)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	/*
	 * Prevent cloning from a zero offset with a length matching the sector
	 * size because in some scenarios this will make the receiver fail.
	 *
	 * For example, if in the source filesystem the extent at offset 0
	 * has a length of sectorsize and it was written using direct IO, then
	 * it can never be an inline extent (even if compression is enabled).
	 * Then this extent can be cloned in the original filesystem to a non
	 * zero file offset, but it may not be possible to clone in the
	 * destination filesystem because it can be inlined due to compression
	 * on the destination filesystem (as the receiver's write operations are
	 * always done using buffered IO). The same happens when the original
	 * filesystem does not have compression enabled but the destination
	 * filesystem has.
	 */
	if (clone_root->offset == 0 &&
	    len == sctx->send_root->fs_info->sectorsize)
		return send_extent_data(sctx, offset, len);

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	/*
	 * We can't send a clone operation for the entire range if we find
	 * extent items in the respective range in the source file that
	 * refer to different extents or if we find holes.
	 * So check for that and do a mix of clone and regular write/copy
	 * operations if needed.
	 *
	 * Example:
	 *
	 * mkfs.btrfs -f /dev/sda
	 * mount /dev/sda /mnt
	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
	 * cp --reflink=always /mnt/foo /mnt/bar
	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
	 * btrfs subvolume snapshot -r /mnt /mnt/snap
	 *
	 * If when we send the snapshot and we are processing file bar (which
	 * has a higher inode number than foo) we blindly send a clone operation
	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
	 * a file bar that matches the content of file foo - iow, doesn't match
	 * the content from bar in the original filesystem.
	 */
	key.objectid = clone_root->ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = clone_root->offset;
	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0 && path->slots[0] > 0) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
		if (key.objectid == clone_root->ino &&
		    key.type == BTRFS_EXTENT_DATA_KEY)
			path->slots[0]--;
	}

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_file_extent_item *ei;
		u8 type;
		u64 ext_len;
		u64 clone_len;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(clone_root->root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);

		/*
		 * We might have an implicit trailing hole (NO_HOLES feature
		 * enabled). We deal with it after leaving this loop.
		 */
		if (key.objectid != clone_root->ino ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(leaf, ei);
		if (type == BTRFS_FILE_EXTENT_INLINE) {
			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5077
			ext_len = PAGE_ALIGN(ext_len);
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
		} else {
			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
		}

		if (key.offset + ext_len <= clone_root->offset)
			goto next;

		if (key.offset > clone_root->offset) {
			/* Implicit hole, NO_HOLES feature enabled. */
			u64 hole_len = key.offset - clone_root->offset;

			if (hole_len > len)
				hole_len = len;
			ret = send_extent_data(sctx, offset, hole_len);
			if (ret < 0)
				goto out;

			len -= hole_len;
			if (len == 0)
				break;
			offset += hole_len;
			clone_root->offset += hole_len;
			data_offset += hole_len;
		}

		if (key.offset >= clone_root->offset + len)
			break;

		clone_len = min_t(u64, ext_len, len);

		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
		    btrfs_file_extent_offset(leaf, ei) == data_offset)
			ret = send_clone(sctx, offset, clone_len, clone_root);
		else
			ret = send_extent_data(sctx, offset, clone_len);

		if (ret < 0)
			goto out;

		len -= clone_len;
		if (len == 0)
			break;
		offset += clone_len;
		clone_root->offset += clone_len;
		data_offset += clone_len;
next:
		path->slots[0]++;
	}

	if (len > 0)
		ret = send_extent_data(sctx, offset, len);
	else
		ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
static int send_write_or_clone(struct send_ctx *sctx,
			       struct btrfs_path *path,
			       struct btrfs_key *key,
			       struct clone_root *clone_root)
{
	int ret = 0;
	struct btrfs_file_extent_item *ei;
	u64 offset = key->offset;
	u64 len;
	u8 type;
5146
	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5147 5148 5149 5150

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
5151
	if (type == BTRFS_FILE_EXTENT_INLINE) {
5152 5153
		len = btrfs_file_extent_inline_len(path->nodes[0],
						   path->slots[0], ei);
5154 5155 5156 5157 5158
		/*
		 * it is possible the inline item won't cover the whole page,
		 * but there may be items after this page.  Make
		 * sure to send the whole thing
		 */
5159
		len = PAGE_ALIGN(len);
5160
	} else {
5161
		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5162
	}
5163 5164 5165 5166 5167 5168 5169 5170

	if (offset + len > sctx->cur_inode_size)
		len = sctx->cur_inode_size - offset;
	if (len == 0) {
		ret = 0;
		goto out;
	}

5171
	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5172 5173 5174 5175 5176 5177 5178
		u64 disk_byte;
		u64 data_offset;

		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
				  offset, len);
5179
	} else {
5180
		ret = send_extent_data(sctx, offset, len);
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	}
out:
	return ret;
}

static int is_extent_unchanged(struct send_ctx *sctx,
			       struct btrfs_path *left_path,
			       struct btrfs_key *ekey)
{
	int ret = 0;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_key found_key;
	struct btrfs_file_extent_item *ei;
	u64 left_disknr;
	u64 right_disknr;
	u64 left_offset;
	u64 right_offset;
	u64 left_offset_fixed;
	u64 left_len;
	u64 right_len;
5204 5205
	u64 left_gen;
	u64 right_gen;
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
	u8 left_type;
	u8 right_type;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	eb = left_path->nodes[0];
	slot = left_path->slots[0];
	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	left_type = btrfs_file_extent_type(eb, ei);

	if (left_type != BTRFS_FILE_EXTENT_REG) {
		ret = 0;
		goto out;
	}
5222 5223 5224 5225
	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
	left_len = btrfs_file_extent_num_bytes(eb, ei);
	left_offset = btrfs_file_extent_offset(eb, ei);
	left_gen = btrfs_file_extent_generation(eb, ei);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	/*
	 * Following comments will refer to these graphics. L is the left
	 * extents which we are checking at the moment. 1-8 are the right
	 * extents that we iterate.
	 *
	 *       |-----L-----|
	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
	 *
	 *       |-----L-----|
	 * |--1--|-2b-|...(same as above)
	 *
	 * Alternative situation. Happens on files where extents got split.
	 *       |-----L-----|
	 * |-----------7-----------|-6-|
	 *
	 * Alternative situation. Happens on files which got larger.
	 *       |-----L-----|
	 * |-8-|
	 * Nothing follows after 8.
	 */

	key.objectid = ekey->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = ekey->offset;
	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

	/*
	 * Handle special case where the right side has no extents at all.
	 */
	eb = path->nodes[0];
	slot = path->slots[0];
	btrfs_item_key_to_cpu(eb, &found_key, slot);
	if (found_key.objectid != key.objectid ||
	    found_key.type != key.type) {
5267 5268
		/* If we're a hole then just pretend nothing changed */
		ret = (left_disknr) ? 0 : 1;
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		goto out;
	}

	/*
	 * We're now on 2a, 2b or 7.
	 */
	key = found_key;
	while (key.offset < ekey->offset + left_len) {
		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		right_type = btrfs_file_extent_type(eb, ei);
5279 5280
		if (right_type != BTRFS_FILE_EXTENT_REG &&
		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5281 5282 5283 5284
			ret = 0;
			goto out;
		}

5285 5286 5287 5288 5289 5290
		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
			right_len = PAGE_ALIGN(right_len);
		} else {
			right_len = btrfs_file_extent_num_bytes(eb, ei);
		}
5291

5292 5293 5294 5295
		/*
		 * Are we at extent 8? If yes, we know the extent is changed.
		 * This may only happen on the first iteration.
		 */
5296
		if (found_key.offset + right_len <= ekey->offset) {
5297 5298
			/* If we're a hole just pretend nothing changed */
			ret = (left_disknr) ? 0 : 1;
5299 5300 5301
			goto out;
		}

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
		/*
		 * We just wanted to see if when we have an inline extent, what
		 * follows it is a regular extent (wanted to check the above
		 * condition for inline extents too). This should normally not
		 * happen but it's possible for example when we have an inline
		 * compressed extent representing data with a size matching
		 * the page size (currently the same as sector size).
		 */
		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
			ret = 0;
			goto out;
		}

5315 5316 5317 5318
		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
		right_offset = btrfs_file_extent_offset(eb, ei);
		right_gen = btrfs_file_extent_generation(eb, ei);

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
		left_offset_fixed = left_offset;
		if (key.offset < ekey->offset) {
			/* Fix the right offset for 2a and 7. */
			right_offset += ekey->offset - key.offset;
		} else {
			/* Fix the left offset for all behind 2a and 2b */
			left_offset_fixed += key.offset - ekey->offset;
		}

		/*
		 * Check if we have the same extent.
		 */
5331
		if (left_disknr != right_disknr ||
5332 5333
		    left_offset_fixed != right_offset ||
		    left_gen != right_gen) {
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
			ret = 0;
			goto out;
		}

		/*
		 * Go to the next extent.
		 */
		ret = btrfs_next_item(sctx->parent_root, path);
		if (ret < 0)
			goto out;
		if (!ret) {
			eb = path->nodes[0];
			slot = path->slots[0];
			btrfs_item_key_to_cpu(eb, &found_key, slot);
		}
		if (ret || found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			key.offset += right_len;
			break;
5353 5354 5355 5356
		}
		if (found_key.offset != key.offset + right_len) {
			ret = 0;
			goto out;
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
		}
		key = found_key;
	}

	/*
	 * We're now behind the left extent (treat as unchanged) or at the end
	 * of the right side (treat as changed).
	 */
	if (key.offset >= ekey->offset + left_len)
		ret = 1;
	else
		ret = 0;


out:
	btrfs_free_path(path);
	return ret;
}

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
static int get_last_extent(struct send_ctx *sctx, u64 offset)
{
	struct btrfs_path *path;
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_file_extent_item *fi;
	struct btrfs_key key;
	u64 extent_end;
	u8 type;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	sctx->cur_inode_last_extent = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = offset;
	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
	if (ret < 0)
		goto out;
	ret = 0;
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
		goto out;

	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], fi);
	if (type == BTRFS_FILE_EXTENT_INLINE) {
5407 5408
		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
							path->slots[0], fi);
5409
		extent_end = ALIGN(key.offset + size,
5410
				   sctx->send_root->fs_info->sectorsize);
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	} else {
		extent_end = key.offset +
			btrfs_file_extent_num_bytes(path->nodes[0], fi);
	}
	sctx->cur_inode_last_extent = extent_end;
out:
	btrfs_free_path(path);
	return ret;
}

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
static int range_is_hole_in_parent(struct send_ctx *sctx,
				   const u64 start,
				   const u64 end)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root *root = sctx->parent_root;
	u64 search_start = start;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = search_start;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0 && path->slots[0] > 0)
		path->slots[0]--;

	while (search_start < end) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_file_extent_item *fi;
		u64 extent_end;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid < sctx->cur_ino ||
		    key.type < BTRFS_EXTENT_DATA_KEY)
			goto next;
		if (key.objectid > sctx->cur_ino ||
		    key.type > BTRFS_EXTENT_DATA_KEY ||
		    key.offset >= end)
			break;

		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE) {
			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);

			extent_end = ALIGN(key.offset + size,
					   root->fs_info->sectorsize);
		} else {
			extent_end = key.offset +
				btrfs_file_extent_num_bytes(leaf, fi);
		}
		if (extent_end <= start)
			goto next;
		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
			search_start = extent_end;
			goto next;
		}
		ret = 0;
		goto out;
next:
		path->slots[0]++;
	}
	ret = 1;
out:
	btrfs_free_path(path);
	return ret;
}

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
			   struct btrfs_key *key)
{
	struct btrfs_file_extent_item *fi;
	u64 extent_end;
	u8 type;
	int ret = 0;

	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
		return 0;

	if (sctx->cur_inode_last_extent == (u64)-1) {
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], fi);
	if (type == BTRFS_FILE_EXTENT_INLINE) {
5517 5518
		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
							path->slots[0], fi);
5519
		extent_end = ALIGN(key->offset + size,
5520
				   sctx->send_root->fs_info->sectorsize);
5521 5522 5523 5524
	} else {
		extent_end = key->offset +
			btrfs_file_extent_num_bytes(path->nodes[0], fi);
	}
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

	if (path->slots[0] == 0 &&
	    sctx->cur_inode_last_extent < key->offset) {
		/*
		 * We might have skipped entire leafs that contained only
		 * file extent items for our current inode. These leafs have
		 * a generation number smaller (older) than the one in the
		 * current leaf and the leaf our last extent came from, and
		 * are located between these 2 leafs.
		 */
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
	if (sctx->cur_inode_last_extent < key->offset) {
		ret = range_is_hole_in_parent(sctx,
					      sctx->cur_inode_last_extent,
					      key->offset);
		if (ret < 0)
			return ret;
		else if (ret == 0)
			ret = send_hole(sctx, key->offset);
		else
			ret = 0;
	}
5551 5552 5553 5554
	sctx->cur_inode_last_extent = extent_end;
	return ret;
}

5555 5556 5557 5558 5559
static int process_extent(struct send_ctx *sctx,
			  struct btrfs_path *path,
			  struct btrfs_key *key)
{
	struct clone_root *found_clone = NULL;
5560
	int ret = 0;
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570

	if (S_ISLNK(sctx->cur_inode_mode))
		return 0;

	if (sctx->parent_root && !sctx->cur_inode_new) {
		ret = is_extent_unchanged(sctx, path, key);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
5571
			goto out_hole;
5572
		}
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	} else {
		struct btrfs_file_extent_item *ei;
		u8 type;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(path->nodes[0], ei);
		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
		    type == BTRFS_FILE_EXTENT_REG) {
			/*
			 * The send spec does not have a prealloc command yet,
			 * so just leave a hole for prealloc'ed extents until
			 * we have enough commands queued up to justify rev'ing
			 * the send spec.
			 */
			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
				ret = 0;
				goto out;
			}

			/* Have a hole, just skip it. */
			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
				ret = 0;
				goto out;
			}
		}
5599 5600 5601 5602 5603 5604 5605 5606
	}

	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
			sctx->cur_inode_size, &found_clone);
	if (ret != -ENOENT && ret < 0)
		goto out;

	ret = send_write_or_clone(sctx, path, key, found_clone);
5607 5608 5609 5610
	if (ret)
		goto out;
out_hole:
	ret = maybe_send_hole(sctx, path, key);
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
out:
	return ret;
}

static int process_all_extents(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	root = sctx->send_root;
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
5633 5634 5635
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
5636

5637
	while (1) {
5638 5639
		eb = path->nodes[0];
		slot = path->slots[0];
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651

		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}

5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		ret = process_extent(sctx, path, &found_key);
		if (ret < 0)
			goto out;

5664
		path->slots[0]++;
5665 5666 5667 5668 5669 5670 5671
	}

out:
	btrfs_free_path(path);
	return ret;
}

5672 5673 5674
static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
					   int *pending_move,
					   int *refs_processed)
5675 5676 5677 5678 5679 5680
{
	int ret = 0;

	if (sctx->cur_ino == 0)
		goto out;
	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5681
	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5682 5683 5684 5685
		goto out;
	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
		goto out;

5686
	ret = process_recorded_refs(sctx, pending_move);
5687 5688 5689
	if (ret < 0)
		goto out;

5690
	*refs_processed = 1;
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
out:
	return ret;
}

static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
{
	int ret = 0;
	u64 left_mode;
	u64 left_uid;
	u64 left_gid;
	u64 right_mode;
	u64 right_uid;
	u64 right_gid;
	int need_chmod = 0;
	int need_chown = 0;
5706 5707
	int pending_move = 0;
	int refs_processed = 0;
5708

5709 5710
	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
					      &refs_processed);
5711 5712 5713
	if (ret < 0)
		goto out;

5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	/*
	 * We have processed the refs and thus need to advance send_progress.
	 * Now, calls to get_cur_xxx will take the updated refs of the current
	 * inode into account.
	 *
	 * On the other hand, if our current inode is a directory and couldn't
	 * be moved/renamed because its parent was renamed/moved too and it has
	 * a higher inode number, we can only move/rename our current inode
	 * after we moved/renamed its parent. Therefore in this case operate on
	 * the old path (pre move/rename) of our current inode, and the
	 * move/rename will be performed later.
	 */
	if (refs_processed && !pending_move)
		sctx->send_progress = sctx->cur_ino + 1;

5729 5730 5731 5732 5733 5734
	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
		goto out;
	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
		goto out;

	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5735
			&left_mode, &left_uid, &left_gid, NULL);
5736 5737 5738
	if (ret < 0)
		goto out;

5739 5740 5741
	if (!sctx->parent_root || sctx->cur_inode_new) {
		need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode))
5742
			need_chmod = 1;
5743 5744 5745 5746 5747 5748
	} else {
		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
				NULL, NULL, &right_mode, &right_uid,
				&right_gid, NULL);
		if (ret < 0)
			goto out;
5749

5750 5751 5752 5753
		if (left_uid != right_uid || left_gid != right_gid)
			need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
			need_chmod = 1;
5754 5755 5756
	}

	if (S_ISREG(sctx->cur_inode_mode)) {
5757
		if (need_send_hole(sctx)) {
5758 5759 5760
			if (sctx->cur_inode_last_extent == (u64)-1 ||
			    sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
				ret = get_last_extent(sctx, (u64)-1);
				if (ret)
					goto out;
			}
			if (sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
				ret = send_hole(sctx, sctx->cur_inode_size);
				if (ret)
					goto out;
			}
		}
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				sctx->cur_inode_size);
		if (ret < 0)
			goto out;
	}

	if (need_chown) {
		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_uid, left_gid);
		if (ret < 0)
			goto out;
	}
	if (need_chmod) {
		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_mode);
		if (ret < 0)
			goto out;
	}

	/*
5792 5793
	 * If other directory inodes depended on our current directory
	 * inode's move/rename, now do their move/rename operations.
5794
	 */
5795 5796 5797 5798
	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
		ret = apply_children_dir_moves(sctx);
		if (ret)
			goto out;
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
		/*
		 * Need to send that every time, no matter if it actually
		 * changed between the two trees as we have done changes to
		 * the inode before. If our inode is a directory and it's
		 * waiting to be moved/renamed, we will send its utimes when
		 * it's moved/renamed, therefore we don't need to do it here.
		 */
		sctx->send_progress = sctx->cur_ino + 1;
		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
5810 5811
	}

5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
out:
	return ret;
}

static int changed_inode(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;
	struct btrfs_key *key = sctx->cmp_key;
	struct btrfs_inode_item *left_ii = NULL;
	struct btrfs_inode_item *right_ii = NULL;
	u64 left_gen = 0;
	u64 right_gen = 0;

	sctx->cur_ino = key->objectid;
	sctx->cur_inode_new_gen = 0;
5828
	sctx->cur_inode_last_extent = (u64)-1;
5829 5830 5831 5832 5833 5834

	/*
	 * Set send_progress to current inode. This will tell all get_cur_xxx
	 * functions that the current inode's refs are not updated yet. Later,
	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
	 */
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
	sctx->send_progress = sctx->cur_ino;

	if (result == BTRFS_COMPARE_TREE_NEW ||
	    result == BTRFS_COMPARE_TREE_CHANGED) {
		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
				sctx->left_path->slots[0],
				struct btrfs_inode_item);
		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
				left_ii);
	} else {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);
		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
	}
	if (result == BTRFS_COMPARE_TREE_CHANGED) {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);

		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
5858 5859 5860 5861 5862 5863 5864 5865

		/*
		 * The cur_ino = root dir case is special here. We can't treat
		 * the inode as deleted+reused because it would generate a
		 * stream that tries to delete/mkdir the root dir.
		 */
		if (left_gen != right_gen &&
		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
			sctx->cur_inode_new_gen = 1;
	}

	if (result == BTRFS_COMPARE_TREE_NEW) {
		sctx->cur_inode_gen = left_gen;
		sctx->cur_inode_new = 1;
		sctx->cur_inode_deleted = 0;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->left_path->nodes[0], left_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->left_path->nodes[0], left_ii);
L
Liu Bo 已提交
5877 5878
		sctx->cur_inode_rdev = btrfs_inode_rdev(
				sctx->left_path->nodes[0], left_ii);
5879
		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5880
			ret = send_create_inode_if_needed(sctx);
5881 5882 5883 5884 5885 5886 5887 5888 5889
	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
		sctx->cur_inode_gen = right_gen;
		sctx->cur_inode_new = 0;
		sctx->cur_inode_deleted = 1;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->right_path->nodes[0], right_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->right_path->nodes[0], right_ii);
	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5890 5891 5892 5893 5894 5895 5896
		/*
		 * We need to do some special handling in case the inode was
		 * reported as changed with a changed generation number. This
		 * means that the original inode was deleted and new inode
		 * reused the same inum. So we have to treat the old inode as
		 * deleted and the new one as new.
		 */
5897
		if (sctx->cur_inode_new_gen) {
5898 5899 5900
			/*
			 * First, process the inode as if it was deleted.
			 */
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
			sctx->cur_inode_gen = right_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_deleted = 1;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->right_path->nodes[0], right_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->right_path->nodes[0], right_ii);
			ret = process_all_refs(sctx,
					BTRFS_COMPARE_TREE_DELETED);
			if (ret < 0)
				goto out;

5913 5914 5915
			/*
			 * Now process the inode as if it was new.
			 */
5916 5917 5918 5919 5920 5921 5922
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 1;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
L
Liu Bo 已提交
5923 5924
			sctx->cur_inode_rdev = btrfs_inode_rdev(
					sctx->left_path->nodes[0], left_ii);
5925
			ret = send_create_inode_if_needed(sctx);
5926 5927 5928 5929 5930 5931
			if (ret < 0)
				goto out;

			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
			if (ret < 0)
				goto out;
5932 5933 5934 5935 5936
			/*
			 * Advance send_progress now as we did not get into
			 * process_recorded_refs_if_needed in the new_gen case.
			 */
			sctx->send_progress = sctx->cur_ino + 1;
5937 5938 5939 5940 5941

			/*
			 * Now process all extents and xattrs of the inode as if
			 * they were all new.
			 */
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
			ret = process_all_extents(sctx);
			if (ret < 0)
				goto out;
			ret = process_all_new_xattrs(sctx);
			if (ret < 0)
				goto out;
		} else {
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_new_gen = 0;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
		}
	}

out:
	return ret;
}

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
/*
 * We have to process new refs before deleted refs, but compare_trees gives us
 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
 * first and later process them in process_recorded_refs.
 * For the cur_inode_new_gen case, we skip recording completely because
 * changed_inode did already initiate processing of refs. The reason for this is
 * that in this case, compare_tree actually compares the refs of 2 different
 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
 * refs of the right tree as deleted and all refs of the left tree as new.
 */
5974 5975 5976 5977 5978
static int changed_ref(struct send_ctx *sctx,
		       enum btrfs_compare_tree_result result)
{
	int ret = 0;

5979 5980 5981 5982
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
		inconsistent_snapshot_error(sctx, result, "reference");
		return -EIO;
	}
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996

	if (!sctx->cur_inode_new_gen &&
	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = record_new_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = record_deleted_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = record_changed_ref(sctx);
	}

	return ret;
}

5997 5998 5999 6000 6001
/*
 * Process new/deleted/changed xattrs. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of xattrs. The reason is the same as in changed_ref
 */
6002 6003 6004 6005 6006
static int changed_xattr(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;

6007 6008 6009 6010
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
		inconsistent_snapshot_error(sctx, result, "xattr");
		return -EIO;
	}
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = process_new_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = process_deleted_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = process_changed_xattr(sctx);
	}

	return ret;
}

6024 6025 6026 6027 6028
/*
 * Process new/deleted/changed extents. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of extents. The reason is the same as in changed_ref
 */
6029 6030 6031 6032 6033
static int changed_extent(struct send_ctx *sctx,
			  enum btrfs_compare_tree_result result)
{
	int ret = 0;

6034
	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092

		if (result == BTRFS_COMPARE_TREE_CHANGED) {
			struct extent_buffer *leaf_l;
			struct extent_buffer *leaf_r;
			struct btrfs_file_extent_item *ei_l;
			struct btrfs_file_extent_item *ei_r;

			leaf_l = sctx->left_path->nodes[0];
			leaf_r = sctx->right_path->nodes[0];
			ei_l = btrfs_item_ptr(leaf_l,
					      sctx->left_path->slots[0],
					      struct btrfs_file_extent_item);
			ei_r = btrfs_item_ptr(leaf_r,
					      sctx->right_path->slots[0],
					      struct btrfs_file_extent_item);

			/*
			 * We may have found an extent item that has changed
			 * only its disk_bytenr field and the corresponding
			 * inode item was not updated. This case happens due to
			 * very specific timings during relocation when a leaf
			 * that contains file extent items is COWed while
			 * relocation is ongoing and its in the stage where it
			 * updates data pointers. So when this happens we can
			 * safely ignore it since we know it's the same extent,
			 * but just at different logical and physical locations
			 * (when an extent is fully replaced with a new one, we
			 * know the generation number must have changed too,
			 * since snapshot creation implies committing the current
			 * transaction, and the inode item must have been updated
			 * as well).
			 * This replacement of the disk_bytenr happens at
			 * relocation.c:replace_file_extents() through
			 * relocation.c:btrfs_reloc_cow_block().
			 */
			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
			    btrfs_file_extent_generation(leaf_r, ei_r) &&
			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
			    btrfs_file_extent_compression(leaf_l, ei_l) ==
			    btrfs_file_extent_compression(leaf_r, ei_r) &&
			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
			    btrfs_file_extent_type(leaf_l, ei_l) ==
			    btrfs_file_extent_type(leaf_r, ei_r) &&
			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
			    btrfs_file_extent_offset(leaf_l, ei_l) ==
			    btrfs_file_extent_offset(leaf_r, ei_r) &&
			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
				return 0;
		}

6093 6094 6095
		inconsistent_snapshot_error(sctx, result, "extent");
		return -EIO;
	}
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result != BTRFS_COMPARE_TREE_DELETED)
			ret = process_extent(sctx, sctx->left_path,
					sctx->cmp_key);
	}

	return ret;
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
static int dir_changed(struct send_ctx *sctx, u64 dir)
{
	u64 orig_gen, new_gen;
	int ret;

	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
			     NULL, NULL);
	if (ret)
		return ret;

	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

	return (orig_gen != new_gen) ? 1 : 0;
}

static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
			struct btrfs_key *key)
{
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u64 dirid = 0, last_dirid = 0;
	unsigned long ptr;
	u32 item_size;
	u32 cur_offset = 0;
	int ref_name_len;
	int ret = 0;

	/* Easy case, just check this one dirid */
	if (key->type == BTRFS_INODE_REF_KEY) {
		dirid = key->offset;

		ret = dir_changed(sctx, dirid);
		goto out;
	}

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
	while (cur_offset < item_size) {
		extref = (struct btrfs_inode_extref *)(ptr +
						       cur_offset);
		dirid = btrfs_inode_extref_parent(leaf, extref);
		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
		cur_offset += ref_name_len + sizeof(*extref);
		if (dirid == last_dirid)
			continue;
		ret = dir_changed(sctx, dirid);
		if (ret)
			break;
		last_dirid = dirid;
	}
out:
	return ret;
}

6164 6165 6166 6167
/*
 * Updates compare related fields in sctx and simply forwards to the actual
 * changed_xxx functions.
 */
6168
static int changed_cb(struct btrfs_path *left_path,
6169 6170 6171 6172 6173 6174 6175 6176
		      struct btrfs_path *right_path,
		      struct btrfs_key *key,
		      enum btrfs_compare_tree_result result,
		      void *ctx)
{
	int ret = 0;
	struct send_ctx *sctx = ctx;

6177
	if (result == BTRFS_COMPARE_TREE_SAME) {
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
		if (key->type == BTRFS_INODE_REF_KEY ||
		    key->type == BTRFS_INODE_EXTREF_KEY) {
			ret = compare_refs(sctx, left_path, key);
			if (!ret)
				return 0;
			if (ret < 0)
				return ret;
		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
			return maybe_send_hole(sctx, left_path, key);
		} else {
6188
			return 0;
6189
		}
6190 6191 6192 6193
		result = BTRFS_COMPARE_TREE_CHANGED;
		ret = 0;
	}

6194 6195 6196 6197 6198 6199 6200 6201
	sctx->left_path = left_path;
	sctx->right_path = right_path;
	sctx->cmp_key = key;

	ret = finish_inode_if_needed(sctx, 0);
	if (ret < 0)
		goto out;

6202 6203 6204 6205 6206
	/* Ignore non-FS objects */
	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
		goto out;

6207 6208
	if (key->type == BTRFS_INODE_ITEM_KEY)
		ret = changed_inode(sctx, result);
6209 6210
	else if (key->type == BTRFS_INODE_REF_KEY ||
		 key->type == BTRFS_INODE_EXTREF_KEY)
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
		ret = changed_ref(sctx, result);
	else if (key->type == BTRFS_XATTR_ITEM_KEY)
		ret = changed_xattr(sctx, result);
	else if (key->type == BTRFS_EXTENT_DATA_KEY)
		ret = changed_extent(sctx, result);

out:
	return ret;
}

static int full_send_tree(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret)
		goto out_finish;

	while (1) {
		eb = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(eb, &found_key, slot);

6250 6251
		ret = changed_cb(path, NULL, &found_key,
				 BTRFS_COMPARE_TREE_NEW, sctx);
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
		if (ret < 0)
			goto out;

		key.objectid = found_key.objectid;
		key.type = found_key.type;
		key.offset = found_key.offset + 1;

		ret = btrfs_next_item(send_root, path);
		if (ret < 0)
			goto out;
		if (ret) {
			ret  = 0;
			break;
		}
	}

out_finish:
	ret = finish_inode_if_needed(sctx, 1);

out:
	btrfs_free_path(path);
	return ret;
}

static int send_subvol(struct send_ctx *sctx)
{
	int ret;

6280 6281 6282 6283 6284
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
		ret = send_header(sctx);
		if (ret < 0)
			goto out;
	}
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308

	ret = send_subvol_begin(sctx);
	if (ret < 0)
		goto out;

	if (sctx->parent_root) {
		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
				changed_cb, sctx);
		if (ret < 0)
			goto out;
		ret = finish_inode_if_needed(sctx, 1);
		if (ret < 0)
			goto out;
	} else {
		ret = full_send_tree(sctx);
		if (ret < 0)
			goto out;
	}

out:
	free_recorded_refs(sctx);
	return ret;
}

6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
/*
 * If orphan cleanup did remove any orphans from a root, it means the tree
 * was modified and therefore the commit root is not the same as the current
 * root anymore. This is a problem, because send uses the commit root and
 * therefore can see inode items that don't exist in the current root anymore,
 * and for example make calls to btrfs_iget, which will do tree lookups based
 * on the current root and not on the commit root. Those lookups will fail,
 * returning a -ESTALE error, and making send fail with that error. So make
 * sure a send does not see any orphans we have just removed, and that it will
 * see the same inodes regardless of whether a transaction commit happened
 * before it started (meaning that the commit root will be the same as the
 * current root) or not.
 */
static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
{
	int i;
	struct btrfs_trans_handle *trans = NULL;

again:
	if (sctx->parent_root &&
	    sctx->parent_root->node != sctx->parent_root->commit_root)
		goto commit_trans;

	for (i = 0; i < sctx->clone_roots_cnt; i++)
		if (sctx->clone_roots[i].root->node !=
		    sctx->clone_roots[i].root->commit_root)
			goto commit_trans;

	if (trans)
6338
		return btrfs_end_transaction(trans);
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350

	return 0;

commit_trans:
	/* Use any root, all fs roots will get their commit roots updated. */
	if (!trans) {
		trans = btrfs_join_transaction(sctx->send_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
		goto again;
	}

6351
	return btrfs_commit_transaction(trans);
6352 6353
}

6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
{
	spin_lock(&root->root_item_lock);
	root->send_in_progress--;
	/*
	 * Not much left to do, we don't know why it's unbalanced and
	 * can't blindly reset it to 0.
	 */
	if (root->send_in_progress < 0)
		btrfs_err(root->fs_info,
6364 6365
			  "send_in_progres unbalanced %d root %llu",
			  root->send_in_progress, root->root_key.objectid);
6366 6367 6368
	spin_unlock(&root->root_item_lock);
}

6369
long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6370 6371
{
	int ret = 0;
6372 6373
	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
	struct btrfs_fs_info *fs_info = send_root->fs_info;
6374 6375 6376 6377 6378
	struct btrfs_root *clone_root;
	struct btrfs_key key;
	struct send_ctx *sctx = NULL;
	u32 i;
	u64 *clone_sources_tmp = NULL;
6379
	int clone_sources_to_rollback = 0;
6380
	unsigned alloc_size;
6381
	int sort_clone_roots = 0;
6382
	int index;
6383 6384 6385 6386

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

6387 6388
	/*
	 * The subvolume must remain read-only during send, protect against
6389
	 * making it RW. This also protects against deletion.
6390 6391 6392 6393 6394
	 */
	spin_lock(&send_root->root_item_lock);
	send_root->send_in_progress++;
	spin_unlock(&send_root->root_item_lock);

J
Josef Bacik 已提交
6395 6396 6397 6398 6399 6400
	/*
	 * This is done when we lookup the root, it should already be complete
	 * by the time we get here.
	 */
	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);

6401 6402 6403 6404 6405 6406 6407 6408 6409
	/*
	 * Userspace tools do the checks and warn the user if it's
	 * not RO.
	 */
	if (!btrfs_root_readonly(send_root)) {
		ret = -EPERM;
		goto out;
	}

6410 6411 6412 6413 6414
	/*
	 * Check that we don't overflow at later allocations, we request
	 * clone_sources_count + 1 items, and compare to unsigned long inside
	 * access_ok.
	 */
6415
	if (arg->clone_sources_count >
6416
	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6417 6418 6419 6420
		ret = -EINVAL;
		goto out;
	}

6421
	if (!access_ok(VERIFY_READ, arg->clone_sources,
6422 6423
			sizeof(*arg->clone_sources) *
			arg->clone_sources_count)) {
6424 6425 6426 6427
		ret = -EFAULT;
		goto out;
	}

6428
	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6429 6430 6431 6432
		ret = -EINVAL;
		goto out;
	}

6433
	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6434 6435 6436 6437 6438 6439 6440
	if (!sctx) {
		ret = -ENOMEM;
		goto out;
	}

	INIT_LIST_HEAD(&sctx->new_refs);
	INIT_LIST_HEAD(&sctx->deleted_refs);
6441
	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6442 6443
	INIT_LIST_HEAD(&sctx->name_cache_list);

6444 6445
	sctx->flags = arg->flags;

6446
	sctx->send_filp = fget(arg->send_fd);
6447 6448
	if (!sctx->send_filp) {
		ret = -EBADF;
6449 6450 6451 6452
		goto out;
	}

	sctx->send_root = send_root;
6453 6454 6455 6456 6457 6458 6459 6460 6461
	/*
	 * Unlikely but possible, if the subvolume is marked for deletion but
	 * is slow to remove the directory entry, send can still be started
	 */
	if (btrfs_root_dead(sctx->send_root)) {
		ret = -EPERM;
		goto out;
	}

6462 6463 6464
	sctx->clone_roots_cnt = arg->clone_sources_count;

	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6465
	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6466
	if (!sctx->send_buf) {
6467 6468
		ret = -ENOMEM;
		goto out;
6469 6470
	}

6471
	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6472
	if (!sctx->read_buf) {
6473 6474
		ret = -ENOMEM;
		goto out;
6475 6476
	}

6477 6478
	sctx->pending_dir_moves = RB_ROOT;
	sctx->waiting_dir_moves = RB_ROOT;
6479
	sctx->orphan_dirs = RB_ROOT;
6480

6481 6482
	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);

6483
	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6484
	if (!sctx->clone_roots) {
6485 6486
		ret = -ENOMEM;
		goto out;
6487 6488
	}

6489 6490
	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);

6491
	if (arg->clone_sources_count) {
6492
		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6493
		if (!clone_sources_tmp) {
6494 6495
			ret = -ENOMEM;
			goto out;
6496 6497 6498
		}

		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6499
				alloc_size);
6500 6501 6502 6503 6504 6505 6506 6507 6508
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

		for (i = 0; i < arg->clone_sources_count; i++) {
			key.objectid = clone_sources_tmp[i];
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.offset = (u64)-1;
6509 6510 6511

			index = srcu_read_lock(&fs_info->subvol_srcu);

6512 6513
			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
			if (IS_ERR(clone_root)) {
6514
				srcu_read_unlock(&fs_info->subvol_srcu, index);
6515 6516 6517
				ret = PTR_ERR(clone_root);
				goto out;
			}
6518
			spin_lock(&clone_root->root_item_lock);
6519 6520
			if (!btrfs_root_readonly(clone_root) ||
			    btrfs_root_dead(clone_root)) {
6521
				spin_unlock(&clone_root->root_item_lock);
6522
				srcu_read_unlock(&fs_info->subvol_srcu, index);
6523 6524 6525
				ret = -EPERM;
				goto out;
			}
6526
			clone_root->send_in_progress++;
6527
			spin_unlock(&clone_root->root_item_lock);
6528 6529
			srcu_read_unlock(&fs_info->subvol_srcu, index);

6530
			sctx->clone_roots[i].root = clone_root;
6531
			clone_sources_to_rollback = i + 1;
6532
		}
6533
		kvfree(clone_sources_tmp);
6534 6535 6536 6537 6538 6539 6540
		clone_sources_tmp = NULL;
	}

	if (arg->parent_root) {
		key.objectid = arg->parent_root;
		key.type = BTRFS_ROOT_ITEM_KEY;
		key.offset = (u64)-1;
6541 6542 6543

		index = srcu_read_lock(&fs_info->subvol_srcu);

6544
		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6545
		if (IS_ERR(sctx->parent_root)) {
6546
			srcu_read_unlock(&fs_info->subvol_srcu, index);
6547
			ret = PTR_ERR(sctx->parent_root);
6548 6549
			goto out;
		}
6550

6551 6552
		spin_lock(&sctx->parent_root->root_item_lock);
		sctx->parent_root->send_in_progress++;
6553 6554
		if (!btrfs_root_readonly(sctx->parent_root) ||
				btrfs_root_dead(sctx->parent_root)) {
6555
			spin_unlock(&sctx->parent_root->root_item_lock);
6556
			srcu_read_unlock(&fs_info->subvol_srcu, index);
6557 6558 6559 6560
			ret = -EPERM;
			goto out;
		}
		spin_unlock(&sctx->parent_root->root_item_lock);
6561 6562

		srcu_read_unlock(&fs_info->subvol_srcu, index);
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
	}

	/*
	 * Clones from send_root are allowed, but only if the clone source
	 * is behind the current send position. This is checked while searching
	 * for possible clone sources.
	 */
	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;

	/* We do a bsearch later */
	sort(sctx->clone_roots, sctx->clone_roots_cnt,
			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
			NULL);
6576
	sort_clone_roots = 1;
6577

6578 6579 6580 6581
	ret = ensure_commit_roots_uptodate(sctx);
	if (ret)
		goto out;

6582
	current->journal_info = BTRFS_SEND_TRANS_STUB;
6583
	ret = send_subvol(sctx);
6584
	current->journal_info = NULL;
6585 6586 6587
	if (ret < 0)
		goto out;

6588 6589 6590 6591 6592 6593 6594 6595
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
		if (ret < 0)
			goto out;
		ret = send_cmd(sctx);
		if (ret < 0)
			goto out;
	}
6596 6597

out:
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
		struct rb_node *n;
		struct pending_dir_move *pm;

		n = rb_first(&sctx->pending_dir_moves);
		pm = rb_entry(n, struct pending_dir_move, node);
		while (!list_empty(&pm->list)) {
			struct pending_dir_move *pm2;

			pm2 = list_first_entry(&pm->list,
					       struct pending_dir_move, list);
			free_pending_move(sctx, pm2);
		}
		free_pending_move(sctx, pm);
	}

	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
		struct rb_node *n;
		struct waiting_dir_move *dm;

		n = rb_first(&sctx->waiting_dir_moves);
		dm = rb_entry(n, struct waiting_dir_move, node);
		rb_erase(&dm->node, &sctx->waiting_dir_moves);
		kfree(dm);
	}

6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
		struct rb_node *n;
		struct orphan_dir_info *odi;

		n = rb_first(&sctx->orphan_dirs);
		odi = rb_entry(n, struct orphan_dir_info, node);
		free_orphan_dir_info(sctx, odi);
	}

6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
	if (sort_clone_roots) {
		for (i = 0; i < sctx->clone_roots_cnt; i++)
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);
	} else {
		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);

		btrfs_root_dec_send_in_progress(send_root);
	}
6647 6648
	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
		btrfs_root_dec_send_in_progress(sctx->parent_root);
6649

6650
	kvfree(clone_sources_tmp);
6651 6652 6653 6654 6655

	if (sctx) {
		if (sctx->send_filp)
			fput(sctx->send_filp);

6656
		kvfree(sctx->clone_roots);
6657
		kvfree(sctx->send_buf);
6658
		kvfree(sctx->read_buf);
6659 6660 6661 6662 6663 6664 6665 6666

		name_cache_free(sctx);

		kfree(sctx);
	}

	return ret;
}